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Abstract By using Chen, Hou and Mu’s extended Zeilberger algorithm, the authors obtain two

recurrence relations for Callan’s generalization of Narayana polynomials. Based on these recurrence

relations, the authors further prove the real-rootedness and asymptotic normality of Callan’s Narayana
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1 Introduction

For any integers n > k ≥ 0, the classical Narayana number N(n, k) is given by

N(n, k) =
1
n

(
n

k

)(
n

k + 1

)
,

which appears in OEIS as A001263 in [1]. It is well known that the Narayana numbers refine
the Catalan numbers Cn = 1

n+1

(
2n
n

)
since

n−1∑
k=0

N(n, k) = Cn.
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For more information on Catalan numbers, see [2, 3]. As pointed out by Bóna and Sagan[4], the
Narayana numbers were first studied by MacMahon (see [5, Article 495]). These numbers were
rediscovered by Narayana[6], and later extensively studied by the combinatorial community, see,
for instance, [7–12].

This paper is mainly concerned with a generalization of Narayana numbers given by Callan[13].
For integers m ≥ 0, n ≥ m + 1 and 0 ≤ k ≤ n − m − 1, let

Nm(n, k) =
m + 1
n + 1

(
n + 1
k + 1

)(
n − m − 1

k

)
, (1)

which was called the m-th order Narayana number by Callan. It is clear that N(n, k) = N0(n, k).
Let Pm,n(x) denote the generating polynomial of the m-th order Narayana numbers, namely

Pm,n(x) =
n−m−1∑

k=0

Nm(n, k)xk, (2)

which we may call the m-th order Narayana polynomial.
As a generalization, it is natural to expect that the m-th order Narayana numbers and

polynomials share many interesting properties with the classical ones. It is known that the
classical Narayana number N(n, k) counts the number of lattice paths of n up-steps U = (1, 1)
and n down-steps D = (1,−1) with k + 1 peaks UD such that the path never goes below the
horizontal line through its initial point. Similarly, Nm(n, k) counts the number of lattice paths
of n up-steps and n − m down-steps with k + 1 peaks such that the path never goes below the
horizontal line through its initial point. Such a combinatorial interpretation of Nm(n, k) is due
to Werner Schulte, as mentioned in [13]. Chen, et al.[14] conjectured the total positivity of the
Narayana triangle composed of N(n, k), and later Wang and Yang[15] proved the total positivity
of the triangle composed of Nm(n, k) for any m ≥ 0. For the classical Narayana polynomials,
the following recurrence relation

(n + 1)P0,n(x) = (2n − 1)(1 + x)P0,n−1(x) − (n − 2)(x − 1)2P0,n−2(x) (3)

was combinatorially proved by Sulanke (see [11, Equation (2)]). Liu and Wang[16] pointed out
that the real-rootedness of P0,n(x) can be easily derived from this recurrence relation besides
some other proofs. Based on the real-rootedness of P0,n(x), Chen, et al.[17] further proved the
asymptotic normality of its coefficients.

The aim of this paper is to give some recurrence relations of the m-th order Narayana
polynomial for any fixed m ≥ 0, and then to prove its real-rootedness as well as the asymptotic
normality of its coefficients. This paper is organized as follows. In Section 2, we will give an
overview of the extended Zeilberger algorithm established by Chen, et al.[18], and then use their
algorithm to give some recurrence relations of Pm,n(x). In Section 3, we will recall a criterion
for determining the real-rootedness of polynomials due to Liu and Wang[16], and then use their
criterion to prove the real-rootedness of Pm,n(x). Finally, in Section 4 we will apply some
results due to Bender[19] and Harper[20] to show the asymptotic normality of Nm(n, k) for any
fixed m ≥ 0. We would like to point out that the asymptotic normality of classical Narayana
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numbers was proposed by Shapiro[21] in 2001 as an open problem and recently proved by Chen,
et al.[17].

2 Recurrence Relations

In this section we aim to give some recurrence relations of the m-th order Narayana poly-
nomial Pm,n(x) for any fixed m ≥ 0. The main result of this section is as follows.

Theorem 2.1 Fixing m ≥ 0, the polynomial sequence {Pm,n(x)}n≥m+1 satisfies the fol-
lowing two recurrence relations:

Pm,n(x) =
(2n − m − 1)

((
2n2 − 2n − m(2n − m − 2)

)
x + 2n(n − m − 1)

)
(n + 1)(n − m)(2n − m − 2)

Pm,n−1(x)

− (2n − m)(n − m − 2)(n − 1)(x − 1)2

(n + 1)(n − m)(2n − m − 2)
Pm,n−2(x), for n ≥ m + 3 (4)

and

(n + 1)(n − m)Pm,n(x) =
(
(n + 1)(n − m) +

(
m2 + 2m + 3n(n− m − 1)

)
x
)
Pm,n−1(x)

− (2n − m)(x2 − x)P ′
m,n−1(x), for n ≥ m + 2 (5)

with initial values Pm,m+1(x) = m + 1 and Pm,m+2(x) = m + 1 +
(
m+2

2

)
x.

Instead of providing elementary proofs of (4) and (5), we will show how to use the symbolic
method to derive these recurrences from the expression of Pm,n(x). We refer the reader to
Chen and Kauers[22] for a nice survey on the method of creative telescoping and related open
problems. We find that the extended Zeilberger algorithm developed by Chen, et al.[18] is a
powerful tool for dealing with such issues.

Let us give a brief review of the extended Zeilberger algorithm. We adopt the notation and
terminology of [18]. A function f(k) is called a hypergeometric term if f(k+1)/f(k) is a rational
function of k. Given two hypergeometric terms f(k) and g(k), they are said to be similar if
f(k)/g(k) is a rational function of k. The extended Zeilberger algorithm developed by Chen,
et al. is applicable to � hypergeometric terms f1(k, p1, p2, · · · , ps), · · · , f�(k, p1, p2, · · · , ps) of
k with parameters p1, p2, · · · , ps such that both

fi(k, p1, p2, · · · , ps)
fj(k, p1, p2, · · · , ps)

and
fi(k + 1, p1, p2, · · · , ps)

fi(k, p1, p2, · · · , ps)
are all rational functions of k and p1, p2, · · · , ps for any 1 ≤ i, j ≤ �. The extended Zeil-
berger algorithm is devised to find a hypergeometric term g(k, p1, p2, · · · , ps), namely g(k +
1, p1, p2, · · · , ps)/g(k, p1, p2, · · · , ps) is a rational function of k and p1, p2, · · · , ps, and polyno-
mial coefficients a1(p1, p2, · · · , ps), · · · , a�(p1, p2, · · · , ps) which are independent of k such that

a1f1(k) + a2f2(k) + · · · + a�f�(k) = g(k + 1) − g(k), (6)
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where ai stands for ai (p1, p2, · · · , ps), fi(k) stands for fi(k, p1, p2, · · · , ps), and g(k) stands for
g(k, p1, p2, · · · , ps) for brevity. For 1 ≤ i ≤ �, let

Fi =
∑

k

fi(k).

Summing the telescoping relation (6) over k usually leads to a homogeneous relation

a1F1 + a2F2 + · · · + a�F� = 0. (7)

The extended Zeilberger algorithm was implemented as the function Ext Zeil in the Maple
package APCI by Hou[23]. The calling sequence of this function is of the form Ext Zeil([f1, f2,

· · · , f�], k). If the algorithm is applicable, it gives the output [C, Ca2/a1, Ca3/a1, · · · , Ca�/a1],
where C is a k-free non-zero constant. In the following we shall take (3) as an example to
illustrate the use of this package. The first step is to import this package in Maple in the
following way.

In[1]:= [> with(APCI);

[AbelZ, Ext Zeil, Gosper, MZeil, Zeil, hyper simp, hyperterm, poch, qExt Zeil, qGosper,

qZeil, qbino, qhyper simp, qhyperterm, qpoch]

Note that the recurrence (3) is of the form (7) with

f1 = N0(n, k)xk, f2 = N0(n − 1, k)xk, f3 = N0(n − 2, k)xk.

To prove (3), we continue to set the values of fi as follows.

In[2]:= [> f1 :=
1

n + 1

(
n + 1

k + 1

)(
n − 1

k

)
xk :

In[3]:= [> f2 :=
1

n

(
n

k + 1

)(
n − 2

k

)
xk :

In[4]:= [> f3 :=
1

n − 1

(
n − 1

k + 1

)(
n − 3

k

)
xk :

Then we run the following command

In[5]:= [> Ext Zeil([f1, f2, f3], k);

[
k free1, −k free1(x + 1)(2n − 1)

n + 1
,

k free1(n − 2)(x − 1)2

n + 1

]
.

The above output implies that there exists some nonzero constant C independent of k such
that

C · P0,n(x) +
(
−C · (x + 1)(2n − 1)

n + 1

)
· P0,n−1(x) +

(
C · (n − 2)(x − 1)2

n + 1

)
· P0,n−2(x) = 0,

which simplifies to (3).
Now we are able to prove Theorem 2.1.
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Proof of Theorem 2.1 Let us first prove (4), which is of the form (7) with

f1 = Nm(n, k)xk, f2 = Nm(n − 1, k)xk, f3 = Nm(n − 2, k)xk.

To this end, we input the following commands:

In[6]:= [> f1 :=
m + 1

n + 1

(
n + 1

k + 1

)(
n − m − 1

k

)
xk :

In[7]:= [> f2 :=
m + 1

n

(
n

k + 1

)(
n − m − 2

k

)
xk :

In[8]:= [> f3 :=
m + 1

n − 1

(
n − 1

k + 1

)(
n − m − 3

k

)
xk :

In[9]:= [> Ext Zeil([f1, f2, f3], k);

[
k free1,

(m − 2n + 1)(m2x − 2mnx + 2n2x − 2mn + 2mx + 2n2 − 2nx − 2n)k free1

(n + 1)(−n + m)(m − 2n + 2)
,

(−n + 2 + m)(n − 1)(x − 1)2(m − 2n)k free1

(n + 1)(−n + m)(m − 2n + 2)

]
.

The above output implies that there exists some nonzero constant C such that

C · Pm,n(x) + C · a2

a1
· Pm,n−1(x) + C · a3

a1
· Pm,n−2(x) = 0,

where ⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

a1 = (n + 1)(−n + m)(m − 2n + 2),

a2 = (m − 2n + 1)(m2x − 2mnx + 2n2x − 2mn + 2mx + 2n2 − 2nx − 2n),

a3 = (−n + 2 + m)(n − 1)(x − 1)2(m − 2n).

This relation is equivalent to (4).
We proceed to prove (5), which is of the form (7) with

f1 = Nm(n, k)xk, f2 = Nm(n − 1, k)xk, f3 = (Nm(n − 1, k)xk)′ = k · Nm(n − 1, k)xk−1.

Hence, we only need to reset the value of f3 and rerun the command Ext Zeil([f1, f2, · · · , f�],
k).

In[10]:= [> f3 := k
m + 1

n

(
n

k + 1

)(
n − m − 2

k

)
xk−1 :

In[11]:= [> Ext Zeil([f1, f2, f3], k);

[
k free1,

(m2x − 3mnx + 3n2x − mn + 2mx + n2 − 3nx − m + n)k free1

(n + 1)(−n + m)
,
x(m − 2n)k free1(x − 1)

(n + 1)(−n + m)

]
.

Using the above output one can readily verify the validity of (5). This completes the proof.
By comparing the coefficients of the powers of x on both sides of (4) and (5), we immediately

obtain the following two recurrence relations for the m-th order Narayana numbers.
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Corollary 2.2 For m ≥ 0 and 0 ≤ k ≤ n − m − 1, we have

Nm(n, k)

=A(n, m)Nm(n − 1, k) + B(n, m)Nm(n − 1, k − 1)

− C(n, m)
(
Nm(n − 2, k) − 2Nm(n − 2, k − 1) + Nm(n − 2, k − 2)

)
, for n ≥ m + 3, (8)

where
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

A(n, m) =
2n(2n− m − 1)(n − m − 1)
(n + 1)(n − m)(2n − m − 2)

,

B(n, m) =
(2n − m − 1)

(
n2 + (n − m)(n − m − 2)

)
(n + 1)(n − m)(2n − m − 2)

,

C(n, m) =
(2n − m)(n − m − 2)(n − 1)
(n + 1)(n − m)(2n − m − 2)

,

and

(n + 1)(n − m)Nm(n, k)

=
(
(2n − m)k + (n + 1)(n − m)

)
Nm(n − 1, k)

+
(
m2 + (3n − 1)(n − m) − k(2n − m)

)
Nm(n − 1, k − 1), for n ≥ m + 2, (9)

with initial values Nm(m + 1, 0) = m + 1, Nm(m + 2, 0) = m + 1 and Nm(m + 2, 1) =
(
m+2

2

)
.

Remark 2.3 It should be mentioned that (9) can also be obtained by using the Math-
ematica package HolonomicFunctions programmed by Koutschan[24, 25]. Letting m = 0 in (8)
leads to

N0(n, k) =
2n − 1
n + 1

(
N0(n − 1, k) + N0(n − 1, k − 1)

)

− n − 2
n + 1

(
N0(n − 2, k) − 2N0(n − 2, k − 1) + N0(n − 2, k − 2)

)
,

a known recurrence relation satisfied by the classical Narayana polynomials, see Sulanke (see
[26, Equation (8)]). It would also be interesting to give combinatorial proofs of (8) and (9)
based on Schulte’s Dyck path interpretation of the m-th order Narayana numbers.

3 Real Zeros

This section is devoted to proving the real-rootedness of the m-th order Narayana polyno-
mials. The main result of this section is as follows.

Theorem 3.1 For any m ≥ 0 and n ≥ m + 1, the generalized Narayana polynomials
Pm,n(x) have only real zeros.

To prove the above theorem, we will use the theory of Sturm sequences. Let us first review
some definitions and results on Sturm sequences. Following Liu and Wang[16], we use PF
to represent the set of real-rooted polynomials with nonnegative real coefficients, including
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any nonnegative constant for convenience. Given two polynomials f(x), g(x) ∈ PF, suppose
f(ui) = 0 and g(vj) = 0. We say that g(x) interlaces f(x), denoted g(x) � f(x), if either
deg f(x) = deg g(x) = n and

vn ≤ un ≤ vn−1 ≤ · · · ≤ v2 ≤ u2 ≤ v1 ≤ u1,

or deg f(x) = deg g(x) + 1 = n and

un ≤ vn−1 ≤ · · · ≤ v2 ≤ u2 ≤ v1 ≤ u1.

Following Liu and Wang[16], we also let a � bx + c for any nonnegative a, b, c, and let 0 � f

and f � 0 for any f ∈ PF. Given a polynomial sequence {fn(x)}n≥0, if each fn(x) ∈ PF and
moreover

f0(x) � f1(x) � · · · � fn−1(x) � fn(x) � · · · ,

then {fn(x)}n≥0 is said to be a generalized Sturm sequence. The following result was given by
Liu and Wang, see [16, Corollary 2.4].

Theorem 3.2 (see [16]) For a sequence {fn(x)}n≥0 of polynomials with nonnegative co-
efficients, assume that f0(x), f1(x) ∈ PF, f0(x) � f1(x) and

• there exist polynomials an(x), bn(x), cn(x) with real coefficients such that

fn+1(x) = an(x)fn(x) + bn(x)f ′
n(x) + cn(x)fn−1(x)

and deg fn+1(x) = deg fn(x) or deg fn(x) + 1; and

• for x ≤ 0 we have bn(x) ≤ 0 and cn(x) ≤ 0.

Then {fn(x)}n≥0 is a generalized Sturm sequence.

We proceed to prove Theorem 3.1.
Proof of Theorem 3.1 Let us fix m ≥ 0. It suffices to show that {Pm,k(x)}k≥m+1 is a

generalized Sturm sequence. To use Theorem 3.2, set fn(x) = Pm,m+1+n(x) for each n ≥ 0.
By (1) each polynomial fn(x) = Pm,m+1+n(x) has only nonnegative coefficients. Note that

f0(x) = Pm,m+1(x) = m + 1, f1(x) = Pm,m+2(x) = m + 1 +
(

m + 2
2

)
x,

and hence f0(x), f1(x) ∈ PF, f0(x) � f1(x). By the recurrence relation (5) of Theorem 2.1, we
find that

fn+1(x) = an(x)fn(x) + bn(x)f ′
n(x) + cn(x)fn−1(x), for n ≥ 1

with

an(x) = 1 +
3n2 + (9 + 3m)n + (m2 + 5m + 6)

(n + m + 3)(n + 2)
· x,

bn(x) = − (2n + m + 4)
(n + m + 3)(n + 2)

· x(x − 1),

cn(x) = 0.
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It is easy to verify that the conditions of Theorem 3.2 are satisfied, and thus {fn(x)}n≥0, that
is {Pm,k(x)}k≥m+1, is a generalized Sturm sequence. This completes the proof.

Brändén[27] pointed out a connection between the classical Narayana polynomials and the
Jacobi polynomials. Recall that the classical hypergeometric function 2F1

[28] with parameters
a, b, c is defined by

2F1(a, b; c; z) =
∞∑

n=0

(a)n(b)n

(c)n n!
zn,

where (a)0 = 1 and (a)n = a(a + 1) · · · (a + n − 1) for n ≥ 1. The Jacobi polynomial J
(α,β)
n (x)

can be expressed as (see [29, P. 254])

J (α,β)
n (x) =

(1 + α)n

n!

(
x + 1

2

)n

2F1

(
−n,−β − n; 1 + α;

x − 1
x + 1

)
. (10)

Brändén[27] noted that

P0,n+1(x) =
1

n + 1
(1 − x)nJ (1,1)

n

(
1 + x

1 − x

)
.

It is well known that for α, β > −1 the Jacobi polynomial sequence {J (α,β)
n (x)}n≥0 is a gener-

alized Sturm sequence. We have the following result, from which Theorem 3.1 also follows.

Theorem 3.3 For any m ≥ 0 and n ≥ 0, we have

Pm,n+m+1(x) =
m + 1
n + 1

(1 − x)nJ (1,m+1)
n

(
1 + x

1 − x

)
.

Proof By (1) it is routine to verify that

Pm,n+m+1(x) = (m + 1) · 2F1(−n,−n − m − 1; 2; x).

Then we immediately obtain the desired result from (10).

4 Asymptotic Normality

This section is devoted to the study of the asymptotic property of generalized Narayana
numbers Nm(n, k).

Let us first recall some concepts and results. Suppose that {fn(x)}n≥0 is a polynomial
sequence with nonnegative coefficients given by

fn(x) =
n∑

k=0

a(n, k)xk. (11)

We say that the coefficient a(n, k) is asymptotically normal with mean μn and variance σ2
n by

a central limit theorem if

lim
n→∞ sup

x∈R

∣∣∣∣∣∣
∑

k≤μn+xσn

p(n, k) − 1√
2π

∫ x

−∞
exp(−t2/2)dt

∣∣∣∣∣∣ = 0, (12)
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where
p(n, k) =

a(n, k)∑n
j=0 a(n, j)

.

We say that a(n, k) is asymptotically normal with mean μn and variance σ2
n by a local limit

theorem on the real set R if

lim
n→∞ sup

x∈R

∣∣∣∣σnp(n, �μn + xσn	) − 1√
2π

exp(−x2/2)
∣∣∣∣ = 0. (13)

It is known that (13) implies (12). However, (12) does not imply (13) in general. But if

(a(n, k))2 ≥ a(n, k − 1) · a(n, k + 1)

and
{k : a(n, k) 
= 0} = {k : un ≤ k ≤ vn}

for some integers un, vn, then (13) is valid in the presence of (12), see Bender[19] and Canfield[30].
The main tool we use here is the following criterion, see Bender[19] and Harper[20].

Theorem 4.1 (see [19, Theorem 2]) Let {fn(x)}n≥0 be a real-rooted polynomial sequence
with nonnegative coefficients as in (11). Let

μn =
f ′

n(1)
fn(1)

, (14)

σ2
n =

f ′′
n (1)

fn(1)
+ μn − μ2

n. (15)

If σ2
n → +∞ as n → +∞, then the coefficient of fn(x) is asymptotically normal with mean μn

and variance σ2
n by local and central limit theorems.

Now we are in the position to state the main result of this section.

Theorem 4.2 For any fixed integer m ≥ 0, let {Pm,n(x)}n≥m+1 be defined as in (2).
Then the coefficient of Pm,n(x), namely the generalized Narayana number Nm(n, k), is asymp-
totically normal by local and central limit theorems with

μn =
n(m + 1 + n)
2n + m + 2

, (16)

σ2
n =

n(n + 1)(m + 1 + n)(m + 2 + n)
(2n + m + 2)2(2n + m + 1)

. (17)

Proof As in the proof of Theorem 3.1, let fn(x) = Pm,m+1+n(x) for each n ≥ 0. By
Theorem 3.1, we know that {fn(x)}n≥0 is a real-rooted polynomial sequence with nonnegative
coefficients. Note that

P ′
m,n(x) =

n−m−1∑
k=0

m + 1
n + 1

(
n + 1
k + 1

)(
n − m − 1

k

)
kxk−1

=
(m + 1)(n − m − 1)

n + 1

n−m−1∑
k=0

(
n + 1
k + 1

)(
n − m − 2

k − 1

)
xk−1,
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and

P ′′
m,n(x) =

n−m−1∑
k=0

m + 1
n + 1

(
n + 1
k + 1

)(
n − m − 1

k

)
k(k − 1)xk−2

=
(m + 1)(n − m − 1)(n − m − 2)

n + 1

n−m−1∑
k=0

(
n + 1
k + 1

)(
n − m − 3

k − 2

)
xk−2.

By the Chu-Vandermonde convolution formula (see [31] or [32, §5.1]), we obtain

Pm,n(1) =
m + 1
n + 1

(
2n − m

n

)
, (18)

P ′
m,n(1) =

(m + 1)(n − m − 1)
n + 1

(
2n − m − 1

n − 1

)
, (19)

P ′′
m,n(1) =

(m + 1)(n − m − 1)(n − m − 2)
n + 1

(
2n − m − 2

n − 2

)
. (20)

Thus, from (14), (15), and (18)–(20) it follows that

μn =
f ′

n(1)
fn(1)

=
P ′

m,m+1+n(1)
Pm,m+1+n(1)

=
n(m + 1 + n)
2n + m + 2

,

and

σ2
n =

f ′′
n (1)

fn(1)
+ μn − μ2

n =
P ′′

m,m+1+n(1)
Pm,m+1+n(1)

+ μn − μ2
n =

n(n + 1)(m + 1 + n)(m + 2 + n)
(2n + m + 2)2(2n + m + 1)

.

Clearly, for any fixed nonnegative integer m, we have σ2
n → +∞ when n → ∞. By applying

Theorem 4.1, we immediately obtain the desired result.
With the above theorem, we are now able to give an asymptotic formula for the m-th

order Narayana numbers. Let us first recall some common notations for asymptotic estimation.
Given two functions f(n) and g(n), if limn→∞ f(n)/g(n) = 1 then we denote f(n) ∼ g(n); if
lim supn→∞ |f(n)|/g(n) < ∞ then we denote f(n) = O(g(n)); and if limn→∞ f(n)/g(n) = 0
then we denote f(n) = o(g(n)). As a consequence of Theorem 4.2, we have the following result.

Corollary 4.3 Let Pm,n(1) be given by (18), μn be given by (16), and σn be given by (17).
Then for k = �μn + xσn	 and x = O(1), there holds

Nm(m + 1 + n, k) ∼ Pm,m+1+n(1)√
2πσn

exp
(
−x2

2

)
, as n → ∞. (21)

In view of the explicit expression (1) of Nm(n, k), it is desirable to give a direct approach
to (21) as was done for the normal approximation of the binomial distribution. In the following
we will give an alternative proof of Corollary 4.3.

The second proof of Corollary 4.3 By (16) and (17) we see that μn goes to n/2 and σ2
n goes

to n/8 for fixed m as n goes to ∞. Thus, it suffices to estimate

Nm(n, k)
Pm,n(1)

=

(
n+1
k+1

)(
n−m−1

k

)
(
2n−m

n

) (22)
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for |k − n/2| = o(n2/3). From Stirling’s formula for factorials it follows that
(

n
n
2

)
∼ 2n√

πn/2
(23)

and (
n

k

)
∼ 2n√

πn/2
exp

(
− (k − n/2)2

n/2

)
, for |n/2 − k| = o(n2/3), (24)

as n goes to ∞, see [33, P. 66]. Hence, by (23) and (24) we get
(

n + 1
k + 1

)
∼ 2n+1√

2(n + 1)π/4
exp

(
− (k + 1 − (n + 1)/2)2

2(n + 1)/4

)
,

(
n − m − 1

k

)
∼ 2n−m−1√

2(n − m − 1)π/4
exp

(
− (k − (n − m − 1)/2)2

2(n − m − 1)/4

)
,

(
2n − m

n

)
∼ 22n−m√

2(2n− m)π/4
exp

(
− (n − (2n − m)/2)2

2(2n− m)/4

)
.

Substituting the above approximations into (22) yields

Nm(n, k)
Pm,n(1)

∼ 1√
2πσ′

n

exp
(
− (k − μ′

n)2

2σ′
n

2

)
,

where

μ′
n =

n(n − m − 1)
2n − m

, σ′
n

2 =
(n + 1)(n − m − 1)

4(2n − m)
.

By replacing n by m + 1 + n, we obtain

Nm(m + 1 + n, k)
Pm,m+1+n(1)

∼ 1√
2πσ′′

n

exp
(
− (k − μ′′

n)2

2σ′′
n

2

)
, as n → ∞, (25)

where

μ′′
n =

n(m + 1 + n)
2n + m + 2

, σ′′
n

2 =
n(m + 2 + n)
4(2n + m + 2)

.

We would like to point out that the asymptotic formulas (21) and (25) have the same mean
(μn = μ′′

n) but different variances, and the error committed is negligible when n goes to ∞.
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