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Abstract The varying-coefficient single-index model (VCSIM) is widely used in economics, statistics

and biology. A model averaging method for VCSIM based on a Mallows-type criterion is proposed to

improve prodictive capacity, which allows the number of candidate models to diverge with sample size.

Under model misspecification, the asymptotic optimality is derived in the sense of achieving the lowest

possible squared errors. The authors compare the proposed model averaging method with several other

classical model selection methods by simulations and the corresponding results show that the model

averaging estimation has a outstanding performance. The authors also apply the method to a real

dataset.

Keywords Asymptotic optimality, kernel-local smoothing method, Mallows-type criterion, model

averaging, varying-coefficient single-index model.

1 Introduction

The varying-coefficient single-index model (VCSIM), a semiparametric model[1] has a pow-
erful fitting ability for complex data since it is more flexible than parametric models. In partic-
ular, VCSIM has three important superiorities: Additivity of explanatory variables; coefficient
function without stationary forms; and single-index threshold[1]. The additivity indicates the
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effect of the marginal change of each explanatory variable[2], especially for modeling an eco-
nomic system. The flexible coefficient function depicts more information from the data to
avoid misspecified model forms well. Furthermore, a single-index threshold can overcome the
“curse of dimensionality”[1, 3, 4]. When the dimension of the nonadditive explanatory variable
typically in varying-coefficient models is large, it is subject to the “curse of dimensionality”.
A very large sample size is required to achieve the ideal estimation of the regression func-
tion. However, VCSIM assembles the multidimensional nonadditive explanatory variables into
a “single-index term” in the varying-coefficient part to effectively avoid it. Moreover, there exist
many mature methods to estimate parameters in VCSIM, such as semiparametric least square
estimation[5, 6], averaging derivatives estimation[7, 8], sliced inverse regression estimation[9],
smoothing splines[10–12], kernel smoothing[13, 14], local polynomial smoothing[15–17] and penal-
ized splines[18].

Recently, prediction with multiple models has become increasingly prevalent such as ensem-
ble learning in machine learning[19–21] and model averaging (MA) in statistics[22, 23]. Tradition-
ally, the following problems will arise when we only use one model. First, we do not know which
variables are admitted into the model and whether the admitted variables act as additive parts
or single-index variables in practice for VCSIM. Second, we do not know whether the model
form we used is true. A methodology to solve these problems is model selection by minimizing
a criterion, such as AIC[24], BIC[25] and Cp

[26]. However, the working model we choose through
model selection approaches is likely to change when different training data are used, especially
when sample size is small. Moreover, we will encounter the phenomenon whereby the criterion
values of two or more candidate models are very similar and simply choosing one model may
not be satisfactory. Hence, the aforementioned issues have given rise to model averaging in
statistics and ensemble learning in machine learning, which are regarded as a continuous-type
model selection. Compared with machine learning, the model averaging methodology has more
theoretical support and is better suited for statistical models. Therefore, to improve the ability
of VCSIM, we adopt a Mallows-type model averaging approach inspired by prior works, such
as Hansen[22],Wan, et al.[27] and Zhu, et al.[28].

In the past decade, model averaging has become a hot topic in statistics. Bayesian model av-
eraging (BMA) and frequentist model averaging (FMA) are two main streams of averaging tech-
niques. Although BMA can be applied in many models since its flexibility, the choice of priors is
often challenging[29]. Meanwhile, there are various FMA methods[30], and a partial list includes
smoothed information criteria[31, 32], optimal weighting[33–35], adaptive weighting[36, 37], plug-in
methods[38, 39] and marginal regression averaging[40]. We adopt the optimal model averaging
method here.

We make contributions to VCSIM and model averaging mainly in two aspects. First, we
propose a Mallows-type criterion to calculate the weights for VCSIM. Under this weight choice
strategy, we also prove the model averaging estimator is asymptotically optimal in terms of
minimum loss. Second, we allow the number of candidate models to diverge with the sample
size. Therefore, it is more flexible in the preparation of candidate models.

The rest of the paper is organized as follows. The process for model averaging is introduced
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in Section 2. In Section 3, the asymptotic optimality of the MA estimator is presented. Monte
Carlo simulation is performed to investigate the performance of the MA estimator in Section 4,
and we apply the MA method to a real dataset in Section 5. In addition, we offer some
concluding remarks in Section 6. Finally, the technical proofs are provided in the Appendix.

2 Model Setup and Model Averaging Frame

This paper considers the varying-coefficient single-index model shown as

yi = μi + εi = xT
i g(zT

i β) + εi, i = 1, 2, · · · , n, (2.1)

where yi is the response variable; xi = (xi1, xi2, · · · , xip)T ∈ R
p×1 and zi = (zi1, zi2, · · · , ziq)T ∈

R
q×1 are nonrandom explanatory variable vectors; g(·) = (g1(·), g2(·), · · · , gp(·))T ∈ R

p×1 is an
unknown vector function mapping from R to R

p; the random error εi satisfies E(εi|xi, zi) = 0
and E(ε2

i |xi, zi) = σ2; and β is a q × 1 unknown parameter vector that satisfies ‖β‖ = 1 and
whose first component of β is positive for the model identifiability. For convenience in subse-
quent discussions, denote y = (y1, y2, · · · , yn)T, X = (x1, x2, · · · , xn)T, Z = (z1, z2, · · · , zn)T,
ε = (ε1, ε2, · · · , εn)T and μ = (μ1, μ2, · · · , μn)T.

Before using the model averaging method, candidate models should be prepared. Suppose
that there are sn candidate varying-coefficient single-index models used to approximate the
model (2.1), with sn being allowed to diverge to infinity as n → ∞. Among all candidate
models, the sth one is set as

yi = μ(s),i + ε(s),i = xT
(s),ig(s)(zT

(s),iβ(s)) + ε(s),i, i = 1, 2, · · · , n, (2.2)

where x(s),i ∈ R
ps×1 and z(s),i ∈ R

qs×1 are the corresponding subset of xi and zi, respectively;
g(s)(·) ∈ R

ps×1 is the unknown vector function; β(s) ∈ R
qs×1 is the unknown parameter vector,

which also satisfies ‖β(s)‖ = 1 and the first component of β(s) is positive. In particular, it
should be noted that ε(s),i = εi + μi − μ(s),i is not from the identical distribution as ε. Finally,
we also use X(s), Z(s), ε(s) and μ(s) for the sth candidate model as above.

Next, we will launch the MA estimation by the following two main steps.
Step 1 Fit every candidate model and obtain the estimator of μ(s) denoted as μ̂(s).
Step 2 Evaluate the weight for every candidate model and combine all the candidate

models’ estimators to achieve the MA estimator. Hence, the MA estimator for μ has the form
μ̂(w) =

∑sn

s=1 wsμ̂(s), where w ∈ W = {[0, 1]sn :
∑sn

i=1 = 1}.
Specifically, there are three tasks to complete in Step 1. First, to obtain ̂β(s), we adopt

the modified average derivative method inspired by Hristache, et al.[41], in which the deriva-
tive of g(·) is derived from kernel-local polynomial smoothing method[42]. Second, regarding
zT

(s),i
̂β(s) as a scalar variable, we can obtain the estimator of g(s)(·), ĝ(s)(·), based on the local

constant least square method. Third, μ̂(s),i, the estimator of the ith component of μ(s), is
obtained by multiplying x(s),i and ĝ(s)(zT

(s),i
̂β(s)). In Step 2, we compute the weight vector

ŵ = (ŵ1, ŵ2, · · · , ŵsn)T through a Mallows-type criterion and combine the weights and the
estimators from all candidate models to achieve the final MA estimator μ̂(ŵ).
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2.1 Estimating for Each Candidate Model

It is complicated to estimate μ for each candidate model, and there are three tasks to com-
plete. First, to estimate β(s), we should regard g(s),j(zTβ(s)), the jth component of g(s)(zTβ(s)),
as a function with respect to z and denote it as ϕ(s),j(z), for j = 1, 2, · · · , ps. Accordingly, the
derivative of ϕ(s),j(z) with respect to z can be written as ϕ̇(s),j(z) which is a qs ×1 vector. For
s = 1, 2, · · · , sn and z ∈ R

qs , denote ϕ(s)(z)=(ϕ(s),1(z), ϕ(s),2(z), · · · , ϕ(s),ps
(z) )T ∈ R

ps×1

, ϕ̇(s)(z) = ( ϕ̇(s),1(z), ϕ̇(s),2(z), · · · , ϕ̇(s),ps
(z) )T∈ R

ps×qs . Then, β(s) can be computed by

β(s) =
ϕ̇(s),j(z)

‖ϕ̇(s),j(z)‖ ,

which is identical for each j in theory.
By the denotation above, we rewrite the model (2.2) as

yi = xT
(s),iϕ(s)(z(s),i) + εi, i = 1, 2, · · · , n, s = 1, 2, · · · , sn. (2.3)

By the kernel-local polynomial smoothing method, ϕ̂(s)(z) and ̂ϕ̇(s)(z), the estimators of
ϕ(s)(z) and ϕ̇(s)(z), are the solution to minimize

D(a, B) =
n
∑

i=1

{yi − xT
(s),ia − xT

(s),iB(z(s),i − z)}2Kh(‖z(s),i − z‖)

=

∥

∥

∥

∥

∥

∥

K
1/2
(s),h(z)y − K

1/2
(s),h(z)Γs(z)

⎛

⎝

a

b

⎞

⎠

∥

∥

∥

∥

∥

∥

2

, (2.4)

where ϕ̂(s)(z) and ̂ϕ̇(s)(z) correspond to a ∈ R
ps and B ∈ R

ps×qs , b is a psqs × 1 vector
connecting all qs-dimensional row vectors of B to a column, Kh(·) = 1

hK(·/h) with h > 0
called bandwidth and

K
1/2
(s),h(z) = diag

(√

Kh(z(s),1 − z),
√

Kh(z(s),2 − z), · · · ,
√

Kh(z(s),n − z)
)

,

Γs(z) =
[

{

xT
(s),1, xT

(s),1 ⊗ (z(s),1 − z)T
}T

,
{

xT
(s),2, xT

(s),2 ⊗ (z(s),2 − z)T
}T

, · · · ,

{

xT
(s),n, xT

(s),n ⊗ (z(s),n − z)T
}T

]T

.

Fortunately, the optimal solution has an analytical form
⎛

⎝

â

̂b

⎞

⎠ =
[

ΓT
s (z)K(s),h(z)Γs(z)

]−1
ΓT

s (z)K(s),h(z)y.

For j = 1, 2, · · · , ps, the elements from [(j − 1)qs + 1]th to jqth
s in ̂b construct a qs × 1 vector,

i.e., ̂ϕ̇(s),j(z). Finally, we can obtain the estimator of β(s) based on ̂ϕ̇(s),j(z(s)) by

̂β(s),ij =
̂ϕ̇(s),j(z(s),i)

‖̂ϕ̇(s),j(z(s),i)‖
and ̂β(s) =

1
nps

n
∑

i=1

ps
∑

j=1

̂β(s),ij . (2.5)
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As shown in Hristache, et al.[41], when qs > 4, the convergence rate of ̂β(s) acquired in this
way would be much worse. Therefore, to improve the estimation, we suggest refining ̂ϕ̇(s)(z)
by an iterative algorithm with elliptic windows, which are inspired by Hristache, et al.[41].

Second, we estimate the function g(s)(·) for each candidate model. By the kernel-local
constant least squares method, ĝ(s)(v) is obtained as the solution by minimizing

J(a; ̂β(s)) =
n
∑

i=1

{yi − xT
(s),ia}2Kh(zT

(s),i
̂β(s) − v)

=
∥

∥

∥F
1/2
(s),h(v)y − F

1/2
(s),h(v)X(s)a

∥

∥

∥

2

,

where a is a ps × 1 vector, ̂β(s) is computed in the first process and

F
1/2
(s),h(v) = diag

(√

Kh(zT
(s),1

̂β(s) − v),
√

Kh(zT
(s),2

̂β(s) − v), · · · ,
√

Kh(zT
(s),n

̂β(s) − v)
)

.

Then, we achieve an analytical solution for ĝ(s)(v),

ĝ(s)(v) =
{

XT
(s)F(s),h(v)X(s)

}−1
X(s)F(s),h(v)y.

Third, combine the former two processes to estimate μ(s) for every candidate model. Re-

call that μ(s) =
(

xT
(s),1g(s)(zT

(s),1β(s)), xT
(s),2g(s)(zT

(s),2β(s)), · · · , xT
(s),ng(s)(zT

(s),nβ(s))
)T

, so the
estimator of μ(s) can be written as

μ̂(s) =
(

xT
(s),1ĝ(s)(zT

(s),1
̂β(s)), xT

(s),2ĝ(s)(zT
(s),2

̂β(s)), · · · , xT
(s),nĝ(s)(zT

(s),n
̂β(s))

)T

= X(s)

[{

XT
(s)F(s),h

(

zT
(s),1

̂β(s)

)

X(s)

}−1

XT
(s)F(s),h

(

zT
(s),1

̂β(s)

)

, · · · ,

{

XT
(s)F(s),h

(

zT
(s),n

̂β(s)

)

X(s)

}−1

XT
(s)F(s),h

(

zT
(s),n

̂β(s)

) ]

y

≡ P(s)(̂β(s))y. (2.6)

2.2 Weight Choice Criterion for MA Estimation

After obtaining ̂β(s) from each candidate model, we can express the MA estimation for μ

as

μ̂(w) =
sn
∑

s=1

wsμ̂(s) =
sn
∑

s=1

wsP(s)(̂β(s))y = P(w)y, (2.7)

where

P(w) =
sn
∑

s=1

wsP(s)(̂β(s)). (2.8)

Using quadratic loss, we can assess the effectiveness of the MA estimator by

Ln(w) = ‖μ̂(w) − μ‖2.

However, μ is unknown in Ln(w), so we cannot calculate ŵ by minimizing Ln(w) directly.
Thanks to the idea of Mallows-type criteria, we attempt to find an unbiased or an asymptotic
unbiased estimator for the risk Rn(w) = E{Ln(w)|X, Z}.
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Let P∗(w) =
∑sn

s=1 wsP(s)(β∗
(s)), μ̂∗ = P∗(w)y, L∗

n(w) = ‖μ̂∗(w) − μ‖2 and C∗
n(w) =

‖P∗(w)y − y‖2 + 2σ2tr
{P∗(w)

}

. It is seen that

E{C∗
n(w)|X, Z} = E{L∗

n(w)|X, Z} + nσ2. (2.9)

Consider that according to Corollary 1 in Xie and Li[1], under regular assumptions for any
s = 1, 2, · · · , sn, there exists a β ∗

(s) satisfying

̂β(s)
P−→ β∗

(s).

Simultaneously, under uniformly integrable conditions, we have

E{Cn(w)|X, Z} − E{C∗
n(w)|X, Z} → 0, (2.10)

E{Ln(w)|X, Z} − E{L∗
n(w)|X, Z} → 0, (2.11)

where Cn(w) = ‖P(w)y − y‖2 + 2σ2tr
{P(w)

}

. Then, combining (2.9), (2.10) and (2.11), we
have

E{Cn(w)|X, Z} − E{Ln(w)|X, Z} − nσ2 → 0, (2.12)

which indicates that Cn(w) is an asymptotic unbiased Mallow-type criterion for risk E{Ln(w)|X,

Z}. Finally, we can achieve the optimal weight vector by

ŵ = argmin
w∈W

Cn(w). (2.13)

3 Asymptotic Optimality

The following regular conditions are required for the asymptotic optimality of the proposed
MA estimator. Unless stated otherwise, all limiting processes below correspond to n → ∞.

Condition 1 Suppose that for any s = 1, 2, · · · , sn and i = 1, 2, · · · , qs, there exists a
β∗

(s),i satisfying
̂β(s),i

P−→ β∗
(s),i. (3.1)

This condition is a common solution in nonparametric or semiparametric models and usually
holds when some regular assumptions are provided, such as Xia and Li[1]. Under this condition,
(2.10) and (2.11) will be valid. Therefore, the aim of this condition is to guarantee that Cn(w)
is an asymptotic unbiased estimator of risk Rn(w).

Condition 2 There exists a constant κ1 > 0 such that

lim sup
n→∞

max
1≤s≤sn

τ{P(s)(β ∗
(s))} ≤ κ1, (3.2)

where τ(M) denotes the largest singular value of matrix M .

This condition states that the largest singular value of P(s)(β∗
(s)) is boundary, and a similar

condition is used in (A.3) and (A.4) of Hansen and Racine[43] as well as (8) and (9) of Zhang,
et al.[44].
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Define R∗
n(w) = E{Ln(w,B∗)|X, Z} and the infimum of R∗

n(w) in set W as ξ∗n = infw∈W R∗
n

(w).

Condition 3 There exist a constant κ2 > 0 and a fixed integer G > 1 such that

max
1≤i≤n

E(ε4G
i |xi, zi) ≤ κ2 < ∞, (3.3)

snξ∗n
−2G

sn
∑

s=1

{R ∗
n(w0

s)}G → 0 (3.4)

and

‖μ‖2 = O(n), (3.5)

where w0
s ∈ W is the weight vector with the sth component being 1 and all others being 0.

This is a common condition widely used in the literature on MA, such as Wan, et a.[27],
Hansen and Racine[43], Zhang, et al.[44]. The equality (3.3) provides a constraint on the condi-
tional expectation of εi, i = 1, 2, · · · , n and controls the noise in the data generating process.
The equality (3.4) is the same as (13) in Zhang, et al.[44], and it is required for proving the
asymptotic optimality of the Mallows model averaging estimator. Considering that sn is allowed
to be infinite, (3.4) offers a restriction on the order of ξ∗n and sn to diverge. Moreover, (3.5) is
easy to satisfy if |μi| < ∞ for i = 1, 2, · · · , n.

Condition 4
nρnξ∗−1

n = op(1), (3.6)

where ρn = max1≤s≤sn τ
{

P(s)(̂β(s)) − P(s)(β∗
(s))

}

.

From Condition 1, it is easy to bring out ρn → 0 because of the continuous of singular
values. Furthermore, Condition 4 gives a stricter relation between ρn and ξn.

Theorem 3.1 Under Conditions 1–4, we have

Ln(ŵ)
infw∈W Ln(w)

P−→ 1. (3.7)

This theorem shows that the MA estimator of μ is asymptotically optimal in the sense that it
will approach the “best estimator” under quadratic loss. The equality (3.7) is a measure widely
used to evaluate the estimator in model averaging and model selection papers. In particular, this
theorem allows candidate models to be misspecified in any form, unlike the local misspecification
framework that restricts the degree of misspecification to decay as n increases[45].

4 Monte Carlo simulation

In this section, we will compare the performance of the following six estimators: AIC model
selection method, see [24]; BIC model selection method, see [25, 31]; smoothed AIC model
averaging method (SAIC), see [23, 45–47]; smoothed BIC model averaging method (SBIC),
see [45–47]; Mallows model selection method (Cp), see [22, 48]; and Mallows model averaging
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method (MMA), see [22, 27]. The AIC and BIC information criteria of the sth candidate model,
see [49], can be computed as

AICs = log(σ̂2
(s)) + 2n−1tr{P(s)(̂β(s))}, (4.1)

BICs = log(σ̂2
(s)) + n−1 log(n)tr{P(s)(̂β(s))}, (4.2)

where σ̂2
(s) = n−1‖y − P(s)(̂β(s))y‖. In addition, the Mallows Cp criterion is shown as

MCs = ‖P(s)(̂β(s))y − y‖2 + 2σ̂2
(s)tr{P(s)(̂β(s))}. (4.3)

For model selection approaches, the best candidate model is selected by minimizing these cri-
teria. Furthermore, the SAIC model averaging estimation is obtained by assigning the weight
to the sth candidate model as

ws = exp(−AICs/2)
/ sn

∑

s=1

exp(−AICs/2), s = 1, 2, · · · , sn, (4.4)

and the SBIC model averaging estimation is

ws = exp(−BICs/2)
/ sn

∑

s=1

exp(−BICs/2), s = 1, 2, · · · , sn. (4.5)

4.1 Simulation Designs

We attempt to determine the performance of the varying-coefficient single-index model in
practice by simulation experiments. First, we generate {yi} from data generating process:

yi = μi + εi

=
√

2θ exp

(

200
∑

l=1

zil

√

2φl−φ− 1
2

)

+
200
∑

j=1

xij

√
2θj−θ− 1

2 exp

(

200
∑

l=1

zil

√

2φl−φ− 1
2

)

+ εi,

where {xij} and {zil} are from an independent identical distribution (i.i.d.) N(0, 1); {εi}
is a random disturbance term from N(0, η2); the tunning parameters θ and φ are usually
selected in (0, 1) and here they are set at 0.1 and 0.25 respectively. We alter η to compel R2 =
var(μi)/var(yi) to vary between 0.1 and 0.9. Furthermore, taking the form of the model (2.1),
the data generating process above can be reexpressed as

yi = (1, xT
i )g(zT

i β) + εi,

where xi = (xi1, xi2, · · · , xi200)T, zi = (zi1, zi2, · · · , zi200)T and g(zT
i β) =

(

g0(zT
i β), g1(zT

i β),
· · · , g200(zT

i β)
)T with

g0(zT
i β) =

√
2θ exp

(

200
∑

l=1

zil

√

2φl−φ− 1
2

)

and for j = 1, 2, · · · , 200,

gj(zT
i β) =

√
2θj−θ− 1

2 exp

(

200
∑

l=1

zil

√

2φl−φ− 1
2

)

.
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In practice, we cannot collect all components of xi or zi, and usually just the front terms
can be observed. Here, we allow the number of the components observed, pn, to grow with the
sample size n. Let n be selected among 50, 100, 200 and 400; moreover, pn is 14, 18 and 22 by
pn = round(3n1/3), where round(x) means the rounding of x. Therefore, all candidate models
are misspecified. Next, we build a candidate model set in a nested manner like Hansen[22] so
that sn, the number of candidate models, is correspondingly determined to be 11, 14, 18 or
22. To estimate VCSIM, we use the method described in Subsection 2.1 and the bandwidth
calculated by 0.75n−1/5(log n)−1/6 which is also used in Yu, et al.[50]. In addition, to eliminate
the randomness of simulation, we perform D = 100 replications to check the performance of
every method.

Finally, to evaluate the performance of these methods, we calculate the normalized mean
square error (NMSE) through D repetitions,

NMSE = D−1
D
∑

d=1

MSE(d)

MSE(d)
min

, (4.6)

where MSE(d) = n−1‖μ̂(d)−μ(d)‖, is the mean square error (MSE) of the estimator for the dth
replication, and MSE(d)

min represents the minimal MSE of all candidate models.

4.2 Simulation Results

The NMSE results are displayed in Figure 1 and the other results generated by different

n=200 n=400

n=50 n=100

0.25 0.50 0.75 0.25 0.50 0.75

0

2

4

6

0

2

4

6

R 2

N
M
S
E

method

AIC

BIC

Cp

MMA

Figure 1 The NMSE of each method; the dotted black line denotes NMSE = 1 as

the benchmark
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θ and φ in (0, 1) are similar in our experiments. In each subfigure, the y axis means NMSE
described in (4.6) and the x axis represents R2, whose values are 0.1, 0.3, 0.5, 0.7 and 0.9. From
the results, AIC and Mallows Cp selection methods have quite similar NMSE, but AIC becomes
better when n is large, and this phenomenon corresponds to Hansen[22]. Compared with the
AIC method, BIC performs better when R2 is small, but the opposite is true when R2 is large.
In particular, the turning point will move to the left as the sample size n grows. The MMA
method performs best when R2 is big, and the critical value of R2 also moves to left when
n is large. As described in Section 3, the new criterion we proposed is asymptotic unbiased
estimation for the risk. So, when n is large enough, the random effects will be neglected and
the good weights for every candidate model will be derived by this criterion.

5 Empirical Application

In this section, we run the six methods on a real dataset that contains observations on aged
patients in 36 nursing homes in San Diego, CA, collected between 1980 and 1982. The same data
were used by Xie, et al.[51] and Zhu, et al.[28], can be downloaded at http://www.stats.ox.ac.uk/
pub/datasets/csb/. In this dataset, the response variable of interest, y, is the natural logarithm
of the number of days the patient stayed in a nursing home. There are three indictor covariates,
x1, x2 and x3. x1 is equal to 1 if the patient received medical treatment at the nursing home and
0 otherwise. x2 conveys the gender information, equal to 1(0) if the patient is male (female),
and x3 equals 1(0) if the patient is married (not married), as an indicator for marital status.
x4 is a class variable that represents health status, with a larger x4 indicating worse health
conditions. t = (age − 64)/(102 − 64), continuous but bounded, is the normalized age of
the patients in the sample, with a range from 65 to 102. The original sample contains 1601
observations, including 332 censored observations, but our analysis is based on the remaining
1269 uncensored observations.

We place x1, x2 and x3 in the coefficient part and the remaining x4 and t into the covariate
part because the indictor variables are suited to magnify the effect of covariates but not to work
directly. Then, the candidate model set is constructed such that no fewer than one covariate
exists in each part. Therefore, we can obtain Mn = (32−1)×(22−1) = 24 candidate models. To
evaluate the predictive performance, we divide the full sample into training set and testing set
at random. The sample size of the training set, n0, is selected from �70%n�, �75%n�, �80%n�,
�85%n� and �90%n�, where n denotes the full sample size, 1269. The remaining ntest = n− n0

observations are used as the testing set. In operation, we first compute the weights from the
training set and then obtain the estimate of ytest in the testing set, ŷ. Here, we also repeat
D = 100 cycles to eliminate the random effects. Finally, we also define normalized mean squared
prediction error (NMSPE) to evaluate the estimator for each method:

MSPE(d) = n−1
test

∥

∥

∥ŷ(d) − y
(d)
test

∥

∥

∥

2

, (5.1)

NMSPE = D−1
D
∑

d=1

MSPE(d)

MSPE(d)
min

, (5.2)
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where y
(d)
test means the response variable of the testing set in the dth repetition y(d) is the

corresponding estimation of y(d), and MSPE(d)
min is the minimal MSPE(d) among all candidate

models in the dth replication.
The numerical results are shown in Table 1 and Figure 2. The MMA method gains the

Table 1 The NMSPE of six methods in real data (D = 100)

n0 Method MMA AIC BIC Cp

888

(70%)

Mean 1.009 1.024 1.030 1.022

Median 1.007 1.021 1.029 1.018

SD 0.010 0.014 0.012 0.015

951

(75%)

Mean 1.010 1.025 1.031 1.023

Median 1.008 1.023 1.031 1.020

SD 0.011 0.016 0.014 0.016

1015

(80%)

Mean 1.012 1.028 1.034 1.026

Median 1.012 1.025 1.034 1.025

SD 0.012 0.017 0.014 0.018

1078

(85%)

Mean 1.018 1.034 1.039 1.034

Median 1.016 1.030 1.037 1.030

SD 0.015 0.021 0.021 0.020

1142

(90%)

Mean 1.026 1.044 1.047 1.040

Median 1.024 1.039 1.043 1.037

SD 0.019 0.028 0.024 0.029

1.01

1.02
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Figure 2 The NMSPE of each method in real data
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lowest mean and median of NMSPE, with the median being notably lower than those of the
alternatives. However, the AIC, BIC and Mallows Cp methods perform similarly but worse
than the model averaging method. Note that the Mallows Cp performed best in the model
selection methods. This is due to the Mallows criteria intending to diminish the forecast error
by minimizing its unbiased estimation.

6 Conclusion

In this paper, we propose a Mallows-type model averaging method for VCSIM. Our aver-
aging method allows the number of candidate models to be divergent with sample size. We
also demonstrate the estimator achieved by our propose MA method contains the asymptotic
optimality in the sense of achieving the lowest possible squared errors. In addition, there are
at least three directions to extend this work. First, model screening could be introduced before
model averaging. After removing poorly performing models, the MA estimator may be more
efficient for prediction. Second, we do not allow the dimension of explanatory variables to grow
with the sample size. Removing this restriction may be an interesting but difficult. Third, this
paper only considers averaging among VCSIMs. Challenging work remains on averaging both
parametric and semi/nonparametric models.
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Appendix

Proving Theorem 3.1

Proof It is seen that

Cn(w) = Ln(w) + ηn(w) + ‖ε‖2, (A.1)

where

ηn(w) = −2εT{P(w)(μ + ε) − μ} + 2σ2tr{P(w)}
= 2εT [I − P∗(w) − {P(w) − P∗(w)}] μ
− 2εT [P∗(w) + {P(w) − P∗(w)}] ε
+ 2σ2tr [P∗(w) + {P(w) − P∗(w)}] . (A.2)

Further, we have

Ln(w) = L∗
n(w) + ζn(w), (A.3)

where

L∗
n(w) = ‖μ̂∗(w) − μ‖2, (A.4)

ζn(w) = ‖μ̂(w) − μ̂∗(w)‖2 + 2 (μ̂∗(w) − μ)T (μ̂(w) − μ̂∗(w)) . (A.5)

As we know ‖ε‖2 is independent of w, then

ŵ = arg min
w

Cn(w)

= arg min
w

{L∗
n(w) + ζn(w) + ηn(w)}. (A.6)

As for infw∈W Ln(w), by the definition of infimum, there exist two sequence, the positive
sequence {ϑn} and the weight vector sequence {w(n)} such that

lim
n→∞ϑn = 0 (A.7)

and
inf

w∈W
Ln(w) = Ln(w(n)) − ϑn. (A.8)
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Next, note that R∗
n(w) = E(L∗

n(w)|X, Z). The for any δ > 0, we have

Pr
{∣

∣

∣

∣

infw∈W Ln(w)
Ln(ŵ)

− 1
∣

∣

∣

∣

> δ

}

=Pr
{∣

∣

∣

∣

minw∈W{Ln(w) + ηn(w)} − ηn(ŵ) − infw∈W Ln(w)
Ln(ŵ)

∣

∣

∣

∣

> δ

}

≤Pr
{∣

∣

∣

∣

Ln(w(n)) + ηn(w(n)) − ηn(ŵ) − (Ln(w(n)) − ϑn)
Ln(ŵ)

∣

∣

∣

∣

> δ

}

≤Pr
{ |ηn(w(n))|

infw∈W Ln(w)
+

|ηn(ŵ)|
L∗

n(ŵ) + ζn(ŵ)
+

ϑn

L∗
n(ŵ) + ζn(ŵ)

> δ

}

≤Pr

[

sup
w∈W

|ηn(w)|
R∗

n(w)

{

inf
w∈W

|L∗
n(w) + ζn(w) − ϑn|

R∗
n(w)

}−1

>
δ

3

]

+ Pr

[

sup
w∈W

|ηn(w)|
R∗

n(w)

{

inf
w∈W

L∗
n(w) + ζn(w)

R∗
n(w)

}−1

>
δ

3

]

+ Pr

[

ϑn

infw∈W R∗
n(w)

{

inf
w∈W

L∗
n(w) + ζn(w)

R∗
n(w)

}−1

>
δ

3

]

.

So to prove (3.7), we only need to verify the three formulas in the following, as Gao, et al.[52]

and Zhang[53]:

sup
w∈W

|ηn(w)|
R∗

n(w)

{

inf
w∈W

|L∗
n(w) + ζn(w) − ϑn|

R∗
n(w)

}−1

= op(1), (A.9)

sup
w∈W

|ηn(w)|
R∗

n(w)

{

inf
w∈W

L∗
n(w) + ζn(w)

R∗
n(w)

}−1

= op(1), (A.10)

and

ϑn

infw∈W R∗
n(w)

{

inf
w∈W

L∗
n(w) + ζn(w)

R∗
n(w)

}−1

= op(1). (A.11)

Note that

inf
w∈W

|L∗
n(w) + ζn(w) − ϑn|

R∗
n(w)

≥ 1 − sup
w∈W

∣

∣

∣

∣

L∗
n(w)

R∗
n(w)

− 1
∣
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∣

− sup
w∈W

∣
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∣

ζn(w)
R∗

n(w)

∣
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∣

∣

− ϑn

ξ∗n
,

inf
w∈W

L∗
n(w) + ζn(w)

R∗
n(w)

≥ 1 − sup
w∈W

∣
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L∗
n(w)

R∗
n(w)

− 1
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− sup
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ζn(w)
R∗

n(w)

∣
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. (A.12)

Hence, we just need to verify

sup
w∈W

|ηn(w)|
R∗

n(w)
= op(1), (A.13)

sup
w∈W

∣

∣

∣

∣

L∗
n(w)

R∗
n(w)

− 1
∣

∣

∣

∣

= op(1), (A.14)

and

sup
w∈W

|ζn(w)|
R∗

n(w)
= op(1). (A.15)
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First, the equality (A.13) will be proved. Employing the way to prove (2.38) and (2.39) in
Zhang[53], by (3.3) and (3.4) in Condition 3, we can obtain the following equalities easily:

sup
w∈W

∣

∣εT(I − P∗(w))μ
∣

∣

R∗
n(w)

= op(1), (A.16)

sup
w∈W

∣

∣σ2tr(P∗(w)) − εTP∗(w)ε
∣

∣

R∗
n(w)

= op(1). (A.17)

Next, by Rayleight-Ritz Inequality and (3.5) in Condition 3, we have

sup
w∈W
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∣εT {P(w) − P∗(w)}μ
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n sup

w∈W

sn
∑

s=1

ws

∣

∣

∣εT
{

P(s)(̂β(s)) − P(s)(β∗
(s))

}

μ
∣

∣

∣

≤ ξ∗−1
n max

1≤s≤sn

∣

∣

∣εT
{

P(s)(̂β(s)) − P(s)(β∗
(s))

}

μ
∣

∣

∣

=ξ∗−1
n max

1≤s≤sn

[

εT
{

P(s)(̂β(s)) − P(s)(β∗
(s))

}

μμT
{

P(s)(̂β(s)) − P(s)(β∗
(s))

}T

ε

]1/2

≤ξ∗−1
n max

1≤s≤sn

(

λ

[

{

P(s)(̂β(s)) − P(s)(β∗
(s))

}

μμT
{

P(s)(̂β(s)) − P(s)(β∗
(s))

}T
])1/2

‖ε‖

=ξ∗−1
n max

1≤s≤sn

(

λ

[

μT
{

P(s)(̂β(s)) − P(s)(β∗
(s))

}T {

P(s)(̂β(s)) − P(s)(β∗
(s))

}

μ

])1/2

‖ε‖

=ξ∗−1
n max

1≤s≤sn

[

μT
{

P(s)(̂β(s)) − P(s)(β∗
(s))

}T {

P(s)(̂β(s)) − P(s)(β∗
(s))

}

μ

]1/2

‖ε‖

≤ξ∗−1
n max

1≤s≤sn

(

λ

[

{

P(s)(̂β(s)) − P(s)(β∗
(s))

}T {

P(s)(̂β(s)) − P(s)(β∗
(s))

}

])1/2

‖μ‖‖ε‖

=ξ∗−1
n max

1≤s≤sn

τ
{

P(s)(̂β(s)) − P(s)(β∗
(s))

}

nOp(1)

≤ ξ∗n
−1ρnnOp(1)

=op(1), (A.18)

where the last equality is due to Condition 4. Similarly, we observe
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Denoting λi(M) as the ith eigenvalue of any matrix M , we have

sup
w∈W
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where the last equality is based on Condition 4. Combining with (A.16)–(A.20), we achieve (A.13).
Second, by Condition 2 and Condition 3, (A.14) is proved as the analogue of (2.40) in

Zhang[53].
Third, we turn to prove (A.15). By Young inequality, Rayleight-Ritz inequality and (3.5)

in Condition 3, it is seen that
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(s))

)

μ
∥

∥

∥

2

+
∥

∥

∥

{

P(t)(̂β(t)) − P(t)(β∗
(t))

}

μ
∥

∥

∥

2
]

≤ξ∗−1
n ‖μ‖2 sup

w∈W

sn
∑

s=1

sn
∑

t=1

wswt

[

τ2
{

P(s)(̂β(s)) − P(s)(β∗
(s))

}

+ τ2
{

P(t)(̂β(t)) − P(t)(β∗
(t))

}]

≤ξ∗−1
n 2‖μ‖2 max

1≤s≤sn

τ2
{

P(s)(̂β(s)) − P(s)(β∗
(s))

}

=O
(

nρ2
nξ∗−1

n

)

=op(1), (A.21)

where the last equality is based on the fact ρn → 0. Similarly, we can obtain

ξ∗−1
n 2 sup

w∈W
εT {P(w) − P∗(w)}T {P(w) − P∗(w)} ε = O

(

nρ2
nξ∗−1

n

)

= op(1). (A.22)
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Combining with (A.21) and (A.22), we know

sup
w∈W

‖μ̂(w) − μ̂∗(w)‖2

R∗
n(w)

≤ξ∗−1
n sup

w∈W

[

2μT {P(w) − P∗(w)}T {P(w) − P∗(w)}μ
]

+

ξ∗−1
n sup

w∈W

[

2εT {P(w) − P∗(w)}T {P(w) − P∗(w)} ε
]

=op(1). (A.23)

By Cauchy-Schwarz inequality, we have

sup
w∈W

∣

∣

∣(μ̂∗(w) − μ)T (μ̂(w) − μ̂∗(w))
∣

∣

∣

R∗
n(w)

≤
√

sup
w∈W

L∗
n(w)

R∗
n(w)

√

sup
w∈W

‖μ̂(w) − μ̂∗(w)‖2

R∗
n(w)

≤
√

sup
w∈W

∣

∣

∣

∣

L∗
n(w)

R∗
n(w)

− 1
∣

∣

∣

∣

+ 1

√

sup
w∈W

‖μ̂(w) − μ̂∗(w)‖2

R∗
n(w)

=op(1), (A.24)

where the last equality is based on (A.14) and (A.23). Finally, putting (A.5), (A.23) and (A.24),
we achieve (A.15).
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