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Abstract Up till the present moment, researchers have always featured the single-ring neural net-

work. These investigations, however, disregard the link between rings in neural networks. This paper

highlights a high-dimensional double-ring neural network model with multiple time delays. The neural

network has two rings of a shared node, where one ring has n neurons and the other has m+1 neurons.

By utilizing the sum of time delays as the bifurcation parameter, the method of Coates’ flow graph is

applied to obtain the relevant characteristic equation. The stability of the neural network model with

bicyclic structure is discussed by dissecting the characteristic equation, and the critical value of Hopf

bifurcation is derived. The effect of the sum of time delays and the number of neurons on the stability

of the model is extrapolated. The validity of the theory can be verified by numerical simulations.

Keywords Coates’ flow graph, high-dimensional, Hopf bifurcation, stability.

1 Introduction

The neural network is a nonlinear system composed of numerous neurons through extremely
plentiful and distinctive connections, accordingly, it has sizeable and complex structure[1]. Neu-
rons are the basic structure and functional unit of the neural system. The process by which
neurons generate and transmit electrical impulses is considered to be a manifestation of the
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discharge activity of the nervous system. The diversity of the bifurcation types and the combi-
nations of the dynamical systems of the neuronal system makes the firing patterns of neurons
copious and multiplex, which leads to the generation of involuted dynamic behaviors. Neural
networks are used to simulate the dynamic behavior of the brain, and the stability of the neural
network can reflect the stability of physiological mechanisms[2]. The dynamic behavior of brains
will be confused once stability changes, leading to the development of nervous system diseases,
such as mania. The second messenger balance mechanism is broken, leading to a decline or en-
hancement of brain function, which may lead to manic episodes[3, 4]. In this sense, the stability
analysis of neural networks is of great significance for the treatment of mental illness.

Zieglgansberger and Tolle proposed a system biology method to probe the mechanism of
neuralgia[5], thereafter, the system biology of cell signal network and gene expression regulation
has existed an eventful content of neurobiology research. For another, it is universally known
that the stability which is habitually inseparable from structure of neural networks should not be
ignored when neurons transmit information in the concrete operation of biological and artificial
neural networks. Furthermore, the nonlinear dynamics of neural networks commonly depend
on the evolution of time and the interaction of spatial distribution structures. Consequently,
the dynamic analysis of the double-ring neural network with time delays owns huge potential
in both theoretical and practical research fields.

Since the invention of the famous Hopfield neural network[6], neural networks have received
more and more attention for their rich dynamic behaviors. These behaviors include stability,
multi-periodicity, bifurcation, synchronization[7] and chaos[8]. The exploration of neural net-
works involves many scientific fields such as medicine, biology, physiology, informatics, and
computer science[9–11]. The examination of neural networks can be divided into two cate-
gories. One is the applied research, such as artificial intelligence, deep learning, knowledge
engineering, expert systems, optimization combinations, unmanned vehicle[12–14]. The other is
the theoretical consideration. The research results of neural basic theories and mathematical
methods were applied to the establishment of neural network models for better functions and
performance[15, 16]. This paper focuses on the second half, establishing a neural network model
and analyze its stability.

High-dimensional Hopfield neural networks have been profoundly quested by myriad schol-
ars in theory and application owing to its strong computing and learning capabilities. High-
dimensional neural networks possess stronger approximation, faster convergence, larger storage
capacity, and higher fault tolerance and storage capacity[17]. However, high-dimensional neural
network models are inevitably complex in analysis and calculations. In addition, most of the
existing results on the stability and bifurcation of the ring system are defective, which contain
either only one ring or low dimensionality. It is so arduous to deal with double rings and high
dimensionality at the same time. Therefore, it is necessary and challenging to establish the
general conditions and properties of Hopf bifurcation in a double-ring high-dimensional model
with time delays.

There are unavoidable time delays for the limited transmission speed when neurons pro-
cess information[18]. The propagation speed of membrane potential through neurons’ axons is
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limited, consequently, the interaction between two coupled neurons is not instantaneous. Time
delays should be explicitly included in the coupled system in order to explain this non-transient
characteristic. Time delays play an important role in the coupling system that simulates real-
world processes and experimental systems, including interactive lasers, real creatures and ar-
tificial neural networks[19]. Time delays may damage the stability of the system and then fail
to meet our expectations[20–22]. Therefore, the time delay must be taken into account when
probing the stability of a neural network. Several high-dimensional models of Hopfield neural
networks have been proposed[23]. The author proved the superiority of the proposed model but
the author did not consider the impact of the time delay on the system. In this paper, the
sum of time delays is used as the bifurcation parameter, which is more in line with the actual
situation.

The existence of ring networks has been found in many neural structures, such as motion in
natural phenomena, breathing, etc., or the back and forth motion of pistons in cylinders in ar-
tificial machines[24]. Ring geometry has been widely exploited in physiological and biochemical
modeling research. Many researchers have analyzed the ring model in the context of neural net-
work theory. It has also been noted that the ring structure may be related to the development
of patterns on certain animal shells and other system functions. From the perspective of physi-
ological modeling, ring networks are eventful because they can act as basic components of more
complex systems[25]. The ring neural network belongs to a class of feedback systems and pos-
sesses important biological significance, which is regarded as the cornerstone of the connected
topology network. Most of the connections in the ring structure occur between nearby neurons,
and the study of loop supports people to further understand the dynamic behavior of the cyclic
network[26]. Therefore, it is essential to investigate the stability of the ring neural network.
Low dimensional single-ring structural models with few neurons have been dished[27–29]. A gen-
eralized model of the two-neuron single-ring structural network with mixed delays is framed to
explore the linear stability of the trivial solution and Hopf bifurcation of a two-neuron network
with continuous and discrete delays[27]. A four-neuron ring with self-feedback and delays was
considered to investigate linear stability and demonstrate Hopf bifurcations, as well as deter-
mine the stability and direction of the Hopf bifurcation[28]. Anti-periodic solutions in a ring
of four neurons with multiple delays was proposed to research the existence and exponential
stability of anti-periodic solutions of bidirectional associative memory (BAM) neural networks
with multiple delays[29]. These models had few neurons and low dimensions whereas actual
neural networks are often composed of countless neurons. Therefore, the high-dimensional neu-
ral network model is more practical. Single-ring high-dimensional neural networks were probed
immediately after[30, 31]. The authors advanced the simplified frequency method for stability
and bifurcation of delayed neural networks in ring structure[30]. The authors discussed effects
of time delays on stability and Hopf bifurcation in a fractional ring-structured network with
arbitrary neurons[31]. However, the actual neural network is composed of multiple rings. There-
fore, in order to make the neural network more realistic, this paper promotes the single-ring
structure to the multi-ring structure and proposes a double-ring neural network with n + m

neurons. Both the double ring and the high dimension are difficult to analyze in such a model.
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The contributions of this paper are as follows:
1) A double-ring high-dimensional neural network model is proposed in which the number of

neurons in each ring is unequal. This model increases the difficulty of analysis and calculation,
the point is more realistic.

2) For the first time, the formula of the Coates’ flow graph is used to solve the calculation
problem of the high-dimensional feature determinant. The characteristic equation could be
directly obtained through the decomposition of the convection diagram, which was clearer and
more efficient than the traditional method.

3) Firstly, the dynamic characteristics of a high-dimensional neural network model with two
rings sharing a node are studied, as well as the conditions of stability and Hopf bifurcation are
obtained.

4) We also consider the effect of the sum of the time delays and the number of neurons on
the stability of the neural network. The results show that the dynamics of the neural network
are closely related to the sum of the time delays and the number of neurons.

The rest parts of the article are as follows. In Section 2, a high-dimensional double-ring
neural network model with multiple time delays is proposed, and the characteristic equation of
the model is acquired by the Coates’ flow graph formula. In Section 3, the stability of this neural
network model is analyzed and the sufficient conditions for the occurrence of Hopf bifurcation
are given. In Section 4, some simulation experiments are provided to prove the correctness of
our theory. In Section 5, the conclusion is drawn.

2 Model Description

As shown in Figure 1, we consider a neural network model in which two rings share a
common node. This model can be described as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ẇ1(t) = −a1W1(t) + bn1fn(Wn(t − τn1))

+ b(n+m)1fn+m(Wn+m(t − τ(n+m)1)),

Ẇ2(t) = −a2W2(t) + b12f1(W1(t − τ12)),
...

Ẇn(t) = −anWn(t) + b(n−1)nfn−1(Wn−1(t − τ(n−1)n)),

Ẇn+1(t) = −an+1Wn+1(t) + b1(n+1)f1(W1(t − τ1(n+1))),

Ẇn+2(t) = −an+2Wn+2(t) + b(n+1)(n+2)fn+1(Wn+1(t − τ(n+1)(n+2))),
...

Ẇn+m(t) = −an+mWn+m(t)

+ b(n+m−1)(n+m)fn+m−1(Wn+m−1(t − τ(n+m−1)(n+m))),

(1)

where Wi(t), i = 1, 2, · · · , n + m indicate the state of the ith neuron at time t. ai > 0,
i = 1, 2, · · · , n + m are constants. fi(·), i = 1, 2, · · · , n + m mean the activation functions.
bn1, b(n+m)1, b1(n+1) and b(v−1)v, v = 2, 3, · · · , n, n + 2, n + 3, · · · , n + m are constants and



BIFURCATION ANALYSIS OF AN (n + m)-NEURON DOUBLE-RING MODEL 163

indicate the weight of the connection between two adjacent neurons. τn1, τ(n+m)1, τ1(n+1) and
τ(v−1)v, v = 2, 3, · · · , n, n+2, n+3, · · · , n+m are the time delays between two adjacent neurons
when passing information.

P N

n+n
n-

n+m-

n+m

n+

n

(n+m- )(n+m)

(n+ )(n+ )

(n+ )

(n- )n

Figure 1 Diagram of the model (1) structure

Firstly, we assume that:
(H1) fi(·) satisfy fi(0) = 0 and fi(·) ∈ C1, i = 1, 2, · · · , n + m. Let

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

xc(t) = Wc

(

t −
n−1∑

c

τc(c+1) − τ1(n+1) −
n+m−1∑

p=n+1

τp(p+1)

)

,

xd(t) = Wd

(

t −
n−1∑

q=1

τq(q+1) −
n+m−1∑

d

τd(d+1)

)

,

xn(t) = Wn

(

t −
n+m−1∑

p=n+1

τp(p+1) − τ1(n+1)

)

,

xn+m(t) = Wn+m

(

t −
n−1∑

p=1

τp(p+1)

)

,

where c = 1, 2, · · · , n−1 and d = n+1, n+2, · · · , n+m−1. We make the following assumption:
(H2) τ12 + τ23 + · · · + τn1 = τ1(n+1) + τ(n+1)(n+2) + · · · + τ(n+m)1 = τ , and τn1 = τ(n+m)1.

Then, the model (1) can be rewritten as:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ1(t) = −a1x1(t) + bn1fn(xn(t − τ)) + b(m+n)1fm+n(xm+n(t − τ)),

ẋ2(t) = −a2x2(t) + b12f1(x1(t)),
...

ẋn(t) = −anxn(t) + b(n−1)nfn−1(xn−1(t)),

ẋn+1(t) = −an+1xn+1(t) + b1(n+1)f1(x1(t)),

ẋn+2(t) = −an+2xn+2(t) + b(n+1)(n+2)fn+1(xn+1(t)),
...

ẋn+m(t) = −an+mxn+m(t) + b(n+m−1)(n+m)fn+m−1(xn+m−1(t)).

(2)

We will search the critical value of the Hopf bifurcation of the model (1) to analyze the
stability of the system. Obviously, the origin point is the equilibrium point of the model (2),
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and the model (2) is linearized as follows at the trivial equilibrium point:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ1(t) = −a1x1(t) + Cn1xn(t − τ) + C(m+n)1xm+n(t − τ),

ẋ2(t) = −a2x2(t) + C12x1(t),
...

ẋn(t) = −anxn(t) + C(n−1)nxn−1(t),

ẋn+1(t) = −an+1xn+1(t) + C1(n+1)x1(t),

ẋn+2(t) = −an+2xn+2(t) + C(n+1)(n+2)xn+1(t),
...

ẋn+m(t) = −an+mxn+m(t) + C(n+m−1)(n+m)xn+m−1(t),

(3)

where Cn1 = bn1f
′
n(0), C(m+n)1 = b(m+n)1f

′
m+n(0), C1(n+1) = b1(n+1)f

′
1(0), C(v−1)v = b(v−1)v

f ′
v−1(0), v = 2, 3, · · · , n, n + 2, n + 3, · · · , n + m. We list the characteristic determinant of the

model (3) as follows:

det V =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

λ+a1 0 0 · · · 0 −Cn1e
−λτ 0 · · · −C(n+m)1e

−λτ

−C12 λ+a2 0 · · · 0 0 0 · · · 0

0 −C23 λ+a3 · · · 0 0 0 · · · 0

...
...

...
. . .

...
...

... · · ·
...

0 0 0 · · · λ+an 0 0 · · · 0

−C1(n+1) 0 0 · · · 0 λ+an+1 0 · · · 0

0 0 0 · · · 0 −C(n+1)(n+2) λ+an+2 · · · 0

...
...

...
...

...
. . .

. . .
. . .

...

0 0 0 · · · 0 0 0 · · · λ+an+m

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

= 0.

According to previous research results[32], we detect a lemma.

Lemma 2.1 Define that

detV = (−1)n+m
v∑

j=1

(−1)njΛj , (4)

where n + m is the order of the determinant and the number of neurons. v is the number of
subgraphs Gj, j = 1, 2, 3 that represent the simple loop of this n + m neuron (which can not
be crossed by itself). nj denote the number of loops in the graph Gj, j = 1, 2, 3 as shown in
Figure 2. Λj is the product of the weights of the sides of Gj.
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G n m
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Figure 2 Exploded view of the signal flow diagram

The entire diagram of signal flow structure of the double-ring model is shown in Figure 3.
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Figure 3 Diagram of signal flow structure

According to Lemma 2.1, we get
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

Λ1 = (λ + a1)(λ + a2) · · · (λ + an+m),

Λ2 = (−1)n+m(−1)m+1(λ + an+1)(λ + an+2)

· · · (λ + an+m)(−1)nC12C23 · · ·C(n−1)nCn1e−λτ ,

Λ3 = (−1)n+m(−1)n(λ + a2)(λ + a3)

· · · (λ + an)(−1)m+1C1(n+1)C(n+1)(n+2) · · ·C(n+m−1)(n+m)C(n+m)1e−λτ ,

so the characteristic equation of the model (3) is

n+m∏

i=1

(λ + ai) − e−λτ

( n−1∏

i=1

Ci(i+1)Cn1

n+m∏

i=n+1

(λ + ai)
)

−e−λτ
n∏

i=2

(λ + ai)
n+m−1∏

i=n+1

Ci(i+1)C1(n+1)C(n+m)1 = 0, (5)
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which can be expanded as the following:

λn+m + A1λ
n+m−1 + · · · + An+m

−e−λτ
n−1∏

i=1

Ci(i+1)Cn1(λm + B1λ
m−1 + · · · + Bm)

−e−λτ
n+m−1∏

i=n+1

Ci(i+1)C1(n+1)C(n+m)1(λn−1 + D1λ
n−2 + · · · + Dn−1) = 0, (6)

where
Ak =

∑

1≤i1<i2<···<ik≤ n+m

ai1ai2 · · · aik
,

Bk =
∑

1≤i1<i2<···<ik≤ m

ai1ai2 · · · aik
,

Dk =
∑

1≤i1<i2<···<ik≤ n−1

ai1ai2 · · · aik
.

From Equation (6), we have

λn+m +A1λ
n+m−1 +· · ·+An+m

−e−λτ (E1λ
α +E2λ

α−1 +· · · +Eα+1) = 0, (7)

where
α = max{m, n − 1}, Eα+1−r = Γ1Bm−r + Γ2Dn−1−r, r = 0, 1, · · · , α,

in which

Γ1 =
n−1∏

i=1

Ci(i+1)Cn1,

Γ2 =
n+m−1∏

i=n+1

Ci(i+1)C1(n+1)C(n+m)1,

Dn−1−r = 0, n − 1 − r < 0,

Dn−1−r = 1, n − 1 − r = 0.

Equation (7) can also be expressed as

R(λ) − e−λτg(λ) = 0, (8)

where
R(λ) = λn+m + A1λ

n+m−1 + · · · + An+m,

g(λ) = E1λ
α + E2λ

α−1 + · · · + Eα+1.
(9)

3 Hopf Bifurcation Analysis

When τ �= 0, by substituting λ = iω into (8), we have

R(iω) − e−(iω)τg(iω) = 0, (10)
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where
R(iω) = (iω)n+m + A1(iω)n+m−1 + · · · + An+m,

g(iω) = E1(iω)α + E2(iω)α−1 + · · · + Eα+1.
(11)

Write R(iω) and g(iω) as the real part plus the imaginary part:

R(iω) = R1(ω) + iR2(ω),

g(iω) = g1(ω) + ig2(ω),

where

R1(ω) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ωn+m − A2ω
n+m−2 + A4ω

n+m−4 − A6ω
n+m−6

+ · · · −An+m−2ω
2 + An+m, n + m = 4l,

A1ω
n+m−1 − A3ω

n+m−3 + A5ω
n+m−5 − A7ω

n+m−7

+ · · · − An+m−2ω
2 + An+m, n + m = 4l + 1,

−ωn+m + A2ω
n+m−2 − A4ω

n+m−4 + A6ω
n+m−6

+ · · · −An+m−2ω
2 + An+m, n + m = 4l + 2,

−A1ω
n+m−1 + A3ω

n+m−3 − A5ω
n+m−5 + A7ω

n+m−7

+ · · · −An+m−2ω
2 + An+m, n + m = 4l + 3,

R2(ω) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−A1ω
n+m−1 + A3ω

n+m−3 − A5ω
n+m−5 + A7ω

n+m−7

+ · · · −An+m−3ω
3 + An+m−1ω, n + m = 4l,

ωn+m − A2ω
n+m−2 + A4ω

n+m−4 − A6ω
n+m−6

+ · · · −An+m−3ω
3 + An+m−1ω, n + m = 4l + 1,

A1ω
n+m−1 − A3ω

n+m−3 + A5ω
n+m−5 − A7ω

n+m−7

+ · · · −An+m−3ω
3 + An+m−1ω, n + m = 4l + 2,

−ωn+m + A2ω
n+m−2 − A4ω

n+m−4 + A6ω
n+m−6

+ · · · −An+m−3ω
3 + An+m−1ω, n + m = 4l + 3,

g1(ω) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

E1ω
α − E3ω

α−2 + E5ω
α−4 + · · · − Eα−1ω

2 + Eα+1, α = 4l,

E2ω
α−1 − E4ω

α−3 + E6ω
α−5 + · · · − Eα−1ω

2 + Eα+1, α = 4l + 1,

−E1ω
α + E3ω

α−2 − E5ω
α−4 + · · · − Eα−1ω

2 + Eα+1, α = 4l + 2,

−E2ω
α−1 + E4ω

α−3 − E6ω
α−5 + · · · − Eα−1ω

2 + Eα+1, α = 4l + 3,

g2(ω) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

−E2ω
α−1 + E4ω

α−3 − E6ω
α−5 + · · · − Eα−2ω

3 + Eαω, α = 4l,

E1ω
α − E3ω

α−2 + E5ω
α−4 + · · · − Eα−2ω

3 + Eαω, α = 4l + 1,

E2ω
α−1 − E4ω

α−3 + E6ω
α−5 + · · · − Eα−2ω

3 + Eαω, α = 4l + 2,

−E1ω
α + E3ω

α−2 − E5ω
α−4 + · · · − Eα−2ω

3 + Eαω, α = 4l + 3,
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in which l = 0, 1, · · · . Then (10) can be written as:

R1(ω) + iR2(ω) − e−λτ [g1(ω) + ig2(ω)] = 0. (12)

Separating the real and imaginary parts, we can get:

R1(ω) = g1(ω) cosωτ + g2(ω) sin ωτ,

R2(ω) = −g1(ω) sin ωτ + g2(ω) cosωτ.
(13)

Adding the squares of both sides of (13), we can obtain that

R2
1(ω) + R2

2(ω) = g2
1(ω) + g2

2(ω),

which is
ω2(n+m) + K1ω

2(n+m−1) + K2ω
2(n+m−2) · · · + Kn+m = 0, (14)

where Ki, i = 1, 2, · · · , n + m are the coefficients and available when entering specific values.
Let z = ω2, we have

zn+m + K1z
n+m−1 + K2z

n+m−2 · · · + Kn+m = 0. (15)

Let
h(z) = zn+m + K1z

n+m−1 + K2z
n+m−2 · · · + Kn+m.

Lemma 3.1 If Kn+m < 0, ±iω0 are the two pure virtual roots of (15) at τ = τj.

Proof If Kn+m < 0, then h(0) = Kn+m < 0 and limz→+∞ h(z) = +∞, there is at least
one number z0 satisfies h(z0) = 0. Through z = ω2, we can obtain ±iω0 are the two pure
virtual roots of (7). The proof is completed.

We make an assumption that (15) has the n + m positive roots z1, z2, · · · , zn+m, then (14)
has the following n + m positive roots:

ω1 =
√

z1, ω2 =
√

z2, · · · , ωn+m =
√

zn+m.

From (13) we can further get

cosωυτ =
g1(ωυ)R1(ωυ) + g2(ωυ)R2(ωυ)

g1
2(ωυ) + g2

2(ωυ)
, υ = 1, 2, · · · , n + m,

so we have

τυ
(j) =

1
ωυ

{

arccos
g1(ωυ)R1(ωυ) + g2(ωυ)R2(ωυ)

g1
2(ωυ) + g2

2(ωυ)
+ 2jπ

}

,

υ = 1, 2, · · · , n + m, j = 0, 1, · · · ,

(16)

then ±iωυ is a pair of purely imaginary root of Equation (7) when τ = τυ
(j). We define

τ0 = τυ0
(0) = min

υ∈{1,2,··· ,n+m}

{
τυ

(0)
}

, ω0 = ωυ0. (17)

If λ(τ) = �(τ) + iω(τ) is the root of (7) satisfied �(τυ
(j)) = 0 and ω(τυ

(j)) = ω0 (υ =
1, 2, · · · , n + m, j = 0, 1, · · ·), we deduce:
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Lemma 3.2 If Ki > 0 (i = 1, 2, · · · , n + m − 1), then

Re
[
dλ

dτ

]
∣
∣
∣
∣
∣
∣ τ=τ0

�= 0.

Proof Deriving (8) with respect to τ , we can get

dλ

dτ
=

λe−λτg(λ)
R′(λ) + τe−λτg(λ) − e−λτg′ (λ)

. (18)

For the convenience of calculation, we find the reciprocal of (18):

(
dλ

dτ

)−1

=
R′(λ) + τe−λτg(λ) − e−λτg′ (λ)

λe−λτg(λ)
=

τ

λ
+

g′ (λ) − eλτR′(λ)
λg(λ)

. (19)

Substituting λ = iω0, we have

Re
[
dλ

dτ

]−1
∣
∣
∣
∣
∣
∣ τ=τ0

= Re
[
g′ (λ) − eλτR′(λ)

λg(λ)

]−1

=
g′ (iω0) − R′(iω0) (cosω0τ + i sin ω0τ)

(iω0) g(iω0)

=
ω2

0h
′ (ω2

0

)

ω2
0 (g2

1(ω0) + g2
2(ω0))

=
h′ (ω2

0

)

g2
1(ω0) + g2

2(ω0)
.

Thus,

sign
{

Re
[
dλ

dτ

] ∣
∣
∣ τ=τ0

}

= sign

⎧
⎨

⎩
Re

[
dλ

dτ

]−1
∣
∣
∣
∣
∣
∣ τ=τ0

⎫
⎬

⎭
= sign

{
h′ (ω2

0

)

g2
1(ω0) + g2

2(ω0)

}

.

Since Ki > 0 (i = 1, 2, · · · , n + m − 1), then h′(ω2
0) > 0. Together with g2

1(ω0) + g2
2(ω0) > 0,

the sign is positive. The proof is completed.
When τ = 0, Equation (7) becomes

λn+m + A1λ
n+m−1 + · · · + (An+m−α + E1)λα

+(An+m−α+1 + E2)λα−1 + · · · + (An+m + Eα+1) = 0. (20)

Namely,

λn+m+ F1λ
n+m−1 +· · · + Fn+m−αλα +Fn+m−α+1λ

α−1 +· · · +Fn+m = 0, (21)

where Fi = Ai, i = 1, 2, · · · , n+m−α−1 and Fj = Aj+Eι, j = n+m−α, n+m−α+1, · · · , n+m;
ι = 1, 2, · · · , α + 1 are coefficients. They are available when entering specific values.
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We define that

Δ1 = F1=A1,

Δ2 =

∣
∣
∣
∣
∣
∣

F1 F3

1 F2

∣
∣
∣
∣
∣
∣
,

Δ3 =

∣
∣
∣
∣
∣
∣
∣
∣

F1 F3 F5

1 F2 F4

0 F1 F3

∣
∣
∣
∣
∣
∣
∣
∣

,

...

Δn+m =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

F1 F3 F5 · · · F2(n+m−α)−1 · · · 0

1 F2 F4 · · · F2(n+m−α)−2 · · · 0

0 F1 F3 · · · ... · · · 0

0 1 F2 · · · Fn+m−α · · · 0
...

...
...

...
. . .

...
...

0 0 0 · · · Fn+m−3 Fn+m−1 0

0 0 0 0 · · · Fn+m−2 Fn+m

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

.

(22)

We make the following assumption:
(H3) �i > 0, i = 1, 2, · · · , n + m.

According to the Routh-Hurwitz criterion, we deduce that if (H3) holds, (21) has n + m

roots with negative real parts when τ = 0.

Remark 3.3 Hopf bifurcation is the birth of a limit cycle from an equilibrium in dynam-
ical systems generated by ordinary differential equation when the equilibrium changes stability
via a pair of purely imaginary eigenvalues. The bifurcation can be supercritical or subcritical,
resulting in stable or unstable limit cycle, respectively. We maintain that the system is stable
in the initial state, and the critical value of the system from stable to unstable after adding
time delays is our requirement.

Remark 3.4 Since we use the sum of time delays as the the parameter to study bifurca-
tion, we ensure that the system is stable without time delays. When τ = 0, the characteristic
equation of the system is transformed into a polynomial equation, and the distribution of the
roots of the polynomial equation is usually determined by Hurwitz criterion[33–35]. This paper
deals with high-dimensional systems, which will be more complex with nonlinear methods, such
as Lyapunov. Therefore, we usually use Hurwitz criterion to solve the local stability problem
and obtain the stability threshold of the system.

By Lemmas 2.1 3.1 and 3.2, we can draw the following conclusions:

Theorem 3.5 If (H1)–(H3) hold, we have:
(i) Model (1) is locally asymptotically stable for all τ ∈ [0, τ0) at the equilibrium point.



BIFURCATION ANALYSIS OF AN (n + m)-NEURON DOUBLE-RING MODEL 171

(ii) Model (1) begets a Hopf bifurcation at the equilibrium point when τ = τ0, and becomes
unstable when τ > τ0.

4 Numerical Simulations

In this section, we use two numerical examples to prove the correctness of our previous
theoretical results. Some parameter values on the model (1) are given to observe the waveforms
and phase diagrams to see the accuracy of the results.

4.1 Example 1

We take n = 4, m = 5, and f(·) = tanh(·) in this example. Then, we have
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ẇ1(t) = −a1W1(t) + b41 tanh(W4(t − τ41)) + b91 tanh(W9(t − τ91)),

Ẇ2(t) = −a2W2(t) + b12 tanh(W1(t − τ12)),

Ẇ3(t) = −a3W3(t) + b23 tanh(W2(t − τ23)),

Ẇ4(t) = −a4W4(t) + b34 tanh(W3(t − τ34)),

Ẇ5(t) = −a5W5(t) + b15 tanh(W1(t − τ15)),

Ẇ6(t) = −a6W6(t) + b56 tanh(W5(t − τ56)),

Ẇ7(t) = −a7W7(t) + b67 tanh(W6(t − τ67)),

Ẇ8(t) = −a8W8(t) + b78 tanh(W7(t − τ78)),

Ẇ9(t) = −a9W9(t) + b89 tanh(W8(t − τ89)).

(23)

The values of each parameter in the model (23) are as Table 1.

Table 1 Parameters of the model (23) are given in Example 1

a1 a2 a3 a4 a5 a6 a7 a8 a9

1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2

b12 b23 b34 b41 b15 b56 b67 b78 b89 b91

−0.8 1.2 1.2 1.2 −0.8 1.2 1.2 1.2 1.2 1.2

From (16), τ0 = 4.2391 can be generated. Figure 4 shows that when τ = 4.1 < τ0 = 4.2391,
the model (23) is asymptotically stable near the equilibrium point. In contrast, as shown in
Figure 5, when τ = 4.3 > τ0 = 4.2391, the model (23) becomes unstable, and Hopf bifurcation
is generated. Figure 6 clearly shows that when τ < τ0, the curve converges to the limit point.
Conversely, as shown in Figure 7, when τ > τ0, the limit circle of the curve appears, which
means that the Hopf bifurcation occurs. The results obtained by simulation are in accordance
with Theorem 3.5.
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Figure 4 Waveform plot of the model (23) with τ = 4.1 < τ0 =

4.2391. It is convergent at the origin O(0, 0, · · · , 0)1×9
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Figure 5 Waveform plot of the model (23) with τ = 4.3 > τ0 =

4.2391. It is oscillating at the origin O(0, 0, · · · , 0)1×9
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Figure 6 Phase portrait of the model (23) with τ = 4.1 <

τ0 = 4.2391. The track returns to equilibrium

O(0, 0, · · · , 0)1×9
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Figure 7 Phase portrait of the model (23) with τ = 4.3 > τ0 = 4.2391. The limit

cycle appears at the equilibrium O(0, 0, · · · , 0)1×9

From Table 2, we find that the value of τ0 decreases and the stability domain of the model
shrinks as the number of neurons increases.

Table 2 The influence of numbers of neurons when the number of neurons on each ring is different

n m Bifurcation point τ0

3 4 4.3130

4 5 4.2391

5 6 4.1003

6 7 3.9109

7 8 3.6807

4.2 Example 2

In Example 1 we discussed the situation of unequal number of neurons on each ring. Unlike
it, in Example 2, we study the case where the number of neurons on each ring is equal. We
take n = 6, m = 5, and f(·) = tanh(·). Then, we have
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ẇ1(t) = −a1W1(t) + b61 tanh(W6(t − τ61)) + b(11)1 tanh(W9(t − τ(11)1)),

Ẇ2(t) = −a2W2(t) + b12 tanh(W1(t − τ12)),

Ẇ3(t) = −a3W3(t) + b23 tanh(W2(t − τ23)),

Ẇ4(t) = −a4W4(t) + b34 tanh(W3(t − τ34)),

Ẇ5(t) = −a5W5(t) + b45 tanh(W4(t − τ45)),

Ẇ6(t) = −a6W6(t) + b56 tanh(W5(t − τ56)),

Ẇ7(t) = −a7W7(t) + b17 tanh(W1(t − τ17)),

Ẇ8(t) = −a8W8(t) + b78 tanh(W7(t − τ78)),

Ẇ9(t) = −a9W9(t) + b89 tanh(W8(t − τ89)),

Ẇ10(t) = −a10W10(t) + b9(10) tanh(W9(t − τ9(10))),

Ẇ11(t) = −a11W11(t) + b(10)(11) tanh(W10(t − τ(10)(11))).

(24)

The values of each parameter in the model (24) are as the following Table 3.

Table 3 The values of each parameter in the model (24) are given in Example 2

a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11

1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2

b12 b23 b34 b45 b56 b61 b17 b78 b89 b9(10) b(10)(11) b(11)1

−0.8 1.2 1.2 1.2 1.2 1.2 −0.8 1.2 1.2 1.2 1.2 1.2
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Figure 8 Waveform plots of the model (24) with τ = 3.25 < τ0 =

3.4106. It is convergent at the origin O(0, 0, · · · , 0)1×11
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Figure 9 Waveform plots of the model (24) with τ = 3.5 > τ0 =

3.4106. It is oscillating at the origin O(0, 0, · · · , 0)1×11
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Figure 10 Phase portraits of the model (24) with τ = 3.25 < τ0 =

3.4106. The track returns to equilibrium O(0, 0, · · · , 0)1×11
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Figure 11 Phase portraits of the model (24) with τ = 3.5 > τ0 = 3.4106. The

limit cycle appears at the equilibrium O(0, 0, · · · , 0)1×11



176 XING RUITAO, et al.

By calculating according (16), τ0 = 4.2391 can be obtained. According to Theorem 3.5, the
model (24) is asymptotically stable near the equilibrium point when τ = 3.25 < τ0 = 3.4106.
Model (24) becomes unstable, and Hopf bifurcation is generated around the balance when
τ = 3.5 > τ0 = 3.4106. In Figures 8–11, Figures 8 and 10 show that the curve converges to
the equilibrium point when τ < τ0. Contrastly, as shown in Figures 9 and 11, the waveform
diagram is divergent, and the limit diagram appears in the phase diagram when τ > τ0, which
means that the Hopf bifurcation occurs. The results are in accordance with Theorem 3.5.

From Table 4, we find the same as Table 2, the value of τ0 decreases and the stability area
of the model shrinks when the number of neurons increases.

Table 4 The influence of numbers of neurons when the number of neurons on each ring is the same

n m Bifurcation point τ0

5 4 3.4880

6 5 3.4106

7 6 3.2698

8 7 3.0791

9 8 2.8480

Remark 4.1 Excitation and inhibition refer to two basic neural processes. The excite-
ment process is manifested as the activation or enhancement of certain activities, while the
inhibition process is manifested as the cessation or weakening of biological activities. Exper-
iments have shown that the excitation and inhibition of the nervous system depends on the
nature of the chemical transmitters released by presynaptic cells in the process of presynaptic
transmission. The positive parameter here actually represents the excitation state, while the
negative parameter represents the inhibition state, which is a negative feedback situation.

5 Conclusions

In this paper, we mainly study the stability and Hopf bifurcation of the double-loop high-
dimensional neural network model. The conditions for the occurrence of bifurcation are solved
by using the method of Coates’ flow graph formula. The correctness of the theory is verified
through the numerical simulation. The system becomes obviously unstable at the bifurcation
point when the parameter is greater than the critical value. At the same time, we find that the
number of neurons has a great influence on the stability area of the system. The greater the
number of neurons, the worse the stability of the system. This article enriches the dynamics of
high-dimensional neural network models.

In the future, we will be engaged in the neural network model of multi-ring sharing a node.
The high-dimensional neural network model of two-way connection is also the direction of our
research.
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