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Abstract Lattices in Euclidean spaces are important research objects in geometric number theory,

and they have important applications in many areas, such as cryptology. The shortest vector problem

(SVP) and the closest vector problem (CVP) are two famous computational problems about lattices.

In this paper, we consider p-adic lattices in local fields, and define the p-adic analogues of SVP and

CVP in local fields. The authors find that, in contrast with lattices in Euclidean spaces, the situation

is different and interesting. The SVP in Euclidean spaces corresponds to the Longest Vector Problem

(LVP) in local fields. The authors develop relevant algorithms, indicating that these problems are

computable.

Keywords CVP, lattice, LVP, local field, SVP.

1 Introduction

Let R be the field of real numbers, and let n be a positive integer. Denote R
n = {(x1, x2, · · · ,

xn) | xi ∈ R, 1 ≤ i ≤ n}. Let ‖ · ‖ be a norm on R
n, namely, for a ∈ R, x, y ∈ R

n, ‖ x ‖ is a
nonnegative real number satisfying: 1) ‖ x ‖= 0 if and only if x = 0; 2) ‖ ax ‖=| a |‖ x ‖; 3)
‖ x + y ‖≤‖ x ‖ + ‖ y ‖. An important family of norm functions is given by the lp(1 ≤ p ≤ ∞)
norms. For any real p ≥ 1, the lp norm of a vector x = (x1, x2, · · · , xn) ∈ R

n is

‖ x ‖p=

(
n∑

i=1

| xi |p
) 1

p

.

And the l∞ norm is
‖ x ‖∞= max

1≤i≤n
| xi | .
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Let m be a positive integer with 1 ≤ m ≤ n. Let α1, α2, · · · , αm ∈ R
n be m R-linearly

independent vectors. A lattice in R
n is the set

L(α1, α2, · · · , αm) =

{
m∑

i=1

aiαi | ai ∈ Z, 1 ≤ i ≤ m

}

of all integral linear combinations of α1, α2, · · · , αm. The integers m and n are called the rank
and dimension of the lattice, respectively. When n = m, we say that the lattice is full rank.
A lattice in R

n is a discrete additive subgroup of it, and the reverse is also true. See [1] for a
proof of this fact.

Given a lattice L(α1, α2, · · · , αm) in R
n, and a norm ‖ · ‖ on R

n, there are two famous
computational problems, i.e., the shortest vector problem (SVP) and the closest vector problem
(CVP). SVP is to find a nonzero lattice vector v ∈ L(α1, α2, · · · , αm) such that

‖ v ‖= min{‖ x ‖| 0 �= x ∈ L(α1, α2, · · · , αm)}.

Given a target vector t ∈ R
n and a lattice L(α1, α2, · · · , αm) in R

n. CVP is to find a lattice
vector v ∈ L(α1, α2, · · · , αm) such that

‖ t − v ‖= min{‖ t − x ‖| x ∈ L(α1, α2, · · · , αm)}.

Note that, since the zero vector is in fact the shortest vector in a lattice, SVP is to find a second
shortest vector in a lattice.

Lattices are important research objects in geometric number theory, see [2]. Algorithmic
studies of SVP and CVP can be found in [3]. Lattices in Euclidean spaces have important
applications in many areas, such as cryptology. The reader can easily find numerous literatures
in recent cryptographic conference proceedings, such as Crypto, Eurocrypt, Asiacrypt, etc.

We know that R is the completion of the field Q of rational numbers with respect to the
usual absolute value. Let p be a prime number, and let Qp be the completion of Q with respect
to the p-adic absolute value. Let n be a positive integer, and let K be an extension field of Qp

of degree n. We know that the p-adic absolute value on Qp can be extended uniquely to K. In
this paper, we define so-called p-adic lattices in K, and consider the p-adic analogues of SVP
and CVP in the local field K. We find that, in contrast with lattices in Euclidean spaces, the
situation is different and interesting. The SVP in Euclidean spaces corresponds to the Longest
Vector Problem (LVP) in local fields. Usually, p-adic lattices are defined as free Zp-modules in
a finite dimensional vector space over Qp. We embed p-adic lattices into an extension field K

of Qp so that we can use the natural norm in K to derive good properties of relevant problems.
However, R

n can be viewed as a field only when n = 1, 2, 4. The case n = 2 is the field of
complex numbers and when n = 4, the field is non-commutative (i.e., Hamilton quaternions).
This is the famous Frobenius Theorem. We develop relevant algorithms, indicating that these
problems are computable.

The major motivation of this paper is the post quantum cryptography. Due to Peter Shor’s
quantum polynomial time algorithms for integer factorization and discrete logarithm, classical
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public-key cryptosystems such as RSA and ElGamal would be broken under future quantum
computer. NIST has initiated the solicitation of standard of post quantum cryptography[4]. New
hard computational problems have been proposed, such as isogeny between elliptic curves[5, 6].
Lattices in Euclidean spaces have obtained extensive study in recent years[3]. However, p-adic
lattices do not gain any attention. We propose new computational problems, and these problems
may be hard. Further algorithmic improvement and complexity study are our future research
direction. The potential construction of cryptographic schemes based on these problems is also
a natural research direction.

The paper is organized as follows. We give some necessary basic facts about local fields
in Section 2. We consider the p-adic analogues of the shortest vector problem and the closest
vector problem in local fields in Sections 3, 4, respectively. We describe a simple relationship
between the discriminant of a lattice and λ2 in Section 5.

2 Basic Facts About Local Fields

In this section, we recall some basic facts about local fields, for detailed study of local fields,
see [7–9].

Let p be a prime number. For x ∈ Q with x �= 0, write x = pt a
b with t, a, b ∈ Z and

p � ab. Define | x |p= p−t and | 0 |p= 0. Then | · |p is a non-Archimedean absolute value on
Q. Namely, we have: 1) | x |p≥ 0 and | x |p= 0 if and only if x=0; 2) | xy |p=| x |p| y |p; 3)
| x + y |p≤ max(| x |p, | y |p). If | x |p �=| y |p, then | x + y |p= max(| x |p, | y |p).

Let Qp be the completion of Q with respect to | · |p. Denote Zp = {x ∈ Qp || x |p≤ 1}. Zp

is a discrete valuation ring, it has a unique nonzero principal maximal ideal pZp and p is called
a uniformizer of Qp. The unit group of Zp is Z

×
p = {x ∈ Qp || x |p= 1}. The residue class field

Zp/pZp is a finite field with p elements. We have Zp = {∑∞
i=0 aip

i | ai ∈ {0, 1, · · · , p−1}, i ≥ 0}
and Qp = {∑∞

i=j aip
i | ai ∈ {0, 1, · · · , p − 1}, i ≥ j, j ∈ Z}. Zp is compact and Qp is locally

compact.
Let n be a positive integer, and let K be an extension field of Qp of degree n. We fix some

algebraic closure Qp of Qp and view K as a subfield of Qp. Such K exists, for example, let
K = Qp(α) with αn = p. Because Xn − p is an Eisenstein polynomial over Qp, it is irreducible
over Qp, so K has degree n over Qp. Further, there are only finitely many extension fields of
Qp of degree n contained in Qp, see [10]. The p-adic absolute value (or norm) | · |p on Qp can

be extended uniquely to K, i.e., for x ∈ K, we have | x |p=| NK/Qp
(x) | 1

n
p , where NK/Qp

is the
norm map from K to Qp. And K is complete with respect to | · |p. See [8] for a proof.

Denote OK = {x ∈ K || x |p≤ 1}. OK is also a discrete valuation ring, it has a unique
nonzero principal maximal ideal πOK and π is called a uniformizer of K. OK is a free Zp-
module of rank n. OK is compact and K is locally compact. The unit group of OK is O×

K =
{x ∈ K || x |p= 1}. The residue class field OK/πOK is a finite extension of Zp/pZp. Call the
positive integer f = [OK/πOK : Zp/pZp] the residue field degree of K/Qp. As ideals in OK ,
we have pOK = πeOK . Call the positive integer e the ramification index of K/Qp. We have
n = [K : Qp] = ef . When e = 1, the extension K/Qp is unramified, and when e = n, K/Qp is
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totally ramified. Each element x of the multiplicative group K× of nonzero elements of K can
be written uniquely as x = uπt with u ∈ O×

K and t ∈ Z. We have p = uπe with u ∈ O×
K , so

| π |p= p−
1
e . The valuation group of K is

{| x |p| x ∈ K×} = p
Z

e .

3 Longest Vector Problem in Local Fields

As in the previous section, let p be a prime number, and let K be an extension field of Qp

of degree n, where n is a positive integer. Let m be a positive integer with 1 ≤ m ≤ n. Let
α1, α2, · · · , αm ∈ K be m many Qp-linearly independent vectors. A lattice in K is the set

L(α1, α2, · · · , αm) =

{
m∑

i=1

aiαi | ai ∈ Zp, 1 ≤ i ≤ m

}

of all Zp-linear combinations of α1, α2, · · · , αm. The sequence of vectors α1, α2, · · · , αm is called
a basis of the lattice L(α1, α2, · · · , αm). The integers m and n are called the rank and dimension
of the lattice, respectively. When n = m, we say that the lattice is full rank.

Remark Usually, p-adic lattices are defined as follows, see [9, 11]. Let V be a finite
dimensional vector space over Qp. A p-adic lattice in V is a free Zp-module in V . We embed
p-adic lattices into an extension field K of Qp so that we can use the natural norm in K. Since
all norms on a finite dimensional vector space over a locally compact field are equivalent, see [7],
our convention does not matter.

Lemma 3.1 The lattice L = L(α1, α2, · · · , αm) is compact in K.

Proof Since | · |p makes L a metric space, compactness is equivalent to sequential compact-
ness. We have therefore to show that every sequence {Aj}∞j=1 of elements of L has a convergent
subsequence. The proof applies the well-known “diagonal process” to the representation

Aj =
m∑

i=1

a
(i)
j αi.

Since a
(i)
j ∈ Zp and Zp is compact, there is a convergent subsequence a

(1)
nj1 of a

(1)
j . Also, there

is a convergent subsequence a
(2)
nj2 of a

(2)
nj1 , there is a convergent subsequence a

(3)
nj3 of a

(3)
nj2 , and so

on. Finally, we obtain convergent subsequences a
(i)
njm of a

(i)
j for each 1 ≤ i ≤ m. Then

m∑
i=1

a(i)
njm

αi

is a convergent subsequence of Aj .
For any element α =

∑m
i=1 aiαi ∈ L, since each ai ∈ Zp, we have

| α |p=
∣∣∣∣

m∑
i=1

aiαi

∣∣∣∣
p

≤ max
1≤i≤m

(| aiαi |p) ≤ max
1≤i≤m

(| αi |p).
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This indicates that the length | α |p of any element of the p-adic lattice L is bounded above.
Since the valuation group of K is discrete, as a subset of K, the set of lengths of elements of
the lattice L is also discrete. So we have the following definition.

Definition 3.2 Let L = L(α1, α2, · · · , αm) be a lattice in K. We define recursively a
sequence of positive real numbers: λ1, λ2, · · · as follows:

λ1 = max
1≤i≤m

(| αi |p),
λj+1 = max{| x |p| x ∈ L, | x |p< λj} for j ≥ 1.

We have λ1 > λ2 > · · · and limj→∞ λj = 0. In fact, we have the following.

Lemma 3.3 Let L = L(α1, α2, · · · , αm) be a lattice in K, and let 0 �= α ∈ L be any
nonzero element of the lattice. Then we have

p−
1
e λj ≥ λj+1 ≥ p−j | α |p for j ≥ 1,

where e is the ramification index for K/Qp.

Proof Induction on j. Note that the valuation group of K is

{| x |p| x ∈ K×} = p
Z

e .

The proof is finished.

Definition 3.4 Given a lattice L = L(α1, α2, · · · , αm) in K, the longest vector problem
(LVP) is to find a lattice vector v ∈ L such that | v |p= λ2.

Of course, the longest vector v is not unique, for, if u ∈ Z
×
p , then uv is also a longest vector

in the lattice L.
Example 3.1 Put L = OK . Since any nonzero element α of OK can be written uniquely

as α = uπt with u ∈ O×
K and t ∈ Z, t ≥ 0, where π is a uniformizer of K. So | π |p= λ2 and the

uniformizer π is a longest vector in OK . Since uniformizers are important for a local field K,
so the LVP is significant.

Proposition 3.5 Given a lattice L = L(α1, α2, · · · , αm) in K with | α1 |p≥| α2 |p≥
· · · ≥| αm |p. If K/Qp is unramified, then, for j ≥ 0, pjα1 ∈ L satisfying

| pjα1 |p= λj+1 = p−jλ1.

Proof Since the valuation group of K is pZ, the result follows.
The above proposition shows that the LVP is easy to solve for an unramified extension

K/Qp.

Theorem 3.6 Given a lattice L = L(α1, α2, · · · , αm) in K. Fix an integer j ≥ 2. There
exists an algorithm to find a lattice vector vj ∈ L satisfying

| vj |p= λj .

The algorithm takes O(pm(j−1)) many p-adic absolute value computations of elements of K.
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Proof Without loss of generality, we can assume | α1 |p≥| α2 |p≥ · · · ≥ | αm |p. Let α ∈ L
be an arbitrary vector. Write

α =
m∑

i=1

biαi + pj−1β,

with bi ∈ Z, 0 ≤ bi ≤ pj−1 − 1, 1 ≤ i ≤ m and β ∈ L. Set

Sj =

{
m∑

i=1

biαi | bi ∈ Z, 0 ≤ bi ≤ pj−1 − 1, 1 ≤ i ≤ m

} ⋃
{pj−1α1}.

There are pm(j−1) + 1 elements in Sj . By Lemma 3.3, we have | pj−1β |p≤| pj−1α1 |p≤ λj . For
| α |p> λj , we have | ∑m

i=1 biαi |p=| α − pj−1β |p=| α |p> λj . Hence, there are lattice vectors
of length λ1, λ2, · · · , λj−1 in Sj . If | pj−1α1 |p< λj , then | pj−1β |p< λj . Hence, for | α |p= λj ,
we have | ∑m

i=1 biαi |p=| α − pj−1β |p= λj . So there is a lattice vector of length λj in Sj . If
| pj−1α1 |p≥ λj , then | pj−1α1 |p= λj . In this case, we have vj = pj−1α1. The assertion about
the time of the algorithm is obvious. We ignore the time of comparing.

We know, from the proof of the above theorem, that we can simultaneously find out the val-
ues λ2, λ3, · · · , λj and the corresponding vectors v2, v3, · · · , vj . From the proof of Theorem3.6,
the mentioned algorithm is a brute force searching algorithm. We provide a numerical example.

Example 3.2 Let K = Q2( 3
√

2). Here p = 2 and n = 3. Let L = Zp + Zp
3
√

2 be a lattice
in K of rank 2. Here m = 2 and α1 = 1, α2 = 3

√
2. Since | α2 |2= 2−

1
3 , we have λ1 = 1. We

want to find λ3. Set
S3 = {i + jα2 | 0 ≤ i, j ≤ 3}

⋃
{4}.

Using NK/Q2(i+jα2) = i3+2j3, we can easily find out the 2-adic absolute value of each element
of S3. A calculation shows that λ2 = 2−

1
3 , λ3 = 2−1 and v2 = α2, v3 = 2.

4 Closest Vector Problem in Local Fields

As in the previous section, let p be a prime number, and let K be an extension field of Qp

of degree n, where n is a positive integer. Let m be a positive integer with 1 ≤ m ≤ n. Let
L = L(α1, α2, · · · , αm) be a lattice in K. In this section, we consider the p-adic analogue of
the closest vector problem in K. Suppose | α1 |p≥| α2 |p≥ · · · ≥| αm |p.

Given a target vector t ∈ K. Since the function

L −→ R, v �−→| t − v |p

is continuous on the compact set L, it can take the minimum and maximum on L. Set

μmin = min
v∈L

| t − v |p and μmax = max
v∈L

| t − v |p .

If t ∈ L, it is obvious that we have μmin = 0 and μmax = λ1. Here λ1 is the same as in
Definition 3.2. So we below assume t /∈ L. Hence, μmin > 0. Since the valuation group of K

is discrete, the above distance function will take only finitely many values. So we have the
following definition.
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Definition 4.1 Let L = L(α1, α2, · · · , αm) be a lattice in K and let t ∈ K−L be a target
vector. Define s positive real numbers μ1 > μ2 > · · · > μs as follows, where s is a positive
integer.

{μ1, μ2, · · · , μs} = {| t − v |p| v ∈ L}.
So μmax = μ1 and μmin = μs.

If | t |p> λ1, since | t − v |p=| t |p, we have μmin = μmax =| t |p. So we below assume
| t |p≤ λ1.

Definition 4.2 Let L = L(α1, α2, · · · , αm) be a lattice in K and let t ∈ K−L be a target
vector with | t |p≤ λ1. The closest vector problem (CVP) is to find a lattice vector v ∈ L such
that

| t − v |p= μmin.

And the farthest vector problem (FVP) is to find a lattice vector v ∈ L such that

| t − v |p= μmax.

Proposition 4.3 Let L = L(α1, α2, · · · , αm) be a lattice in K and let t ∈ K − L be a
target vector with | t |p≤ λ1. Suppose | t |p �= λj for any j ≥ 1. Let j0 ≥ 1 be such that
λj0+1 <| t |p< λj0 . Then we have s = j0 + 1 and μi = λi for 1 ≤ i ≤ j0 and μj0+1 =| t |p.

Proof For any v ∈ L, we have | t − v |p= max(| t |p, | v |p). If | v |p≤ λj0+1, then
| t − v |p=| t |p. If | v |p≥ λj0 , then | t − v |p=| v |p. The result follows.

Theorem 4.4 Let L = L(α1, α2, · · · , αm) be a lattice in K and let t ∈ K −L be a target
vector with | t |p≤ λ1. Suppose | t |p �= λj for any j ≥ 1. There exists an algorithm to find the
values μi, 1 ≤ i ≤ s and the lattice vectors vi ∈ L such that

| t − vi |p= μi for 1 ≤ i ≤ s.

The algorithm takes O
((

λ1
|t|p

)mn)
many p-adic absolute value computations of elements of K.

Proof By Lemma 3.3, λj+1 ≤ p−
1
e λj for j ≥ 1. Hence, λj ≤ p−

j−1
e λ1. Let j0 ≥ 1 be

such that λj0+1 <| t |p< λj0 . We have | t |p< p−
j0−1

e λ1. Hence, j0 < e logp

(
λ1
|t|p

)
+ 1 ≤

n logp

(
λ1
|t|p

)
+ 1. Now the result follows from Proposition 4.3 and Theorem 3.6.

Example 4.1 Let L be as in Example 3.2. Suppose t = α2
2. Since | t |2= 2−

2
3 , we see

λ3 <| t |2< λ2. So s = 3 and μ1 = 1, μ2 = 2−
1
3 , μ3 = 2−

2
3 .

Theorem 4.5 Let L = L(α1, α2, · · · , αm) be a lattice in K and let t ∈ K −L be a target
vector with | t |p≤ λ1. Suppose | t |p= λj0 for some j0 ≥ 1. Then s ≥ j0 and there exists an
algorithm to find the values μi, 1 ≤ i ≤ j0 and the lattice vectors vi ∈ L such that

| t − vi |p= μi for 1 ≤ i ≤ j0.

The algorithm takes O
(
p−m

(
λ1
|t|p

)mn)
many p-adic absolute value computations of elements

of K.



1198 DENG YINGPU, et al.

Proof Now by assumption | t |p= λj0 for some j0 ≥ 1. For v ∈ L with | v |p< λj0 , then
| t − v |p= λj0 . For v ∈ L with | v |p> λj0 , then | t − v |p=| v |p. For v ∈ L with | v |p= λj0 ,
then | t− v |p≤ λj0 . Hence, s ≥ j0, and μi = λi for 1 ≤ i ≤ j0. From the proof of Theorem4.4,
we have j0 ≤ n logp

(
λ1
|t|p

)
+ 1. Since we can put vj0 = 0, we only need to know the vectors

vi ∈ L such that | vi |p= λi for 1 ≤ i ≤ j0 − 1, the theorem follows from Theorem 3.6.
By the above Theorems 4.4 and 4.5, in any case, we always have μ1 = λ1. When | t |p< λ1,

we can put v1 = α1; when | t |p= λ1, we can put v1 = 0. So the FVP is easy to solve.

Theorem 4.6 Let L = L(α1, α2, · · · , αm) be a lattice in K and let t ∈ K −L be a target
vector with | t |p≤ λ1. Suppose | t |p= λj0 for some j0 ≥ 1. Then s ≥ j0 and there exists an
algorithm to find the values μi, j0 < i ≤ s and the lattice vectors vi ∈ L such that

| t − vi |p= μi for j0 < i ≤ s.

The algorithm terminates within finitely many steps.

Proof For v ∈ L, write

v =
m∑

i=1

biαi + pj0β

with bi ∈ Z, 0 ≤ bi ≤ pj0 −1 for 1 ≤ i ≤ m and β ∈ L. By Lemma 3.3, we have | pj0β |p≤ λj0+1.
Set α =

∑m
i=1 biαi. If | α |p> λj0 , then we have | t−v |p= | t−α−pj0β |p=| α |p. If | α |p< λj0 ,

then we have | t − v |p= | t − α − pj0β |p= | t |p= λj0 . If | α |p= λj0 , then we have | t − v |p=
| t − α − pj0β |p≤ λj0 .

Denote B1 the set of such α with | α |p= λj0 . B1 is a non-empty finite set. Set

η1 = min{| t − α |p| α ∈ B1}.

Then we have η1 ≤ λj0 . If η1 > p−j0λ1, since | pj0β |p≤ p−j0λ1, we have μmin = η1. And

{μ1, μ2, · · · , μs} = {λ1, λ2, · · · , λj0}
⋃

{| t − α |p| α ∈ B1}.

We are done. If η1 ≤ p−j0λ1, assume η1 > p−j1λ1 with some integer j1 > j0. For v ∈ L, write

v =
m∑

i=1

biαi + pj1β

with bi ∈ Z, 0 ≤ bi ≤ pj1 − 1 for 1 ≤ i ≤ m and β ∈ L. Repeat the above process. Set
α =

∑m
i=1 biαi. We need only to consider the case | α |p= λj0 . Denote B2 the set of such α

with | α |p= λj0 . B2 is a non-empty finite set. Set

η2 = min{| t − α |p| α ∈ B2}.

Since B1 is a subset of B2, we have η2 ≤ η1. If η2 > p−j1λ1, since | pj1β |p≤ p−j1λ1, we have
μmin = η2. And

{μ1, μ2, · · · , μs} = {λ1, λ2, · · · , λj0}
⋃

{| t − α |p| α ∈ B2}.
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We are done. If η2 ≤ p−j1λ1, assume η2 > p−j2λ1 with some integer j2 > j1. And so on. Since
μmin > 0, there is some integer k ≥ 1 such that μmin > p−jk−1λ1. Hence ηk ≥ μmin > p−jk−1λ1.
So ηk = μmin. And

{μ1, μ2, · · · , μs} = {λ1, λ2, · · · , λj0}
⋃

{| t − α |p| α ∈ Bk},

where

Bk =

{
α =

m∑
i=1

biαi | bi ∈ Z, 0 ≤ bi ≤ pjk−1 − 1 for 1 ≤ i ≤ m, | α |p= λj0

}
.

We are done.
Example 4.2 We provide two toy examples to explain that both cases s = j0 and s > j0

will happen. In these two examples, let L = Zp, i.e., m = 1 and α1 = 1. We have λ1 = 1. 1)
Let K = Q2(ζ), where ζ is a primitive 3-th root of unity. K/Q2 is unramified, see [8]. Here
n = 2 and p = 2. Suppose t = ζ. Since | t |2= 1, we have j0 = 1. Hence, B1 = {1}. Since
| t − 1 |2= 1, we have η1 = 1. So s = 1, μ1 = 1. 2) Let K = Q3(ζ), where ζ is a primitive 3-th
root of unity. Here n = 2 and p = 3. Suppose t = ζ. Since | t |3= 1, we have j0 = 1. Hence,
B1 = {1, 2}. Since | t − 1 |3= 3−

1
2 and | t − 2 |3= 1, we have η1 = 3−

1
2 . Since η1 > p−j0λ1, we

have s = 2, μ1 = 1, μ2 = 3−
1
2 .

5 Discriminants and λ2

Let K be an extension of Qp of degree n. Let L = L(α1, α2, · · · , αn) be a lattice in K of
full rank. Let σi : K ↪→ Qp(1 ≤ i ≤ n) be the n distinct Qp-embeddings of K. Recall the
discriminant of α1, α2, · · · , αn is defined as

D(α1, α2, · · · , αn) = (det(σi(αj))i,j)2 ∈ Q
×
p .

For another basis β1, β2, · · · , βn of L, we have D(β1, β2, · · · , βn) = uD(α1, α2, · · · , αn) with
u ∈ (Z×

p )2. So | D(α1, α2, · · · , αn) |p is an invariant of the lattice L. Define

D(L) =| D(α1, α2, · · · , αn) |p .

Theorem 5.1 Let L = L(α1, α2, · · · , αn) be a lattice in K of full rank. Let m be the
number of vectors amongst α1, α2, · · · , αn whose length is λ1. Then we have

D(L) ≤ λ2m
1 λ

2(n−m)
2 .

Proof It is obvious from the definition of the discriminant D(α1, α2, · · · , αn).

6 Remarks

All the above results can be easily generalized to the general setting of local fields. A field k

is a local field, we mean that k is complete with respect to a discrete valuation and has a finite
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residue class field. Let k be a local field, and let K/k be a finite extension. Then K is also a
local field. We can define lattices in K. And all the previous results still hold in this general
setting.

Using operations in the p-adic number field Qp, based on the NP-hardness of the p-adic
Simultaneous Approximation Problem, a cryptosystem has been constructed in [12]. But the
system is not a public-key cryptosystem, because the encryption uses the information of the
private key. Constructing a public-key cryptosystem or other cryptographic schemes based on
LVP and CVP defined in this paper is a natural research direction.

The results in this paper are only of theoretic interest in nature, we do not implement the
mentioned algorithms.
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