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Abstract This is an expository paper on algebraic aspects of exponential sums over finite fields. This

is a new direction. Various examples, results and open problems are presented along the way, with

particular emphasis on Gauss periods, Kloosterman sums and one variable exponential sums. One

main tool is the applications of various p-adic methods. For this reason, the author has also included a

brief exposition of certain p-adic estimates of exponential sums. The material is based on the lectures

given at the 2020 online number theory summer school held at Xiamen University. Notes were taken

by Shaoshi Chen and Ruichen Xu.
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1 Introduction

Exponential sums over finite fields are of central importance in number theory and its
wide applications. Much of the modern study focuses on their analytic estimates as complex
numbers. In this expository paper, we take a different point of view. Our main purpose is to
view exponential sums as algebraic integers and study their degrees as algebraic numbers, see
Section 3 for a precise description of our main problems to be studied. This is a new direction.
Various examples, results and open problems are presented along the way, with particular
emphasis on Gauss periods, Kloosterman sums and one variable exponential sums.

As it would become clear, p-adic methods would be particularly helpful in this global study
of exponential sums. For this purpose, we have also included a brief exposition of both classical
and recent results on p-adic estimates of exponential sums. The final part on the p-adic slope
variation for L-function of higher p-power order exponential sums is itself another emerging
new direction.

The material of this paper is based on lecture notes given at the 2020 Xiamen online number
theory mini-course. The audience consists of a mixture of undergraduate students, graduate
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students and young people working in number theory and related applied areas. For this reason,
we have tried to keep the background as minimal as possible. It is a pleasure to thank Xiamen
University to organize this fruitful and enjoyable summer school. I would also like to thank
the participants for their many interesting questions, and in particular to Shaoshi Chen and
Ruichen Xu for their tremendous help in taking and preparing the notes. I would also like to
thank the anonymous referees for their constructive and helpful comments. For brevity and
clarity, we have kept these notes in their original lecture style. However, various references are
given for those who wish to look up more details.

2 Preliminaries

In this section, we shall first introduce some preliminaries on algebraic numbers and their
various absolute values.

2.1 Absolute Values over Rational Numbers

Recall that the set of natural numbers

N = {1, 2, · · · }

has two operations, namely + and ×. For n ∈ N, write

n = 1 + 1 + · · · + 1
︸ ︷︷ ︸

n times

.

Then the “traditional” absolute value is defined by

|n| = the number of 1’s in the addition.

Also, by prime factorization, we can write n as

n = p · p · · · · p
︸ ︷︷ ︸

vp(n) times

·u,

where p is a prime and u is not divided by p. The vp(n) above is called the p-adic valuation
of n. It is the number of p in the multiplication. Then we define the p-adic absolute value
of n as

|n|p =
(

1
p

)vp(n)

.

By unique factorization of integers, it is clear that we have

n =
∏

p

|n|−1
p .

In other words, we have the following principle:

Integer factorization ⇔ Computation of p-adic absolute value for all primes p.
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We can extend |·| and |·|p to Q by |0|p = 0 and
∣

∣±a
b

∣

∣

p
=

|a|p
|b|p . To sum up, we have

Q R C

Q

Qp Qp Cp

|·|

|·|p

|·|p

Here are some examples.

Example 2.1 The sequence {pn|n = 1, 2, · · · } converges to zero in |·|p, diverges in |·|� for
all primes � �= p and in |·|.

Example 2.2 The sequence
{(

1
p

)n

|n = 1, 2, · · ·
}

converges to zero in |·|, diverges in |·|�
for all primes �.

By the two examples above, we obtain that {|·| , |·|2 , · · · , |·|p , · · · } are inequivalent absolute
values on Q. Actually, we have

Theorem 2.3 (Ostrowski) Up to the equivalence of topology, {|·| , |·|2 , · · · , |·|p , · · · } are
all the nontrivial absolute values of Q.

Proof Omitted.

2.2 Absolute Values over Number Fields

We first introduce the basic notion of number fields. A field K is called a number field if
K is a finite extension of Q. Such an extension can be written as K = Q[x]/(h(x)), where h(x)
is a monic irreducible polynomial of degree n in Q[x]. Let β be a root of h(x) in K, then K

can also be written as K = Q[β].
For α ∈ K, we hope to define the absolute values |α| and |α|p. We have defined absolute

values in C and Cp, hence it is enough to choose field embeddings σ : K → C and σ : K → Cp,
not unique in general. Such an embedding is determined by σ(β).

Absolute value |·| over number fields We can factor h(x) as

h(x) =
r1
∏

i=1

(x− βi)
r2
∏

j=1

(x2 + ajx+ bj)

in R[x] and

h(x) =
n
∏

i=1

(x− βi)
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in C[x]. Here r1+2r2 = n, β1, β2, · · · , βr1 ∈ R, βr1+1, βr1+2, · · · , βr1+r2 ∈ C−R and βr1+r2+1 =
βr1+1, · · · , βr1+2r2 = βr1+r2 .

Now since h(β) = 0, applying σ to both sides, we deduce

σ(h(β)) = h(σ(β)) = 0.

It follows that σ(β) ∈ {β1, β2, · · · , βn}. This gives n = r1 + 2r2 different embeddings

σi : K → C; σ(β) = βi.

Define the absolute value
|α|σi

= |σi(α)|
and note that

|α|σr1+r2+j
= |σr1+r2+j(α)| =

∣

∣

∣σr1+j(α)
∣

∣

∣ = |α|σr1+j
.

Hence, there are only r1 + r2 distinct absolute values of K, namely the absolute value given by
the embeddings {σ1, · · · , σr1 , σr1+1, · · · , σr1+r2}. The first r1 of them are real embeddings, and
the last r2 of them are pairs of complex embeddings.

Absolute value |·|p over number fields Similarly, we factor h(x) as

h(x) =
g
∏

i=1

hi(x)

in Qp[x], where hi(x) ∈ Qp[x] is a monic irreducible polynomial of degree fi. Then

h(x) =
g
∏

i=1

fi
∏

j=1

(x− βij)

in Cp[x]. Hence we get n =
∑g

i=1 fi different embeddings, viz.

σij : K → Cp; σij(β) = βij .

Then
|α|p = |σij(α)|p

is a p-adic absolute value of K. For fixed 1 ≤ i ≤ g, the fi embeddings {σi1, σi2, · · · , σifi} are
Galois conjugates over Qp, and hence they define the same absolute value of K. It follows that
we only get g distinct p-adic absolute values of K, namely {σ1, σ2, · · · , σg}, where

|α|σi
:= |α|σi1

, 1 ≤ i ≤ g.
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Factorization of algebraic integers Let OK be the ring of integers in K. Given non-zero
algebraic integer α ∈ OK − {0}, we have the unique factorization of ideals,

αOK =
∏

p

pvp(α),

where p is a prime ideal of OK . Define

|α|p :=
(

1
N(p)

)vp(α)

,

where N(p) = �(OK/p) = pr, and r is the degree of residue field, i.e., r = [OK/p : Fp]. This also
defines a p-adic absolute value of K. Hence |α|p = |α|cp, where |·|p = |·|σ is one of the above
p-adic absolute values of K and c is a normalization factor. To determine the factor c, consider

pOK = pe · · · , vp(p) = e,

and then

|p|p =
(

1
pr

)e

=
(

1
p

)er

= |p|er
p .

Hence c = er. Now we recover the principle in p-adic case:

Ideal factorization of α ⇔ Computation of all p-adic absolute values of α.

2.3 Degrees of Algebraic Numbers

A number α in an extension field of Q is called algebraic if h(α) = 0 for some monic
polynomial h(x) ∈ Q[x]. The minimal polynomial of α is the lowest degree monic polynomial
h(x) ∈ Q[x] such that h(α) = 0. The minimal polynomial of α is unique and irreducible.

If α is algebraic over Q, then we define deg(α) := [Q(α) : Q], which is equal to the degree
of the minimal polynomial of α over Q.

Example 2.4 ζp is algebraic since ζp is a root of xp − 1. Furthermore, deg (ζp) = p− 1,
since its minimal polynomial is the p-th cyclotomic polynomial Φp(x) = xp−1+xp−2+· · ·+x+1,
which is an irreducible polynomial in Q[x] of degree p− 1.

p-Eisenstein Criterion We frequently encounter the problem of deciding whether a polyno-
mial is irreducible. A useful tool is the p-Eisenstein criterion.

Definition 2.5 Let g(x) = xd + a1x
d−1 + · · ·+ ad ∈ Z[x] be a monic polynomial. We say

that g(x) is p-Eisenstein for some prime p, if p|ai for all 1 ≤ i ≤ d and p2 � |ad. More generally,
we say that g(x) is generalized p-Eisenstein[1] if vp(ai) ≥ i

dvp(ad) for all 1 ≤ i ≤ d, and
(d, vp(ad)) = 1.

Proposition 2.6 If g(x) is generalized p-Eisenstein, then g(x) is irreducible over Qp, and
hence irreducible over Q.
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Proof We first factor g(x) =
∏d

i=1(x−αi) ∈ Cp[x]. Then our assumption implies that the
Newton polygon has only one slope, see [2]. Equivalently,

vp(α1) = vp(α2) = · · · = vp(αd) =
1
d
vp(α1α2 · · ·αd) =

1
d
vp(ad).

If g(x) is reducible over Qp, then a partial product of the roots will be in Qp, say α1α2 · · ·αh ∈
Qp for some 1 ≤ h < d. Then the valuation of the product

vp(α1α2 · · ·αh) = h
vp(ad)
d

is an integer, since it is the valuation of α1α2 · · ·αh ∈ Qp. Note that (d, vp(αd)) = 1, we
conclude d |h, a contradiction. Thus, g(x) is irreducible over Qp.

Example 2.7 For positive integers d and s, the polynomial xd − ps is irreducible over Q

if and only if (d, s) = 1.

Given α ∈ OK , our main problems are simply to understand the following three questions:

|α| = ?, |α|p = ?, degα = [Q(α) : Q] = ?

In this paper, α is the “exponential sum” to be defined in next section. We study the above
three questions. The first two questions on the absolute values are local. The third question on
the degree as an algebraic integer is global. The first question on the complex absolute value
has been studied extensively in the literature, in relation to the celebrated Weil conjectures. In
this paper, we focus on the second question on the p-adic absolute value and the third question
on the degree of α. The local p-adic information will be useful for the global degree problem.
Recently, p-adic lattices in local fields have been studied in [3] with application in cryptology.

3 Exponential Sums and Main Problems

Let p be a prime. Let ζp be a fixed primitive p-th root of 1. Depending on the situation,
ζp will be taken as an element in C (complex numbers), or Cp (p-adic numbers), or Q (alge-
braic numbers). We use Fp to denote the finite field of p elements. In this section, we define
exponential sums over finite fields, and formulate our main problems to be studied.

3.1 Exponential Sums over Fp

Let f(x1, x2, · · · , xn) be a polynoimal in Fp[x1, x2, · · · , xn]. We define the exponential
sum over the prime finite field Fp to be the following algebraic integer

S(f) =
∑

x1,x2,··· ,xn∈Fp

ζf(x1,x2,··· ,xn)
p ∈ Z[ζp] ⊂ Q(ζp).

This is usually viewed as a character sum, namely

S(f) =
∑

x1,x2,··· ,xn∈Fp

ψp(f(x1, x2, · · · , xn)),
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where
ψp : (Fp,+) → Q(ζp); ψp(a) = ζa

p

is the additive character of order p defined by ζp.
Our basic questions are:

Problem 1: Analytic number theory: ζp ∈ C, |S(f)| =?;

Problem 2: p-adic number theory: ζp ∈ Cp, |S(f)|p =?;

Problem 3: Algebraic number theory: ζp ∈ Q, deg
Q
S(f) =?.

For the first problem, as a complex number, the complex absolute value |S(f)| depends on
the choice of the p-th root ζp. For the second and third problems, it turns out that the p-adic
absolute value and algebraic degree of S(f) are independent of the choice of p-th root ζp. There
is actually a fourth problem, namely, studying the �-adic absolute value of S(f), where � is a
prime different from p. We shall however not touch this fourth problem in this paper.

All three questions above are difficult in general, as there are no clean formulas. Our first
step is to work with examples, discover and formulate good general properties.

Note that pZ[ζp] = ((ζp−1)Z[ζp])p−1, which means that p is totally ramified in Z[ζp]. Mean-
while, the cyclotomic polynomial Φp(x) is irreducible over Qp, hence |·|p is uniquely determined

on the field Qp(ζp), and |ζp − 1|p =
(

1
p

) 1
p−1

.
The aim of this paper, is to study the global “Problem 3”, which is a new direction. In

the process, it is likely that we need the two local problems 1 and 2 as well, which have been
studied extensively in the literature.

3.2 Exponential Sums over Fq

In addition to exponential sums over the prime field Fp, it is important to work with expo-
nential sums over all finite extensions Fpk , not just Fp, as in the Weil conjectures. Let Fp be a
fixed algebraic closure of Fp. For each k ∈ N, there is a unique finite subfield Fpk of pk elements
in Fp. Consider the trace map

Tr
F

pk

Fp
: Fpk → Fp; α 
→

∑

σ∈Gal(F
pk |Fp )

σ(α) = α+ αp + · · · + αpk−1
.

We will denote this trace map as Trk from now on. Then we can define the exponential sum
over Fpk , i.e.,

Sk(f) =
∑

x1,x2,··· ,xn∈F
pk

ζTrk(f(x1,x2,··· ,xn))
p ∈ Z[ζp].

In this way, for a given polynomial f , we have a sequence Sk(f) of exponential sums indexed
by k ∈ N. We can ask how our questions on the exponential sum Sk(f) vary when the integer
parameter k varies. This leads to the following questions.

Question 1: If ζp ∈ C, as complex numbers, how Sk(f) varies with k?
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Question 2: If ζp ∈ C, as real numbers, how |Sk(f)| varies with k?

Question 3: If ζp ∈ Cp, as real numbers, how |Sk(f)|p varies with k?

Question 4: If ζp ∈ Q, an integers, how deg
Q
Sk(f) varies with k?

Our basic stability conjecture is:

Conjecture 3.1 Each of the above four sequences in k is determined by its first few
terms.

More precisely, we can ask about the possible rationality for the generating function of the
corresponding sequence.

Question 1:
∑∞

k=1 Sk(f)T k ∈ Q(ζp)(T )?

Question 2:
∑∞

k=1 |Sk(f)|T k ∈ R(T )?

Question 3:
∑∞

k=1 |Sk(f)|p T k ∈ R(T )?

Question 4:
∑∞

k=1 deg(Sk(f))T k ∈ Q(T )?.

It turns out that a lot is already known to these problems. For the first two problems, we
have

Theorem 3.2 The two sequences {Sk(f)} and {|Sk(f)|2} are linear recurring sequences.

As a corollary, we obtain

Corollary 3.3 The two sequences {Sk(f)} and {|Sk(f)|2} are determined by their first
few terms.

Proof [Proof of Theorem 3.2] By the rationality theorem of Dwork-Bombieri-Grothendieck[4, 5],
the following L-function is a rational function

L(f, T ) = exp

( ∞
∑

i=1

Sk(f)
k

T k

)

∈ Q(ζp)(T ).

Then the generating function

∞
∑

k=1

Sk(f)T k = T
d

dT
log(L(f, T )) = T

L′(f, T )
L(f, T )

∈ Q(ζp)(T )

is rational. It follows that the sequence Sk(f) in k is a linear recurring sequence.
To show that the sequence |Sk(f)|2 in k is also a linear recurring sequence, note that

|Sk(f)|2 = Sk(f(x1, x2, · · · , xn))Sk(−f(y1, y2, · · · , yn))

= Sk(f(x1, x2, · · · , xn) − f(y1, y2, · · · , yn))

= Sk(g),

where g = f(x1, x2, · · · , xn) − f(y1, y2, · · · , yn) is a polynomial in 2n variables. Hence, we are
done.
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Remark 3.4 All rationality proofs for L(f, T ) use either p-adic method or �-adic method.
Any proof over C will be revolutionary!

Remark 3.5 The sequence |Sk(f)| itself is probably NOT a linear recurrence sequence.
We leave the problem of finding a counter-example (or proving no counter-example) to the
reader.

For the sequence of degrees, we have the following stronger periodicity conjecture:

Conjecture 3.6 (Periodicity) The degree sequence {degSk(f)} is periodic for k >> 0.

This conjecture was proposed at the beginning of this summer course. Luckily, it was
already proved to be true by the end of the course, in collaboration with several participants.
This result and its proof will appear in a joint work with Jason P. Bell, Shaoshi Chen, Rong-hua
Wang and Hang Yin. As a corollary, we obtain the following rationality result.

Corollary 3.7 (Rationality) The generating function
∑∞

k=1 deg(Sk(f))T k ∈ Q(T ).

The proof of the above conjecture depends on the celebrated Skolem-Mahler-Lech theorem,
hence it is not effective. It is interesting to understand this degree sequence more explicitly
in various important special cases. This was the main purpose of this course. The explicit
results and problems studied in the course remain very interesting, and are not superseded by
the general structural but non-effective periodicity result.

The third question, the p-adic stability conjecture for the sequence of p-adic absolute value
|Sk(f)|p, seems more difficult. In all cases where we can compute the degree sequence explicitly,
the p-adic absolute value sequence |Sk(f)|p is indeed stable. The general case of the p-adic
stability conjecture seems to be a very challenging problem. An effective solution of this p-adic
conjecture should shed light on the effective solution of the global degree sequence problem.
We hope to return to this topic on another occasion.

4 Degree of Exponential Sums: Basic Examples

In this section, we shall introduce basic examples and results on the degree of exponential
sums.

4.1 The p = 2 Case

First we discuss the trivial p = 2 case.

Proposition 4.1 For the degree of the exponential sum, degSk(f) divides p − 1 for all
k ∈ N and all prime p.

Proof Since Sk(f) ∈ Q(ζp), apply the tower formula

[Q(ζp) : Q] = [Q(ζp) : Q(Sk(f))][Q(Sk(f)) : Q].

Then
deg Sk(f) = [Q(Sk(f)) : Q] | [Q(ζp) : Q] = p− 1.

The proof is finished.
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As a corollary, we have

Corollary 4.2 If p = 2, then deg Sk(f) = 1, for all k ∈ N.

This is also obvious from the definition, as ζ2 = −1.
So we shall assume p > 2 from now on.

4.2 Low Degree Case

Recall the periodicity conjecture (see Conjecture 3.6), i.e.,

The degree sequence {degSk(f)} is periodic for k >> 0.

In this subsection, we give an explicit formula for the degree sequence when deg(f) ≤ 2. In
particular, we obtain

Theorem 4.3 Let f(x1, x2, · · · , xn) ∈ Fp[x1, x2, · · · , xn]. Assume deg(f) ≤ 2. Then the
degree periodicity conjecture holds. Furthermore, the p-adic absolute value sequence |Sk(f)|p is
also stable.

4.2.1 Degree zero case

In this case, f(x1, x2, · · · , xn) = c ∈ Fp is a constant. Then the exponential sum

Sk(f) =
∑

x1,x2,··· ,xn∈F
pk

ζTrk(c)
p = pknζkc

p .

Hence,

degSk(f) =

⎧

⎨

⎩

1, if kc = 0 in Fp,

p− 1, if kc �= 0 in Fp,

and
|Sk(f)|p = p−kn.

So the sequence {deg(Sk(f))} is periodic, and the p-adic absolute value sequence |Sk(f)|p is
stable in k.

4.2.2 Degree one case

Let f(x1, x2, · · · , xn) = a1x1 + a2x2 + · · · + anxn + c ∈ Fp[x1, x2, · · · , xn]. Without loss of
generality, we may assume that a1 �= 0. Then the exponential sum

Sk(f) =
∑

x1,x2,··· ,xn∈F
pk

ζTrk(a1x1+···+anxn+c)
p

=
∑

x1∈F
pk

ζTrk(a1x1)
p ·

∑

x2,··· ,xn∈F
pk

ζTrk(a2x2+···+anxn+c)
p

=
∑

t∈F
pk

ζTrk(t)
p ·

∑

x2,··· ,xn∈F
pk

ζTrk(a2x2+···+anxn+c)
p

= 0 ·
∑

x2,··· ,xn∈F
pk

ζTrk(a2x2+···+anxn+c)
p

= 0.
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Hence, degSk(f) = 1, ∀k ∈ N. So in particular, the sequence {deg(Sk(f))} is periodic in k, and
the p-adic absolute value sequence |Sk(f)|p is the zero sequence.

4.2.3 Degree two case

First assume n = k = 1, then

S1(x2) =
∑

x∈Fp

ζx2

p =
√

(−1)
p−1
2 p.

This sum is called the quadratic Gauss sum, and the second equality was proved by Gauss
in 1804, which yields another proof of the quadratic reciprocity law. With this explicit formula,
we obtain degS1(x2) = 2,

∣

∣S1(x2)
∣

∣ =
√
p and

∣

∣S1(x2)
∣

∣

p
= 1√

p .
For k ≥ 1, by Hasse-Davenport relation (1935), i.e.,

−Sk(x2) = (−S1(x2))k,

the exponential sum Sk(x2) becomes

Sk(x2) = −
(

−
√

(−1)
p−1
2 p

)k

.

Hence

deg Sk(x2) =

⎧

⎨

⎩

1, if 2 | k,
2, if 2 � k.

So the degree sequence {deg(Sk(x2))} is periodic in k, and the p-adic absolute value sequence
|Sk(x2)|p = p−k/2 is stable in k.

Now if f(x) = ax2 +bx+c ∈ Fp[x], where a ∈ F
×
p . By completing the square, we can assume

that f(x) = ax2 + c, and

Sk(ax2 + c) = Sk(ax2)ζkc
p

= ηk(a)Sk(x2)ζkc
p

= ±
(

−
√

(−1)
p−1
2 p

)k

ζkc
p ,

where ηk :
(

Fpk

)× → {±1} is the quadratic character. Hence,

deg Sk(ax2 + c) =

⎧

⎪
⎪
⎨

⎪
⎪
⎩

1, if p|kc, 2 | k,
2, if p|kc, 2 � k,

p− 1, if p � kc.

Again, the degree sequence {deg(Sk(ax2 + bx + c))} is periodic in k, and the p-adic absolute
value sequence |Sk(ax2+bx+c)|p = p−k/2 is stable in k. Note that when calculating the degree,
we used the following fact:
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Fact 1 deg(
√±pζp) = p− 1.

Proof Since p− 1 = deg(ζ2
p ) = deg((

√±pζp)2). This number divides deg(
√±pζp), which

in turn divides p− 1.
Now we turn to the case when n > 1. Since p > 2, by an invertible linear transformation,

the polynomial f(x1, x2, · · · , xn) is equivalent to

g(x1, x2, · · · , xn) = a1x
2
1 + · · · + arx

2
r + br+1xr+1 + · · · + bnxn + c,

where a1, a2, · · · , ar ∈ (Fp)
×. Then the exponential sum

Sk(f) = Sk(g) = Sk(a1x
2
1) · · ·Sk(arx

2
r)Sk(br+1xr+1) · · ·Sk(bnxn) · ζkc

p .

Hence

Sk(f) =

⎧

⎪
⎨

⎪
⎩

0, if some bj �= 0,

±pk(n−r)

(√

(−1)
p−1
2 p

)kr

ζkc
p , if all bj = 0.

So the degree sequence {deg(Sk(f))} is periodic in k, and the p-adic absolute value sequence
|Sk(f)|p = p−k(2n−r)/2 is stable in k.

4.3 Reduction to Low Degree Cases

The higher degree cases deg(f) ≥ 4 can be reduced to lower degree case deg(f) = 3, at
the expense of increasing n. However, the cubic case deg(f) = 3 is not much easier, except for
n = 1 which is doable. No explicit formula exists in general. We have the following

Theorem 4.4 Assume that the periodicity conjecture (resp., the p-adic stability conjecture)
is true for all polynomials f(x1, x2, · · · , xn) in Fp[x1, x2, · · · , xn] with degree three and all n ∈ N.
Then the periodicity conjecture (resp., the p-adic stability conjecture) is true for all polynomials
g(x1, x2, · · · , xm) ∈ Fp[x1, x2, · · · , xm] of any degree and all m ∈ N.

We will first give an illustration on a specific polynomial and then provide a proof in general.
4.3.1 An illustrating example

Consider the monomial f(x1, x2) = x3
1x2 of degree four. Write f as f(x1, x2) = ((x2

1)x1)x2

and define a system of quadratic equations

V =

⎧

⎪
⎪
⎨

⎪
⎪
⎩

x3 = x2
1,

x4 = x1x3 = x3
1,

x5 = x4x2 = x3
1x2.

↪→ A
5.

Then

Sk(f) =
∑

x1,x2∈F
pk

ψk(x3
1x2)

=
∑

(x1,x2,··· ,x5)∈V

ψk(x5)

=
1
p3k

∑

x1,x2,··· ,x8∈F
pk

ψk(x5 + x6(x3 − x2
1) + x7(x4 − x1x3) + x8(x5 − x4x2))
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=
1
p3k

Sk(g(x1, x2, · · · , x8)),

where the polynomial g satisfies deg g = 3. Here we used the standard lemma:

Lemma 4.5 (Orthogonality of characters) Let b ∈ Fpk , then

∑

a∈F
pk

ψk(ba) =

⎧

⎨

⎩

pk, if b = 0,

0, if b �= 0.

Proof Trivial when b = 0. If b �= 0, then
∑

a∈F
pk

ψk(ba) =
∑

a∈F
pk

ψk(a)

=
p−1
∑

i=0

�{a ∈ Fpk |Trk(a) = i} · ζi
p

= pk−1

p−1
∑

i=0

ζi
p

= pk−1
ζp
p − 1
ζp − 1

= 0.

The proof is now complete.

4.3.2 General proof

Proof [Proof of Theorem 4.4] For general f(x1, x2, · · · , xn) ∈ Fp[x1, x2, · · · , xn] of deg f ≥
4, we can write

f(x1, x2, · · · , xn) =
J
∑

j=1

ajx
uj1
1 · · ·xujn

n , aj �= 0.

We can recursively introduce a system of quadratic equations

V =

⎧

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎩

g1(x1, x2, · · · , xm) = 0,
...

gm(x1, x2, · · · , xm) = 0,

xm+1−gm+1(x1, x2, · · · ,xm)=0, (gm+1(x1, x2, · · · , xm) = a1x
u11
1 xu12

2 · · ·xu1n
n )

...

xm+J−gm+J(x1, x2, · · · , xm)=0, (gm+J(x1,x2,· · · ,xm) = aJx
uJ1
1 xuJ2

2 · · ·xuJn
n ),

↪→ A
m+J ,
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such that

Sk(f) =
∑

V

ψk(xm+1 + · · · + xm+J)

=
1

pk(m+J)

∑

x,y

ψk(xm+1 + · · · + xm+J +
m
∑

i=1

yigi +
m+J
∑

i=m+1

yi(xi − gi))

=
1

pk(m+J)
Sk(h(x1, · · · , xm+J , y1, · · · , ym+J)),

where h(x1, · · · , xm+J , y1, · · · , ym+J) is a cubic polynomial in 2(m+ J) variables. Clearly,

deg Sk(f) = deg Sk(h),

|Sk(f)|p = p−k(m+J)|Sk(h)|p.

The reduction proof is now complete.

4.4 The Monomial Case xd over Fpk

Let f(x) = xd, where d ≥ 1. In this subsection, we consider the monomial exponential sum
Sk(xd) over all finite fields Fpk . Recall that the exponential sum over Fpk is

Sk(xd) =
∑

x∈F
pk

ψk(xd) =
∑

x∈F
pk

ψk(x(d,pk−1)).

and
Sk(xpd) = Sk(xd).

Hence, we shall assume that (d, p) = 1. The sum Sk(xd) is called (up to a linear change of
variable) the Gauss period or “Gauss sum”. This is studied extensively in the literature for
small d, see Berndt and Evans[6] for a survey. Our basic question is to find an explicit formula
for deg Sk(xd) for all k ∈ N and to show that the p-adic stability for Sk(xd) holds. This is
already unknown, even for monomials xd for general d. We shall give some partial results.

For the prime field case when k = 1, according to Myerson[7], Gauss has already obtained

Theorem 4.6 (Gauss) degS1(xd) = (d, p− 1).

For k ≥ 1, we have.

Theorem 4.7 (Myerson[7]) If d|(p− 1) and (d, k) = 1, then deg Sk(xd) = d.

In this subsection, we shall prove the following stronger result.

Theorem 4.8 If d|(p− 1), then degSk(xd) = d
(d,k) . If d

∣

∣

∣

pk−1
p−1 , then degSk(xd) = 1.

The proof will be given a little later. As a corollary, we obtain

Corollary 4.9 The degree periodicity conjecture holds for the monomial f(x) = xd if
either d|(p− 1) or (d, p− 1) = 1 or d is a prime.

Proof We can assume p � |d. If d|(p− 1), then

degSk(xd) =
d

(d, k)
,
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which is clearly periodic in k. If (d, p− 1) = 1, then (d, pk − 1)|pk−1
p−1 . Thus,

deg Sk(xd) = deg Sk(x(d,pk−1)) = 1,

which is periodic in k. If d is a prime, then either d|(p−1) or (d, p−1) = 1. Hence we are done.
We also raise two problems here.

Problem 1: Compute degSk(xd), where d = p1p2 is a product of two primes.

Problem 2: Assume d divides (pk − 1)/(p− 1). The theorem shows that Sk(xd) ∈ Z. Find an
explicit formula for Sk(xd). Some special cases are known. This has applications
in weight distribution of cyclic codes.

Remark 4.10 If d|(p − 1), using the binomial formula after writing p as 1 + (p− 1), we
find that

d

∣

∣

∣

∣

p(p−1)k − 1
p− 1

.

Hence S(p−1)k(xd) ∈ Z. This is a little surprising! Perhaps it is not so easy to find an explicit
formula for Sk(xd) in the case d divides (pk − 1)/(p− 1).

Now we provide the proof of Theorem 4.8.

Proof [Proof of Theorem 4.8] For a ∈ (Fp)
×, σa(ζp) = ζa

p . Since Trk is Fp-linear,

σa(Sk(xd)) =
∑

x∈Fk
p

ζaTrk(xd)
p =

∑

x∈Fk
p

ζTrk(axd)
p .

From this, we see that σa(Sk(xd)) = Sk(xd) if a ∈ H :=
(

F
×
pk

)d

∩ F
×
p . Clearly,

H =
{

a ∈ F
×
p

∣

∣

∣

∣
a

(

p−1, pk−1
(d,pk−1)

)

= 1
}

⊂ (Fp)
×
.

Then its order

|H | =
(

p− 1,
pk − 1

(d, pk − 1)

)

.

Now Sk(xd) ∈ Q(ζp)H , and hence

deg Sk(xd)

∣

∣

∣

∣

∣

∣

[Q(ζp)H : Q] =
p− 1
|H | =

p− 1
(

p− 1, pk−1
(d,pk−1)

) .

For the second case, where d
∣

∣

∣

pk−1
p−1 , we have

p− 1
(

p− 1, pk−1
(d,pk−1)

) =
p− 1

(

p− 1, pk−1
d

) =
p− 1

(

p− 1, (p− 1) pk−1
d(p−1)

) = 1,

and hence deg Sk(xd) = 1.
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It is a little more involved in the first case when d|(p− 1). Again, we have

p− 1
(

p− 1, pk−1
(d,pk−1)

) =
p− 1

(

p− 1, pk−1
d

) =
p− 1

(

p− 1, p−1
d

pk−1
p−1

) =
d

(

d, pk−1
p−1

) =
d

(d, k + (p− 1)∗) =
d

(d, k)
,

and thus, degSk(xd)
∣

∣

∣

d
(d,k) . To show that the degree is equal to d

(d,k) , we consider the following
polynomial

m(T ) =
∏

a∈F
×
p /H

(

T − Sk(axd)
) ∈ Z[ζp]F

×
p [T ] = Z[T ],

which is monic of degree D := d
(d,k) with Sk(xd) as a root. We need to show that m(T ) is

irreducible over Q. Write

m(T ) = TD − b1T
D−1 + b2T

D−2 + · · · + (−1)dbD,

where bi is the i-th elementary symmetric polynomial of the roots {Sk(axd)|a ∈ F
×
p /H}. By

Lemma 4.11 (listed after the proof), we obtain

vp(bD) = D
k

d
=

d

(d, k)
k

d
=

k

(d, k)

and
vp(bi) ≥ i

k

d
=

i
d

(d,k)

k

(d, k)
=

i

D

k

(d, k)
,

where (D, vp(bD)) =
(

d
(d,k) ,

k
(d,k)

)

= 1. Hence, m(T ) is generalized p-Eisenstein, which implies

that m(T ) is irreducible of degree D.
The proof suggests the importance of computing the p-adic valuation vp(Sk(f)), or equiva-

lently the p-adic absolute value |Sk(f)|p. We used the following lemma in the proof.

Lemma 4.11 If d|(p− 1), then vp(Sk(axd)) = k
d for all a ∈ F

×
pk .

The proof of this lemma will be presented later. It implies that the p-adic stability conjecture
holds for Sk(xd) if d|(p− 1). It does not seem to be obvious if the p-adic stability also holds if
(d, p− 1) < d.

Kummer Sum and Gauss Sum Next, we briefly discuss Kummer sum (the case d = 3
and k = 1), defined as the cubic exponential sum

S1(x3) = S1(x3 ⊗ Fp) =
∑

x∈Fp

exp
(

2πix3

p

)

∈ Q(ζp)+ ⊂ R.

If p ≡ 2 mod 3, then S1(x3) = S1(x(3,p−1)) = S1(x) = 0. Assume p ≡ 1 mod 3 now. Then

S1(x3) = −(G(χ3) +G(χ3)) ∈ R

is a real number, whereG(χ3) is the standard cubic Gauss sum associated to a cubic character
χ3, and |G(χ3)| =

√
p. This implies

∣

∣S1(x3)
∣

∣ ≤ 2
√
p, and hence

S1(x3 ⊗ Fp)
2
√
p

∈ [−1, 1].



EXPONENTIAL SUMS OVER FINITE FIELDS 1241

The precise value of the real number S1(x3 ⊗ Fp) is quite mysterious as p varies. Based on a
few numerical calculations, Kummer in 1846 made the following conjecture:

Conjecture 4.12 (Kummer[8]) As the prime p varies in the congruence class p ≡ 1
mod 3, the cubic sum S1(x3 ⊗ Fp) is “more often positive than negative”.

However, Heath-Brown and Patterson[9] proved that the sum is actually uniformly dis-
tributed in the interval [−1, 1]. Yet in some sense, Kummer’s conjecture is still believed to be
true as the following finer conjecture suggests.

Conjecture 4.13 (Patterson[10]) As the real number t goes to infinity, we have

∑

p≤t

S1(x3 ⊗ Fp)
2
√
p

∼ (2π)2/3

5Γ (2/3)
t5/6

log t
,

where Γ denotes the Gamma-function.

4.5 Explicit Galois Theory of the Cyclotomic Field Q(ζp)

In this subsection, we explain how the monomial exponential sum Sk(xd) can be used to
explicitly construct all subfields of the p-th cyclotomic field Qp(ζp). This provides an excellent
example of explicit Galois theory.

Recall that Q(ζp) is the splitting field of the p-th cyclotomic polynomial

Φp(x) =
xp − 1
x− 1

=
p−1
∏

j=1

(

x− ζj
p

)

.

The extension Q(ζp)|Q is a Galois extension, and its Galois group is defined as

G := Gal (Q(ζp) |Q ) = {All Q-isomorphismsσ : Q(ζp) → Q(ζp)}.

Apply any σ ∈ G to the equation Φp(ζp) = 0, we obtain that σ(ζp) ∈ {ζp, ζ2
p , · · · , ζp−1

p }. Hence,
for any 1 ≤ j ≤ p− 1, we have

Q(ζp) Q[x]/(Φp(x)) Q(ζjp) = Q(ζp)

ζp x ζjp

∼ ∼

σj

and σj1σj2 = σj1j2 . Hence, the Galois group

G = {σj |1 ≤ j ≤ p− 1} ∼= (Z/pZ)× = (Fp)
×
.

By Galois theory, there exists a 1-1 correspondence between the subfields of Q(ζp) and the
subgroups of (Fp)

×, i.e.,
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Q(ζp) 1

Q(ζp)
H = K H = Gal (Q(ζp) |K )

Q (Fp)
×

By the structure of cyclic groups, the subgroups of (Fp)
× are Hd = {xd|x ∈ (Fp)

×}, one for
each d|(p− 1). Here |Hd| = p−1

d . The number of subgroups of (Fp)
× is equal to the number of

subfields of Q(ζp), which is the number of divisors of p− 1, denoted by τ(p − 1).

Q(ζp) 1

Q(ζp)
Hd = Kd Hd = Gal (Q(ζp) |Kd )

Q (Fp)
×

p−1
d

p−1
d

d d

Now our question is that given a divisor d|(p− 1), construct Kd explicitly.
When d = 1, K1 = Q = Q(ζp)H1 = Q(ζp)G.
When d = p− 1, Kp−1 = Q(ζp) = Q(ζp){1}.
When d = p−1

2 , H p−1
2

= {α p−1
2 |α ∈ (Fp)

×} = {±1}. Here −1 represents the complex
conjugation. Hence

K p−1
2

= Q(ζp){σ±1} = Q(ηp),

where ηp = ζp +ζ−1
p . This is the maximal real subfield of Q(ζp) and is often denoted by Q(ζp)+.

In fact, ζp is a root of the quadratic irreducible polynomial

x2 − ηpx+ 1 ∈ R[x].

Hence, [Q(ζp) : Q(ηp)] = 2, which impies that K p−1
2

= Q(ηp) indeed.

When d = 2, consider the group H2 = {a2 : a ∈ (Fp)
×}. For all a ∈ (Fp)

×, apply σa2 to the
Gauss sum

σa2(S1(x2)) = σa2

⎛

⎝

∑

x∈Fp

ζx2

p

⎞

⎠ =
∑

x∈Fp

ζa2x2

p =
∑

y∈Fp

ζy2

p = S1(x2).

Hence, S1(x2) ∈ K2. Since [K2,Q] = 2 and Gauss’s formula shows that S1(x2) =
√

(−1)
p−1
2 p

is quadratic over Q. Hence K2 = Q(
√

(−1)
p−1
2 p).
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In general, we may ask what Kd is for any d|(p − 1)? Similarly, we calculate for any
a ∈ (Fp)

×,

σad(S1(xd)) = σad

⎛

⎝

∑

x∈Fp

ζxd

p

⎞

⎠ =
∑

x∈Fp

ζadxd

p =
∑

y∈Fp

ζyd

p = S1(xd).

Hence, Q(S1(xd)) ⊂ Kd. We claim that

Theorem 4.14 Kd = Q(S1(xd)).

This theorem follows from

Lemma 4.15 (Gauss) degS1(xd) = d.

Proof We give a p-adic proof here, which can be extended to more general situation later.
Clearly, S1(xd) is a root of the following degree d polynomial

m(T ) =
∏

a∈(Fp)×/Hd

(

T − S1(axd)
) ∈ Q(ζp)G[T ] = Q[T ].

It is enough to prove that m(T ) is irreducible over Q. This can be obtained from the following
lemma.

Lemma 4.16 (see [1]) Write

m(T ) = T d +m1T
d−1 + · · · +md ∈ Q[T ],

then m(T ) ∈ Z[T ], and m(T ) is p-Eisenstein.

We will prove a more general version of this later. We can raise the following problems.
Problem 1: By the famous Kronecker-Weber theorem, every finite abelian extension of Q

is contained in some cyclotomic field Q(ζm). Here the Galois group G := Gal (Q(ζm) |Q ) =
(Z/mZ)×. By Galois theory,

Q(ζm) 1

Q(ζm)H = K H = Gal (Q(ζm) |K )

Q (Z/mZ)
×

The problem is to find an explicit element αH ∈ Q(ζm), such that K = Q(αH). This should
be doable.

Problem 2: By class field theory, for a number field K, every finite abelian extension of K
is contained in some Ray class field Km, where m is a modulus, and

Gal (Km |K ) = ClmK .

The problem is that given a modulus m, how to construct explicitly Km and all intermediate
subfields K ⊂ KH ⊂ Km for all subgroups H < ClmK .
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Km 1

KH H

K ClmK

This is a major open problem in algebraic number theory. It might be doable for imaginary
quadratic fields K using the theory of complex multiplications for elliptic curves.

5 Kloosterman Sums

In this section, we study the degrees of Kloosterman sums as algebraic integers.

5.1 Kloosterman Sums over Fp

Let n ∈ N and λ ∈ F
×
p . Define the toric exponential sum

Kln,1(λ) =
∑

x1,x2,··· ,xn∈F
×
p

ζ

(

x1+x2+···+xn+ λ
x1x2···xn

)

p ∈ Z[ζp].

This sum is called the n-dimensional Kloosterman sum over the prime field Fp. For its
complex absolute value, we have the following well known estimate.

Theorem 5.1 (Deligne[11], 1980) As a complex number, |KLn,1(λ)| ≤ (n+ 1)
√
pn.

Any elementary proof for n ≥ 2 will be valuable. The precise value of KLn,1(λ) is again
very mysterious. As λ varies in Fp (and p grows), the (p − 1) normalized Kloosterman sums
Kln,1(λ)p−n/2 are equidistributed with respect to some Sato-Tate measure. This is the function
field Sato-Tate conjecture for Kloosterman sum, proved by Deligne and Katz, see Katz[12]. For
fixed integer λ �= 0 (say, λ = 1), as p varies, how the normalized Kloosterman sumKln,1(λ)p−n/2

varies is completely open.
As a p-adic number,

Kln,1(λ) =
∑

x1,x2,··· ,xn∈F
×
p

(1 + ζp − 1)
(

x1+x2+···+xn+ λ
x1x2···xn

)

≡
∑

x1,x2,··· ,xn∈F
×
p

1 mod (ζp − 1)

≡ (p− 1)n mod (ζp − 1)

≡ (−1)n mod (ζp − 1).

This implies that vp(Kln,1(λ)) = 0 and |Kln,1(λ)|p = 1.
For the degree of the Kloosterman sum, we have

Theorem 5.2 (see [14]) As an algebraic number, degKln,1(λ) = p−1
(n+1,p−1) .
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5.2 Kloosterman Sums over Fq

Let k, n ∈ N and λ ∈ F
×
p . Similarly, one defines

Kln,k(λ) =
∑

x1,x2,··· ,xn∈F
×
pk

ζ
Trk

(

x1+x2+···+xn+ λ
x1x2···xn

)

p ∈ Z[ζp].

This is the Kloosterman sum over Fpk . As a p-adic number, taking mod (ζp − 1), we again
have

Kln,k(λ) ≡ (−1)n mod (ζp − 1),

and hence |Kln,k(λ)|p = 1. Deligne’s theorem again gives

Theorem 5.3 (Deligne[11]) As a complex number, |Kln,k(λ)| ≤ (n+ 1)
√

pkn.

For the algebraic degree, we have

Theorem 5.4 (see [14]) As an algebraic integer, degKln,k(λ) = p−1
(n+1,p−1) for all k �≡ 0

mod p.

The case k ≡ 0 mod p has been open. In a forthcoming work, we shall apply finer p-adic
method to prove the following result.

Theorem 5.5 If p > n+ 2 and λ ∈ F
×
p , then degKln,k(λ) = p−1

(n+1,p−1) .

This result implies that the periodicity conjecture holds for degKln,k(λ) if p > n+ 2. This
is a non-abelian example! Now we shall prove the easier Theorem 5.4.

Proof [Proof of Theorem 5.4] For a ∈ (Fp)
×, σa(ζp) = ζa

p . Then

σa(Kln,k(λ)) =
∑

x1,x2,··· ,xn∈F
×
p

ζ
Trk

(

ax1+ax2+···+axn+ an+1λ
ax1ax2···axn

)

p = Kln,k(an+1λ).

If an+1 = 1, then σa(Kln,k(λ)) = Kln,k(λ).
Let

H =
{

a ∈ F
×
p

∣

∣an+1 = 1
}

=
{

a ∈ F
×
p |a(p−1,n+1) = 1

}

.

Then its order |H | = (p− 1, n+ 1). Now Kln,k(λ) ∈ Q(ζp)H , and hence by Galois theory

degKln,k(λ)
∣

∣

∣

∣
[Q(ζp)H : Q] =

p− 1
|H | =

p− 1
(n+ 1, p− 1)

.

As noted before, |degKln,k(λ)|p = 1, and hence the minimal polynomial will NOT be p-
Eisenstein or generalized p-Eisenstein. However, we have Lemma 5.6 (listed after the proof)
which is needed now. Inspired by the lemma, write

m(T ) =
∏

a∈F
×
p /H

(

T − σ((pk − 1)Kln,k(λ) + (−1)n)
) ∈ Z[ζp]F

×
p [T ] = Z[T ],

which is monic of degree D := p−1
(n+1,p−1) . Write

m(T ) = TD − b1T
D−1 + b2T

D−2 + · · · + (−1)DbD



1246 WAN DAQING

and use Lemma 5.6, we obtain

vp(bD) =
p− 1

(n+ 1, p− 1)
n+ 1
p− 1

=
n+ 1

(n+ 1, p− 1)

and
vp(bi) ≥ i

n+ 1
p− 1

=
i

D
vp(bD) =

i(n+ 1, p− 1)
p− 1

n+ 1
(n+ 1, p− 1)

,

where (D, vp(bD)) =
(

n+1
(n+1,p−1) ,

p−1
(n+1,p−1)

)

= 1. Hence, m(T ) is generalized p-Eisenstein,
which implies that m(T ) is irreducible of degree D. Thus

degKln,k(λ) = deg((pk − 1)Kln,k(λ) + (−1)n) = D.

The proof is finished.
We used the following lemma in the proof.

Lemma 5.6 If k �≡ 0 mod p, then

vp((pk − 1)Kln,k(λ) + (−1)n) =
n+ 1
p− 1

.

The proof of this lemma will be presented later.

Remark 5.7 It would be interesting to determine vp((pk − 1)Kln,k(λ) + (−1)n) when k

is divisible by p.

Application: Construction of subfields of Q(ζp) via Kloosterman sums

Let d|(p− 1) and Kd be the unique subfield of Q(ζp) such that [Kd : Q] = d. Previously, by
Gauss, we showed that Kd = Q(S1(xd)). Now we have

Corollary 5.8 Let d|(p− 1). Take n = p−1
d − 1, then Kd = Q(Kln,1(λ)) for any λ ∈ F

×
p .

Proof Use the result of degree in the previous section, we see that

degKln,1(λ) =
p− 1

(p− 1, n+ 1)
=

p− 1
(p− 1, (p− 1)/d)

= d.

The proof is finished.

6 p-adic Estimates of Exponential Sums

In this section, we explain how to use the classical Stickelberger theorem to estimate p-adic
valuation of various exponential sums.

6.1 Stickelberger Theorem

Let Zp be the ring of p-adic integers in Qp, which is the p-adic completion of Z under |·|p.
It can also be written as

Zp = {α ∈ Qp| |α|p ≤ 1},
which is the closed unit disk in Qp. The maximal ideal pZp is the open unit disk and the residue
field Zp/pZp is Fp. Conversely,

Zp = W (Fp) = lifting of Fp to characteristic 0,
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where W means the Witt vectors.
Now for each k ∈ N, we want to lift Fpk as well, i.e., Zpk = W (Fpk), the Witt ring of Fpk .
The ring Zpk is the ring of integers in the unique unramified extension Qpk of Qp of degree

k and can be written as
Zpk = {α ∈ Qpk | |α|p ≤ 1},

which is the closed unit disk in Qpk . The maximal ideal pZpk is the open unit disk and the
residue field Zpk/pZpk is Fpk .

The “mod p” reduction π : Zpk → Fpk is a surjective ring homomorphism. And there is a
unique injective GROUP (not ring) homomorphism

ω : F
×
pk → Z

×
pk ↪→ C

×
p

such that
π ◦ ω : F

×
pk → F

×
pk

is an identity map and ω(αβ) = ω(α)ω(β), ω(α) ≡ α mod p.
Moreover, if F

×
pk = 〈g〉, then ω(g) is a primitive (pk − 1)-th root of 1 in Cp. Hence, the map

ω is
ω : F

×
pk

∼−→ µpk−1 ⊂ C
×
p ,

where µpk−1 = {α ∈ C
×
p |αpk−1 = 1}. This is called the Teichmller lifting of F

×
pk .

Proposition 6.1 Any multiplicative character χ : F
×
pk → C

×
p can be uniquely written as

χ = ω−j, where 0 ≤ j < pk − 1. The case j = 0 corresponds to the trivial character.

Fix a primitive p-th root ζp of 1 in Cp. The p-adic Gauss sum attached to the multiplicative
character ω−j : F

×
pk → C

×
p is defined as

Gk(j) = −
∑

x∈F
×
pk

ω(x)−j · ζTrk(x)
p ,

where 0 ≤ j ≤ pk − 2. Using the Teichmller lifting, we can write this as

Gk(j) = −
∑

x∈µ
pk−1

x−j · ζTrk(x)
p ,

where Trk : Zpk → Zp is the trace map. Clearly, Gk(0) = 1. Note that

Gk(pj) = −
∑

x∈µ
pk−1

x−pj · ζTrk(x)
p = −

∑

x∈µ
pk−1

(xp)−j · ζTrk(xp)
p = Gk(j).

Example 6.2 As a complex number, |Gk(j)| =
√

pk, for 1 ≤ j ≤ pk − 2.

After these preparations, we now state the Stickelberger theorem:

Theorem 6.3 (Stickelberger[13], 1890) For 0 ≤ j ≤ pk − 2, write

j = i0 + i1p+ i2p
2 + · · · + ik−1p

k−1
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and
σp(j) = i0 + i1 + · · · + ik−1 = sum of p-digits of j.

Then
vp(Gk(j)) =

1
p− 1

σp(j).

Now we provide a useful example.

Example 6.4 If d|(p− 1), the for all 1 ≤ i ≤ d− 1, we have

pk − 1
d

i =
i(p− 1)

d

pk − 1
p− 1

=
i(p− 1)

d
+
i(p− 1)

d
p+ · · · + i(p− 1)

d
pk−1.

Hence σp

(

pk−1
d i
)

= ki p−1
d . By Stickelberger theorem, we obtain

vp

(

Gk

(

pk − 1
d

i

))

=
ki

d
.

An exact p-adic formula for Gk(j) in terms of p-adic Γ -function was given by Gross-Koblitz
in 1979, see [15].

6.2 p-adic Valuation of Monomial Sum Sk(xd)

The monomial sum Sk(xd) can be expressed in terms of Gauss sums. In this subsection, we
shall prove

Theorem 6.5 Let d|(pk−1), then vp(Sk(xd)) ≥ k
d . The equality holds if and only if p ≡ 1

mod d.

Proof Let χ := ω− pk−1
d : F

×
pk → C

×
p , χ(0) = 1, the primitive character of degree d. Then

Sk(xd) = 1 +
∑

x∈µ
pk−1

ζTrk(xd)
p

= 1 +
∑

y∈F
×
pk

(

d
∑

i=1

χi(y)

)

ζTrk(y)
p .

Here we are using the relation

d
∑

i=1

χi(y) =

⎧

⎪
⎨

⎪
⎩

d, if y ∈
(

F
×
pk

)d

,

0, if y �∈
(

F
×
pk

)d

.

Then

Sk(xd) =
d−1
∑

i=1

∑

y∈F
×
pk

χi(y)ζTrk(y)
p +

⎛

⎜

⎝

∑

y∈F
×
pk

ζTrk(y)
p + 1

⎞

⎟

⎠

= −
d−1
∑

i=1

Gk

(

pk − 1
d

i

)

.
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By the example from the previous section, if p ≡ 1 mod d, then

vp

(

Gk

(

pk − 1
d

i

))

=
ki

d
,

and hence vp(Sk(xd)) = k
d .

Assume now d|(pk −1) but d � (p−1). Clearly, k ≥ 2, and we want to show vp(Sk(xd)) > k
d .

Write
pk − 1
d

i = j0 + j1p+ j2p
2 + · · · + jk−1p

k−1,

where 0 ≤ jk ≤ p− 1. Then we obtain

pk − 1
d

i = j0 + j1p+ j2p
2 + · · · + jk−1p

k−1,

pk − 1
d

〈pi〉d = jk−1 + j0p+ j1p
2 + · · · + jk−2p

k−1,

...

pk − 1
d

〈

pk−1i
〉

d
= j1 + j2p+ j3p

2 + · · · + j0p
k−1,

where 〈pi〉d is the smallest positive residue of pi mod d. Summing both sides, we obtain

pk − 1
d

(i+ 〈pi〉d + · · · + 〈pk−1i
〉

d
) = (j0 + j1 + · · · + jk−1)(1 + p+ · · · + pk−1),

and note that
1 ≤ i, 〈pi〉d , · · · ,

〈

pk−1i
〉

d
≤ d− 1,

we get

j0 + · · · + jk−1 =
p− 1
d

(i+ 〈pi〉d + · · · + 〈pk−1i
〉

d
) ≥ p− 1

d
(1 + · · · + 1)
︸ ︷︷ ︸

k times

=
k(p− 1)

d
,

with the equality holding if and only if i = 1 and p ≡ 1 mod d. Thus, if p �≡ 1 mod d, then

vp

(

Gk

(

pk − 1
d

i

))

=
1

p− 1
(j0 + j1 + · · · + jk−1) >

1
p− 1

k(p− 1)
d

=
k

d
.

The proof is now completed.

Remark 6.6 If p− 1 is not divisible by d, it is an open problem in general to determine
this sequence vp(Sk(xd)) in k. This is the main reason that we are not able to determine the
degree sequence for Sk(xd) for general d.

6.3 p-adic Valuation of Kloosterman Sums

In this subsection, we shall prove

Theorem 6.7 Let λ ∈ F
×
p , then

vp

(

(pk − 1)Kln,k(λ) + (−1)n + (−1)n(Gk(1))n+1kω(λ)
) ≥ 2(n+ 1)

p− 1
.
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Proof Calculate

pk−2
∑

j=0

ωj(λ)Gk(j)n+1 = (−1)n+1

pk−2
∑

j=0

ωj(λ)

⎛

⎜

⎝

∑

a∈F
×
pk

ω−j(a)ζTrk(a)
p

⎞

⎟

⎠

n+1

= (−1)n+1
∑

a1,··· ,an+1∈F
×
pk

ζTrk(a1+···+an+1)
p ·

pk−2
∑

j=0

ωj

(

λ

a1 · · · an+1

)

= (−1)n+1(pk − 1)
∑

a1···an+1=λ,a1,··· ,an+1∈F
×
pk

ζTrk(a1+···+an+1)
p

= (−1)n+1(pk − 1)Kln,k(λ).

Hence,

(pk − 1)Kln,k(λ)

=(−1)n+1

⎛

⎝

pk−2
∑

j=0

ωj(λ)Gk(j)n+1

⎞

⎠

=(−1)n+1
(

Gk(0)n+1 +
(

ω(λ)Gk(1)n+1 + ω(λp)Gk(p)n+1 + · · · + ω(λpk−1
)Gk(pk−1)n+1

)

+
∑

σp(j)≥2

ωj(λ)Gk(j)n+1

⎞

⎠

=(−1)n+1

⎛

⎝1 + kω(λ)(Gk(1))n+1 +
∑

σp(j)≥2

ωj(λ)Gk(j)n+1

⎞

⎠ .

Here we used the assumption that λ ∈ F
×
p , which implies that ω(λ) = ω(λp) = · · · = ω(λpk−1

).
Furthermore, Gk(1) = Gk(p) = · · · = Gk(pk−1). Now for σp(j) ≥ 2, we have

vp(Gk(j)) ≥ 2
p− 1

.

Hence we obtain

vp

(

(pk − 1)Kln,k(λ) + (−1)n + (−1)n(Gk(1))n+1kω(λ)
) ≥ 2(n+ 1)

p− 1
,

as desired.
As a corollary, we deduce

Corollary 6.8 If k �= 0 mod p and λ ∈ F
×
p , then

vp

(

(pk − 1)Kln,k(λ) + (−1)n
)

=
n+ 1
p− 1

.
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6.4 General p-adic Estimates

Using the elementary method as above, one can prove the following result of Sperber which
was orginally proved using Dwork’s p-adic theory.

Theorem 6.9 (Sperber[16]) Let f(x1, x2, · · · , xn) ∈ Fpk [x1, x2, · · · , xn] and d = deg(f).
Then

vp(Sk(f)) ≥ n

d
k

for all k ∈ N.

In the one variable case, we also have the following more precise result.

Theorem 6.10 Let f(x) = xd+a1x
d−1+· · ·+ad ∈ Fpk [x] be a polynomial in one variable.

Then vp(Sk(f)) ≥ k/d with equality holding if and only if p ≡ 1 mod d.

Again, if p �≡ 1 mod d, the exact value of vp(Sk(f)) is unknown and can be complicated.
Results on p-adic estimates of exponential sums can be used to derive p-adic estimates for the
number of rational points on equations over finite fields.

Theorem 6.11 (Ax[17]) Let f(x1, x2, · · · , xn) ∈ Fpk [x1, x2, · · · , xn] and d = deg(f) > 0.
Let

Nk(f) = #{(x1, x2, · · · , xn) ∈ F
n
pk |f(x1, x2, · · · , xn) = 0}.

Then vp(Nk(f)) ≥ k�n−d
d �.

For a system of m polynomials, we have

Theorem 6.12 (Katz[18]) Let f1(x1, x2, · · · , xn), · · · , fm(x1, x2, · · · , xn) ∈ Fpk [x1, x2,

· · · , xn], with max1≤i≤m deg(fi) > 0. Let

Nk(F ) = #{(x1, x2, · · · , xn) ∈ F
n
pk |f1(x1, x2, · · · , xn) = · · · = fm(x1, x2, · · · , xn) = 0}.

Then

vp(Nk(F )) ≥ k

(⌈

n−∑m
i=1 deg(fi)

max1≤i≤m deg(fi)

⌉)

.

Katz’s original proof was based on Dwork’s p-adic theory. It can also be proved using just
the Stickelberger theorem as above, see [19]. Alternatively, Hou[20] showed that Katz’s theorem
can be reduced to Ax’s theorem in a quick elementary way.

More generally, we have

Theorem 6.13 (Adolphson and Sperber[21]) Write

f(x1, x2, · · · , xn) =
J
∑

j=1

ajx
vj1
1 x

vj2
2 · · ·xvjn

n ∈ Fpk [x1, x2, · · · , xn].

Let Δ be the convex polytope in R
n of the origin 0 and the lattice points (vj1, vj2, · · · , vjn) ∈ R

n,
where 1 ≤ j ≤ J . Let

μ(f) = min{μ > 0|μΔ(f) ∩ N
n �= ∅}.

Then
vp(Sk(f)) ≥ μ(f)k.
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This result was originally proved using Dwork’s theory. It can again be proved using just
the Stickelberger theorem as above. Here is an example:

Example 6.14 Let f(x1, x2, · · · , xn) ∈ Fp[x1, x2, · · · , xn] and d = deg(f). Then

Δ(f) ⊂ Δ(xd
1 + xd

2 + · · · + xd
n).

It follows that μ(f) ≥ μ(Δ) = n
d . This gives Sperber’s theorem. See Figure 1 for this. It is

easy to check that the above Adolphson-Sperber theorem also implies the Ax-Katz theorem.

x

y

•

•

•

• (1, 1)
•

•
d

1
d
x+ 1

d
y = 1

•d

· · ·

Figure 1 For Example 6.14

Remark 6.15 There are further improvements using finer and more complicated quanti-
ties such as p-weights and the degree matrix, see Moreno and Moreno[23], Blache[24], Chen and
Cao[25], and Cao and Sun[26]. The idea is to use p-reduction to reduce the degree of f(x) as
follow. Write d = d0 + d1p+ · · · + dsp

s, where 0 ≤ di < p. Let {e1, e2, · · · , ek} be an Fp-basis
of Fpk , then any x ∈ Fpk can be written uniquely as

x = x1e1 + x2e2 + · · · + xkek

and

xd = (x1e1 + x2e2 + · · · + xkek)d0(x1e
p
1 + x2e

p
2 + · · · + xke

p
k)d1

· · · (x1e
ps

1 + x2e
ps

2 + · · · + xke
ps

k )ds ∈ Fpk [x1, x2, · · · , xk].

The degree has now dropped to d0 + d1 + · · · + ds ≤ d. This can lead to improvements in the
some cases when p < d.

7 Distinctness and Rationality of Exponential Sums

In this section, we carry on further discussion on the degree of exponential sums from two
perspectives: The distinctness and rationality of exponential sums.
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7.1 Distinctness of Kloosterman Sums

Recall that for λ ∈ F
×
pk , the n-dimensional Kloostman sum over Fpk is defined as

Kln,k(λ) =
∑

x1,x2,··· ,xn∈F
×
pk

ζ
Trk

(

x1+x2+···+xn+ λ
x1x2···xn

)

p .

Now our first question is:
Question: As the nonzero parameter λ varies in the prime field Fp, when the (p − 1)

Kloosterman sums {Kln,k(λ)|λ ∈ F
×
p } are distinct?

This question is closely related to the degree of Kloosterman sums, i.e.,

degKln,k(λ) = number of distinct elements in {Kln,k(an+1λ)|a ∈ F
×
p }.

The congruence formula for Kln,k(λ) gives

Theorem 7.1 Assume (k, p) = 1. Then the (p−1) Kloosterman sums {Kln,k(λ)|λ ∈ F
×
p }

are distinct. In particular,

degKln,k(λ) = #{an+1|a ∈ F
×
p } =

p− 1
(n+ 1, p− 1)

.

Proof By the congruence formula for Kloosterman sum,

(pk − 1)Kln,k(λ) = (−1)n+1(1 + kω(λ)Gk(1)n+1) +O
(

p
2(n+1)

p−1

)

.

Now if (k, p) = 1, then vp(kω(λ)Gk(1)n+1) = n+1
p−1 , and the coefficient kω(λ) are distinct in F

×
p

as λ varies in F
×
p .

In the special case, k = 2m, p > 2, n = 1, the first part of this theorem was re-proved by
Borissor-Boissov[22] in 2020. The first part of the special case (k, p) = 1 and n = 1, of the above
theorem, was raised as an open problem in the same paper.

In the above, we only considered the case that the parameter λ varies in the prime field
F
×
p . Our second question is to consider when the parameter λ varies in the extension field F

×
pk .

Namely,
Question+: When the (pk − 1) Kloosterman sums {Kln,k(λ)|λ ∈ F

×
pk} are distinct?

As we shall see, this problem is significantly harder! Note that

Kln,k(λ) =
∑

x1,x2,··· ,xn∈F
×
pk

ζ
Trk

(

xp
1+xp

2+···+xp
n+ λp

x
p
1x

p
2 ···xp

n

)

p = Kln,k(λp),

which can be regarded as the Frobenius Frobp acting on Kln,k(λ). So the best one we can hope
is that if

Kln,k(λ1) = Kln,k(λ2),

then λ1, λ2 are Frobenius conjugate over Fp, i.e., λ1 = λpi

2 for some i. However, there are
examples where Kln,k(λ1) = Kln,k(λ2) but λ1, λ2 are not Frobenius conjugate. Some more
conditions are needed.
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Conjecture 7.2 (see [14, 27]) If p ≥ k(n+1), Kln,k(λ1) = Kln,k(λ2), where λ1, λ2 ∈ F
×
pk ,

then λ1, λ2 are Frobenius conjugate.

This conjecture is equivalent to saying, for p ≥ k(n+ 1),

#{Kln,k(λ)|λ ∈ F
×
pk} = Ik(p) − 1,

where Ik(p) = #{ monic irreducible polynomials of degree dividing k in Fp[x]}.
Now assume that the Ref conjecture holds, that is, Kln,k(λ1) = Kln,k(λ2) implies λ1, λ2

are conjugate over Fp (where λ1, λ2 ∈ F
×
pk). Then for λ ∈ F

×
pk ,

degKln,k(λ) = #{Kln,k(an+1λ)|a ∈ F
×
p }

=
p− 1

#
{

a ∈ F
×
p |an+1 ∈ {1, λp−1, λp2−1, · · · }}

=
p− 1

(p− 1, n+ 1) · #{{1, λp−1, λp2−1, · · · } ∩ (F×
p )(n+1,p−1)

} .

This shows that even if we assume that the Ref conjecture holds, the degree formula for
degKln,k(λ) can still be somewhat complicated when k > 1. The Ref conjecture is known
to be true in some cases.

Theorem 7.3 (Fisher[27]) If p > (2(n+1)2k+1)2 and Kln,k(λ1) = Kln,k(λ2) for λ1, λ2 ∈
F
×
pk , then λ1, λ2 are Frobenius conjugate.

This result shows that the Ref conjecture is true if p is large compared to n and k. The
proof uses �-adic cohomology for prime � �= p.

Theorem 7.4 (see [14]) Assume p ≥ (k − 1)(n + 1) + 2 and p � N1(n)N2(n) · · ·Nk(n),
where ∞

∑

h=1

Nh(n)
(h!)n+1

zh = log
∞
∑

j=0

zj

(j!)n+1
.

If Kln,k(λ1) = Kln,k(λ2) for λ1, λ2 ∈ F
×
pk , then λ1, λ2 are Frobenius conjugate.

Dwork showed that Nh(n) �= 0 for all h, n and gave an asymptotic formula for Nh(n). Thus,
the above theorem shows that the Ref conjecture is true if p does not divide certain non-zero
integer. The proof uses p-adic method and Stickelberger theorem. Note that the above two
theorems are proved using non-archimedian methods. It would be interesting to give a direct
archimedian proof which might shed more light. Another elementary problem is

Problem: Prove that Nh(n) ∈ Z for all h, n ∈ Z. Explicitly, we have

Nh(n) =
k
∑

s=1

(−1)s−1

s

∑

h1+h2+···+hs=h

(

h

h1, h2, · · · , hs

)n+1

.

For example, we have
N1(n) = 1,

N2(n) = 1 − 2n,

N3(n) = 1 − 3n+1 + 2 · 6n,

...
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As a corollary, we obtain

Corollary 7.5 The Ref conjecture is true for k = 1 and all p.

This is slightly stronger than the original Ref conjecture, which assumes p ≥ (n+1) if k = 1.
The Ref conjecture is also true if n = 1, k ≤ 4. It should be possible to extend the range of k
with computer calculations.

General case

We shall in general consider for f(x1, x2, · · · , xn) ∈ Fp[x1, x2, · · · , xn], and

degSk(f) = number of distinct Galois conjugates in {Sk(af)|a ∈ F
×
p }.

Now the questions are:

Question 1: #{distinct Sk(af)|a ∈ F
×
p } =?;

Question 2: #{distinct Sk(af)|a ∈ F
×
pk} =?.

It should be possible to prove many results in this direction using either p-adic method or �-adic
method. The above explained the classical examples of Kloosterman sums.

As another example arising from applications, let us consider the Weil spectrum. For 1 ≤
d ≤ pk − 1, the Weil spectrum is the set

Wpk,d = {Sk(xd + ax)|a ∈ F
×
pk}.

One interesting problem is to give a good lower bound for the size of the set Wpk,d.

Theorem 7.6 Let (d, pk − 1) = 1, d �≡ pi mod (pk − 1), then
∣

∣Wpk,d

∣

∣ ≥ 3.

Furthermore, one has the following two conjectures by Helleseth in 1971, see the survey by
Katz and Langevin[28].

Conjecture 7.7 Let (d, pk − 1) = 1, d �≡ pi mod (pk − 1) and k = 2m, then
∣

∣Wpk,d

∣

∣ ≥ 4.

This conjecture is proved if p = 2, 3, but still open for p ≥ 5.

Conjecture 7.8 Let (d, pk − 1) = 1, d ≡ 1 mod (p − 1) and pk > 2, then there exists
a ∈ F

×
pk such that Sk(xd + ax) = 0.

Note that if d ≡ 1 mod p− 1, then for all b ∈ F
×
p ,

σb(Sk(xd + ax)) = Sk(bx((bx)d−1 + a)) = Sk(xd + ax),

which implies that Sk(xd + ax) ∈ Z.
7.2 Rationality of Exponential Sums

Recall that for a polynomial f(x1, x2, · · · , xn) ∈ Fpk [x1, x2, · · · , xn], we defined the expo-
nential sum

Sk(f) =
∑

x1,x2,··· ,xn∈F
pk

ζTrk(f(x1,x2,··· ,xn))
p ∈ Z[ζp].

In this chapter, we shall discuss the following question.
Question: When the exponential sum Sk(f) is a rational integer in Z? In other words,

when deg Sk(f) = 1?
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Definition 7.9 Let nk(f) be the number of Fpk -rational points on the Artin-Schreier
hypersurface defined by

yp − y = f(x1, x2, · · · , xn).

A simple property is

Theorem 7.10 Sk(f) ∈ Z if and only if Sk(f) = nk(f)−pkn

p−1 .

Proof Since nk(f) ∈ Z, the “⇐” direction is immediate. For the “⇒” direction, note that
we always have

nk(f) =
∑

a∈Fp

Sk(af).

If now, Sk(f) ∈ Z, we deduce

nk(f) = pkn +
∑

a∈F
×
p

Sk(af) = pkn + (p− 1)Sk(f).

The proof is complete.
As a corollary, we deduce

Corollary 7.11 If nk(f) �≡ 1 mod (p− 1), then Sk(f) �∈ Z.

For 0 ≤ i ≤ p− 1, we define

nk(f, i) = #{(x1, x2, · · · , xn) ∈ F
n
pk |Trk(f(x1, x2, · · · , xn)) = i}.

Then nk(f, 0) = 1
pnk(f). Another characterization for Sk(f) ∈ Z is the following

Theorem 7.12 Sk(f) ∈ Z if and only if nk(f, 1) = nk(f, 2) = · · · = nk(f, p − 1), which
is equivalent to nk(f, i) = 1

p(p−1) (p
kn+1 − nk(f)) for all i ∈ F

×
p .

Proof Assume Sk(f) = m ∈ Z. Then we can rewrite Sk(f) as

Sk(f) =
p−1
∑

i=0

ζi
p · nk(f, i).

Then we have two relations over Q:
⎧

⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎩

p−1
∑

i=1

ζi
p · nk(f, i) + nk(f, 0) −m = 0,

p−1
∑

i=1

ζi
p + 1 = 0.

Since deg(ζp) = p − 1, the first relation must be a constant multiple of the second relation,
hence

nk(f, 1) = · · · = nk(f, p− 1) = nk(f, 0) −m.

We also have
nk(f, 0) + nk(f, 1) + · · · + nk(f, p− 1) = pkn.
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Recall that nk(f, 0) = 1
pnk(f), we obtain for i ∈ F

times
p ,

1
p
nk(f) + (p− 1)nk(f, i) = pkn.

This shows that
nk(f, i) =

1
p(p− 1)

(pkn+1 − nk(f))

for i ∈ F
×
p . Conversely, if nk(f, 1) = nk(f, 2) = · · · = nk(f, p− 1), then

Sk(f) =
p−1
∑

i=0

ζi
p · nk(f, i) = nk(f, 0) − nk(f, 1) ∈ Z.

Recall that our basic question of this section is
Question: Classify the polynomials f(x1, x2, · · · , xn) ∈ Fpk [x1, x2, · · · , xn] such that Sk(f) ∈

Z.
This is very interesting even in the case of n = 1. We now consider this one variable case.

Let f(x) ∈ Fpk [x]. Note that αpk

= α for all α ∈ Fpk , we can assume d = deg(f) < pk. Using
the reduction Trk(aαp) = Trk(a1/pα), we can further assume that f(x) has no terms of the
form xpi. Recall

nk(f, i) = #{x ∈ Fpk |Trk(f(x)) = i}, i ∈ Fp.

By the previous theorem, our question in the one variable case is equivalent to
Question: Classify polynomials f(x) ∈ Fpk [x], such that nk(f, 1) = nk(f, 2) = · · · =

nk(f, p− 1).
We first give some examples.

Example 7.13 If f(x) is a permutation polynomial (PP) over Fpk , then Sk(f) =
Sk(x) = 0, and hence nk(f, i) = pk

p = pk−1, for all i ∈ Fp.

But there are other examples if k > 1.

Example 7.14 Let f(x) = xd where d
∣

∣

∣

pk−1
p−1 , d > 1 and k ≥ 2. Then f(x) is NOT PP

over Fpk as (d, pk − 1) > 1. But we know that Sk(f) ∈ Z. This implies that

nk(f, 1) = nk(f, 2) = · · · = nk(f, p− 1) =
1

p(p− 1)
(pk+1 − nk(f)), Sk(f) =

nk(f) − pk

p− 1
,

where
nk(f) = #{(x, y) ∈ F

2
pk |yp − y = xd}.

However, if k = 1, there are no other examples. In fact, let f(x) ∈ Fp[x] with degree
1 ≤ d = deg(f) ≤ p− 1, then

n1(f, i) = #{x ∈ Fp|Tr1(f(x)) = i} = #{x ∈ Fp|f(x) = i} ≤ p− 1.

Note that n1(f, 0) + · · · + n1(f, p− 1) = p. As 2(p− 1) > p and

n1(f, 1) = n1(f, 2) = · · · = n1(f, p− 1) = c,
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we must have c ∈ {0, 1}. If c = 0, then n1(f, 0) = p and then f(x) ≡ 0 on Fp. This is a
contradiction. Hence, c = 1. This implies that n1(f, 0) = 1 as well. Hence, f(x) is PP over Fp.
To sum up, we have shown:

Theorem 7.15 For f ∈ Fp[x], 1 ≤ d = deg(f) ≤ p− 1, we have S1(f) ∈ Z if and only if
f(x) is PP over Fp.

The classification of permutation polynomials over Fpk is itself an interesting topic, and has
been studied extensively. This has various applications.

Definition 7.16 A polynomial f(x) ∈ Fpk [x] is called exceptional over Fpk , if the
polynomial f(x)−f(y)

x−y has no absolutely irreducible factors defined over Fpk , other than x − y.
In other words, every irreducible factor of f(x) − f(y) in Fpk [x, y] other than x− y will further
factor in Fp[x, y].

Example 7.17 f(x) = xd is PP over Fpk if and only if (d, pk −1) = 1, which is equivalent
to that xd is exceptional over Fpk .

Definition 7.18 The Dickson polynomial is defined as

Dd(x, b) =

(

x+
√
x2 − 4b
2

)d

+

(

x−√
x2 − 4b
2

)d

,

where b �= 0.

If b = 0, then Dd(x, 0) = xd. If b �= 0, then

Dd(x, b) =
	d/2

∑

j=0

d

d− j

(

d− j

j

)

(−b)jxn−2j .

Dickson polynomials over finite fields have been studied extensively, see the monograph by Lidl,
et al.[29]. In particular, we have

Proposition 7.19 For b ∈ F
×
pk , Dd(x, b) is PP over Fpk , if and only if (d, p2k − 1) = 1,

if and only if Dd(x, b) is exceptional over Fpk .

In the general case, we have

Theorem 7.20 Let 1 ≤ d = deg(f) < pk, f ∈ Fpk [x].

1) If pk > d4, and f(x) is PP over Fpk , then f(x) is exceptional over Fpk . (This part is a
consequence of the Weil bound.)

2) (Cohen[30]) If f(x) is exceptional over Fpk , then f(x) is PP over Fpk .

3) (see [31]) If f(x) is not PP over Fpk , then

#{f(Fpk)} ≤ pk −
⌊

pk − 1
d

⌋

.

Remark 7.21 This value set bound in 3) was originally conjectured by Mullen, based on
computer calculation. It can be used to give a very simple proof of 2). Note f(x) is PP over
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Fpk , if and only if #{f(Fpk)} = pk. A simple proof of the value set bound in 3) was given by
Turnwald[32], see also Tao[33] for an elegant presentation of the proof.

As a corollary, we obtain

Corollary 7.22 Let f ∈ Fpk [x] and assume pk > d4. Then f(x) is PP over Fpk , if and
only if f(x) is exceptional over Fpk .

The next conjecture aims to classify all possible degrees of exceptional polynomials.

Conjecture 7.23 (Carlitz-Wan, see [34]) Let f(x) ∈ Fpk [x], d = deg(f) ≥ 1.

1) (Carlitz, 1966, see [35]) If p is odd, d is even, then f(x) is NOT exceptional over Fpk .

2) (Wan[31], 1991) If (d, pk − 1) > 1, then f(x) is NOT exceptional over Fpk .

It is clear that the first part is a special case of the second part.

Corollary 7.24 There is an exceptional polynomial of degree d over Fpk , if and only if
(d, pk − 1) = 1.

Remark 7.25 This conjecture is easy to prove if p � d, the tame case. The condition
(d, pk − 1) > 1 can be viewed geometrically as the projective plane curve defined by

f(x) − f(y)
x− y

= 0

has a nonsingular Fpk -rational point at ∞. The irreducible component over Fpk containing this
nonsingular Fpk -rational point will be absolutely irreducible. Thus f(x) is NOT exceptional
over Fpk .

Theorem 7.26 (see [36]) The Carlitz conjecture is true.

Their proof uses sophisticated group theory, including the classification of finite simple
groups. Their result is more general, which proves Wan’s conjecture as well if p ≥ 5. The
general case was later settled by Lenstra.

Theorem 7.27 (see [34]) The Carlitz-Wan conjecture is true.

The proof is much simpler, uses only local field and a little elementary group theory. Qifan
Zhang recently further simplified Lenstra’s proof, used only local fields without group theory.

7.3 General Degree Results

7.3.1 Results over Fp

For a polynomial f(x) ∈ Fp[x], 1 ≤ d = deg(f) ≤ p − 1, we first consider the exponential
sum over the prime field Fp defined by

S1(f) =
∑

x∈Fp

ζf(x)
p ∈ Z[ζp].

Recall that we also defined
n(f, 0) = #{x ∈ Fp|f(x) = 0}



1260 WAN DAQING

and
n(f, i) = #{x ∈ Fp|f(x) = i}, ∀i ∈ Fp.

Here we prove the following general result on the degree of S1(f).

Theorem 7.28 We have

p− 1
(p− 1, n(f, 0) − 1)

∣

∣

∣

∣
deg S1(f)

∣

∣

∣

∣
(p− 1).

The vertical line symbol “|” is the symbol of division as usual.

Proof For m ∈ N, define

Nm(f) = #{(x1, x2, · · · , xm) ∈ F
m
p |f(x1) + f(x2) + · · · + f(xm) = 0}.

Write
F (T ) =

∏

a∈F
×
p

(T − S1(af)) = T p−1 + F1T
p−2 + · · · + Fp−1 ∈ Z[T ],

which is a monic polynomial in T of degree p− 1. Define

H = {a ∈ F
×
p |σa(S1(f)) = S1(f)} = Stablizer of S1(f).

Then
F (T ) =

∏

a∈F
×
p /H

(T − S1(af))|H| = M(T )|H|,

where
M(T ) =

∏

a∈F
×
p /H

(T − S1(af)) ∈ Q[T ],

which is invariant under Galois action. By Galois theory, the polynomial M(T ) is the minimal
polynomial of S1(f). Thus, deg S1(f) = degM(T ) = p−1

|H| . The problem is that we do not know
the stabilizer H in general.

We consider the m-th power moment sum

Pm =
∑

a∈F
×
p

S1(af)m

=
∑

a∈F
×
p

⎛

⎝

∑

x1∈Fp

ζaf(x1)
p

⎞

⎠ · · ·
⎛

⎝

∑

xm∈Fp

ζaf(xm)
p

⎞

⎠

=
∑

x1,x2,··· ,xm∈Fp

⎛

⎝

∑

a∈Fp

ζa(f(x1)+f(x2)+···+f(xm))
p − 1

⎞

⎠

= pNm(f) − pm.

Now F (x) = xp−1 + F1x
p−2 + · · · + Fp−1 = M(x)|H|. Taking derivative yields

(p− 1)xp−2 + (p− 2)F1x
p−3 + · · · + Fp−2 = |H | ·M(x)|H|−1 ·M ′(x).
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Both sides are polynomials over Z, hence

(p− 1, (p− 2)F1, (p− 3)F2, · · · , Fp−2) ≡ 0 mod |H | .

Equivalently,
(p− 1, F1, 2F2, · · · , (p− 2)Fp−2) ≡ 0 mod |H | .

By Newton’s formula,
⎧

⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎩

0 = P1 + F1,

0 = P2 + P1F1 + 2F2,
...

0 = Pp−1 + Pp−2F1 + · · · + P1Fp−2 + (p− 1)Fp−1.

We have shown jFj ≡ 0 mod |H |, for all 1 ≤ j ≤ p− 1. By the above Newton’s formula, one
recursively finds

⎧

⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎩

P1 ≡ 0 mod |H | ,
...

Pp−1 ≡ 0 mod |H | .
Hence

0 ≡ Pm = pNm(f) − pm ≡ Nm(f) − 1 mod |H | .
Noting that |H | |(p− 1), thus

|H | |(p− 1, N1(f) − 1, · · · , Nm(f) − 1).

We conclude that

deg S1(f) =
p− 1
|H | =

p− 1
(p− 1, N1(f) − 1, · · · , Nm(f) − 1)

· (p− 1, N1(f) − 1, · · · , Nm(f) − 1)
|H | .

The last factor is an integer. Thus, we have proved

p− 1
(p− 1, N1(f) − 1, · · · , Nm(f) − 1)

∣

∣

∣

∣
deg S1(f)

∣

∣

∣

∣
p− 1.

Note that
N1(f) = #{x ∈ Fp|f(x) = 0} = n(f, 0),

we obtain the desired result.
We now give some examples and corollaries.

Corollary 7.29 If (n(f, 0) − 1, p− 1) = 1, then deg S1(f) = p− 1.

Corollary 7.30 If n(f, 0) ∈ {0, 2, p− 1}, then deg S1(f) = p− 1.

If n(f, 0) �= 1, then (n(f, 0) − 1, p− 1) ≤ p−1
2 , which implies that deg(S1(f)) ≥ 2. This is

consistent with the fact that f(x) is not PP over Fp if n(f, 0) �= 1.
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Example 7.31 If f(x) = xd + bxd−1 = xd−1(x+ b), where b �= 0. Then n(f, 0) = 2, and
hence deg S1(f) = p− 1.

Example 7.32 If f(x) is odd, i.e., f(−x) = −f(x), then

S1(f) =
∑

x∈Fp

ζ−f(x)
p =

∑

x∈Fp

ζf(−x)
p = S1(f) ∈ Q(ζp)+.

From this example, we obtain

Corollary 7.33 If f(x) is odd, then

p− 1
(p− 1, n(f, 0)− 1)

∣

∣

∣

∣
degS1(f)

∣

∣

∣

∣

p− 1
2

.

Example 7.34 Let f(x) = xd − b2xd−2 = xd−2(x2 − b2), where 2 � d and b ∈ F
×
p . Then

n(f, 0) = 3, and thus deg(S1(f)) = p−1
2 .

Note that f(x) is odd, if and only if f can be written as f(x) = xg(x2). More generally, let
e|(p− 1), and f(x) = xg(xe), consider

He = {a ∈ F
×
p |ae = 1}, |He| = e.

For all a ∈ He, we have

σa(S1(f)) = S1(af) = S1(axg((ax)e)) = S1(f).

Thus, S1(f) ∈ Q(ζp)He . Hence,

deg S1(f)|[Q(ζp)He : Q] =
p− 1
|He| =

p− 1
e

.

To sum up, we have

Corollary 7.35 If f(x) = xg(xe) for some e|(p− 1), then

p− 1
(p− 1, n(f, 0)− 1)

∣

∣

∣

∣
degS1(f)

∣

∣

∣

∣

p− 1
e

.

Moreover, if in addition (p− 1, n(f, 0)− 1) = e, then deg S1(f) = p−1
e .

Example 7.36 Let f(x) = x(xe − be), where e|(p− 1) and b �= 0. Then n(f, 0) = e+ 1,
and hence (p− 1, n(f, 0) − 1) = e and degS1(f) = p−1

e .

Remark. For Dickson polynomial Dd(x, b), b ∈ F
×
p , what is deg S1(Dd(x, b))? This remains

open in general. For b = 0, Dd(x, 0) = xd, and Gauss showed that deg S1(xd) = (d, p− 1).

7.3.2 Results over Fq

For a polynomial f(x) ∈ Fpk [x], 1 ≤ d = deg(f) ≤ pk − 1, we defined the exponential sum
over Fpk by

Sk(f) =
∑

x∈F
pk

ζTrk(f(x))
p ∈ Z[ζp].

The same proof as the prime field case gives
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Theorem 7.37 We have

p− 1
(p− 1, nk(f) − 1)

∣

∣

∣

∣
deg Sk(f)

∣

∣

∣

∣
(p− 1).

This result is less useful when k > 1, as it is harder to compute nk(f) for k > 1. In the case
k = 1,

n1(f) = #{(x, y) ∈ F
2
p|yp − y = f(x)}

= p · #{x ∈ Fp|f(x) = 0}
= pn(f, 0)

≡ n(f, 0) mod (p− 1).

This recovers the general result in the prime field case.

Corollary 7.38 If (p− 1, nk(f) − 1) = 1, then deg Sk(f) = p− 1.

Corollary 7.39 If f(x) = xg(xe), e|(p−1), then deg Sk(f)|p−1
e . If further (p−1, nk(f)−

1) = e, then deg Sk(f) = p−1
e .

As mentioned above, for k > 1, it is harder to compute nk(f) and so harder to give useful
examples to compute degSk(f).

Now we have finished the discussion on the results related to the degree. In next section,
we shift to p-adic estimates for L-functions of exponential sums.

8 L-Functions of Exponential Sums

In this section, we give a brief exposition for L-functions of exponential sums, focusing on
their p-adic properties.

8.1 L-Functions of Toric Exponential Sums

Let Fq be the finite field of q = pr elements, f(x1, x2, · · · , xn) ∈ Fq[x±1
1 , x±1

2 , · · · , x±1
n ] be

a Laurent polynomial. Note now that the base field is Fq, not necessarily the prime field Fp.
So, we are in a slightly more general situation. We define the sequence of toric exponential
sums Sk(f) by

Sk(f) =
∑

x1,x2,··· ,xn∈F
×
qk

ζTrk(f(x1,x2,··· ,xn))
p , k ∈ N,

where Trk denotes the absolute trace map from Fqk to Fp. The L-function of f over Fq is
defined as the following exponential generating function

L(f, T ) = exp

( ∞
∑

k=1

T k

k
Sk(f)

)

∈ Z[ζp]�T �.

The reason that the power series L(f, T ) has integral coefficients is because it has an infinite
Euler product. In the case when f(x1, x2, · · · , xn) = x1 + x2 + · · ·+ xn + λ

x1x2···xn
, then Sk(f)

reduces to the Kloosterman sum over Fqk .
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Theorem 8.1 (Dwork[4], Bombieri[5]) L(f, T ) is rational in T .

The total degree (the sum) of numerator and denominator for the rational function L(f, T )
can be effectively bounded, see Bombieri[37], Adolphson and Sperber[38], and Katz[39]. Such
explicit degree bounds are important in algorithms for computing zeta functions and L-functions
over finite fields, see Lauder and Wan[40], Harvey[41] and the survey[42]. But no exact total
degree formula is possible in general. We shall consider a nice case studied by Adolphson and
Sperber[43], where one can push much further.

Write f(x1, x2, · · · , xn) =
∑J

j=1 ajx
vj , where aj ∈ F

×
q . Here vj = (vj1, vj2, · · · , vjn) ∈ Z

n

and xvj = x
vj1
1 x

vj2
2 · · ·xvjn

n . Define

Δ(f) := convex closure of {0,vj(1 ≤ j ≤ J)}

in R
n. Without loss of generality, we assume that Δ = Δ(f) is n-dimensional in R

n. If δ is a
closed face of Δ, we define

f δ =
∑

vj∈δ

ajx
vj .

Definition 8.2 The polynomial f is called non-degenerate if for every closed face δ of
arbitrary dimension, not containing 0, the system

∂f δ

∂x1
=
∂f δ

∂x2
= · · · =

∂f δ

∂xn
= 0

has no common solutions in (Fq
×

)n.

Theorem 8.3 (Adolphson and Sperber[43]) Let f be non-degenerate. Then L(f, T )(−1)n−1

is a polynomial of degree n! Vol(Δ).

Write

L(f, T )(−1)n−1
=

n! Vol(Δ)
∏

i=1

(1 − αiT ) ∈ C[T ].

Then
Sk(f) = (−1)n

(

αk
1 + αk

2 + · · · + αk
n! Vol(Δ)

)

, ∀k ∈ N.

By Deligne, |αi| =
√
qui , where ui ∈ {0, 1, · · · , n}. Let wi = #{1 ≤ j ≤ n! Vol(Δ)| |αj | =

√
qi},

where 0 ≤ i ≤ n. Then
w0 + w1 + · · · + wn = n! Vol(Δ).

The weight sequence {w0, w1, · · · , wn} is completely determined by Denef and Loeser[44] using a
complicated combinatorial formula derived from intersection cohomology. This result has been
extended to twisted character sum case in [45].

For us, we write

L(f, T )(−1)n−1
=

n! Vol(Δ)
∏

i=1

(1 − αiT ) ∈ Cp[T ].

We would like to determine the q-slope sequence

{vq(α1), vq(α2), · · · , vq(αn! Vol(Δ))}.
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This is rather complicated in general, even in the one variable case. We shall explain a tool
which is useful in many interesting cases.

Remark For toric exponential sums, Sk(f) ≡ (qk−1)n mod (ζp−1). Thus, vq(Sk(f)) = 0
and vq(α1) = 0. We want to find vq(αi), for all 1 ≤ i ≤ n! Vol(Δ).

8.2 Lower Bound for Newton Polygon

Let C(Δ) = ∪c≥0cΔ, i.e., the cone in R
n generated by Δ. See Figure 2 for this.

•O

c

Δ

δ

cδ

Figure 2 Cone C(Δ)

Definition 8.4 For u ∈ R
n, define a weight function

w(u) =

⎧

⎨

⎩

∞, if u �∈ C(Δ),

inf{c ≥ 0|u ∈ cΔ}, if u ∈ C(Δ).

If u ∈ C(Δ), then there exists a codimension-one face δ ∈ Δ, O �∈ δ, such that u
w(u) ∈ δ.

Let the equation of δ be
∑n

i=1 eixi = 1, where ei ∈ Q. Then

n
∑

i=1

ei
ui

w(u)
= 1, u = (u1, u2, · · · , un).

Hence,

w(u) =
n
∑

i=1

eiui.

Let D(δ) be the least common denominator of ei, for 1 ≤ i ≤ n. Then

w(u) ∈ 1
D(δ)

Z≥0, ∀u ∈ C(δ) ∩ Z
n.

Definition 8.5 D = D(Δ) = lcmδ D(δ), where δ runs through all codimension-one faces
of Δ, not containing 0.

Proposition 8.6 We have w(Zn) ⊂ 1
D Z≥0 ∪ {∞}. See Figure 3 for this.
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•O

D
D

1
D

2
D

D+1
D

Δ

•
•

•

•

•

•

•

•

•

Figure 3 Lattice points in C(Δ)

Definition 8.7 Let SΔ = Fq

[

xC(Δ)∩Z
n]

. This is a finitely generated graded Fq-algebra.
Let deg(xu) := w(u). Then

(SΔ)k =
⊕

u∈C(Δ)∩Zn, w(u)=k/D

Fq[xu],

which is the homogeneous graded degree k (or weight k/D) part of SΔ. Clearly,

SΔ =
∞
⊕

k=0

(SΔ)k.

Definition 8.8 For k ∈ Z≥0, define

WΔ(k) = #{u ∈ C(Δ) ∩ Z
n|w(u) = k/D} = dimFq(SΔ)k.

As an n-dimensional graded algebra, the Poincare series of SΔ is of the following form

∞
∑

k=0

dimFq(SΔ)kT
k =

∞
∑

k=0

WΔ(k)T k =
∑nD

k=0HΔ(k)T k

(1 − T )n
.

Thus,

HΔ(k) =
n
∑

i=0

(−1)i

(

n

i

)

WΔ(k − iD).

If f is non-degenerate, then {x1
∂f
∂x1

, x2
∂f
∂x2

, · · · , xn
∂f

∂xn
} form a regular sequence of the ring

SΔ, i.e., the multiplication map

xi
∂f

∂xi
: SΔ

/(

x1
∂f

∂x1
, x2

∂f

∂x2
, · · · , xi−1

∂f

∂xi−1

)

→ SΔ

/(

x1
∂f

∂x1
, x2

∂f

∂x2
, · · · , xi−1

∂f

∂xi−1

)
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is injective for all 1 ≤ i ≤ n. This means that the associated Koszul complex

K•(f) : 0 → S
(n
0)

Δ → S
(n
1)

Δ → · · · → S
(n

n)
Δ → 0

is acyclic. Furthermore,

dimFq H
0(K•(f)) = dimFq SΔ

/(

x1
∂f

∂x1
, x2

∂f

∂x2
, · · · , xn

∂f

∂xn

)

= n! Vol(Δ).

This non-degenerate condition ensures a similar property on the lifted p-adic Dwork homology
and thus L(f, T )(−1)n−1

is a polynomial of degree n! Vol(Δ). Furthermore,

HΔ(k) = dimFq

(

SΔ

/(

x1
∂f

∂x1
, x2

∂f

∂x2
, · · · , xn

∂f

∂xn

))

k

,

the dimension of the graded degree k part of SΔ/
(

x1
∂f
∂x1

, x2
∂f
∂x2

, · · · , xn
∂f
∂xn

)

. In particular,
HΔ(k) ≥ 0, and

nD
∑

k=0

HΔ(k) = dimFq SΔ

/(

x1
∂f

∂x1
, x2

∂f

∂x2
, · · · , xn

∂f

∂xn

)

= n! Vol(Δ).

Definition 8.9 The Hodge polygon HP(Δ) of Δ is the lower convex polygon in R
2

with vertices (see Figure 4)
(

m
∑

k=0

HΔ(k),
m
∑

k=0

k

D
HΔ(k)

)

, m = 0, 1, · · · , nD.

• •
•

•

•

•

Hδ(0)

O

Hδ(1)

1
D

Hδ(2)

2
D

. . .

nD
D

Figure 4 The Hodge polygon

Definition 8.10 Let f be non-degenerate over Fq. Write

L(f, T )(−1)n−1
= 1 +A1T + · · · +An! Vol(Δ)T

n! Vol(Δ).

The q-adic Newton polygon of L(f, T )(−1)n−1
, denoted by NP(f), is the lower convex closure

in R
2 of the following points

(k, vq(Ak)), k = 0, 1, · · · , n! Vol(Δ).
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The slope sequence {vq(α1), vq(α2), · · · , vq(αn! Vol(Δ))} is determined by NP(f). For any
rational number s,

#{1 ≤ i ≤ n! Vol(Δ)|vq(αi) = s} = the horizontal length of the slope s side in NP(f).

Then, we have

Theorem 8.11 (Adolphson and Sperber[43]) Let f be non-degenerate over Fq. Then we
have NP(f) ≥ HP(Δ) with endpoints coincide. That is, the Newton polygon lies above the
Hodge polygon (see Figure 5 for this).

•O •
•

•

•

•

(Δ)

•
•

•(f)

•

n! (Δ)

Figure 5 Figure for Adolphson-Sperber theorem

Definition 8.12 The polynomial f is called ordinary if NP(f) = HP(Δ).

In the ordinary case, the slope sequence is given explicitly by

0, · · · , 0
︸ ︷︷ ︸

HΔ(0)

,
1
D
, · · · , 1

D
︸ ︷︷ ︸

HΔ(1)

, · · · , nD
D
, · · · , nD

D
︸ ︷︷ ︸

HΔ(nD)

.

It is therefore of interest to determine when f is ordinary.

Conjecture 8.13 (Adolphson and Sperber[43]) If p ≡ 1 mod D, then NP(f) = HP(Δ)
generically, i.e., for all f(x) in a Zariski open dense subset of parameter space for f ∈ Fp[x±1

1 , x±2
2 ,

· · · , x±1
n ] with Δ(f) = Δ.

Theorem 8.14 (see [46, 47]) The AS conjecture is true for n ≤ 3 but can be false for all
n ≥ 4.

These papers introduced several decomposition theorems which are useful to determine when
f is ordinary. We explain one of them in next two sections.

To conclude this section, we mention one open problem.

Conjecture 8.15 Let f(x) ∈ Fq[x1, x2, · · · , xn] be non-degenerate. Then, the Newton
polygon NP(λf(x)) is independent of the non-zero parameter λ ∈ Fq

×
.

This is open, even in the case n = 1 and p � d, where

f(x) = xd + a1x
d−1 + · · · + ad ∈ Fq[x].

It is indeed true for the monomial f(x) = xd.
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8.3 Diagonal Laurent Polynomials

Definition 8.16 Let f(x1, x2, · · · , xn) =
∑n

j=1 ajx
vj , where aj ∈ F

×
q . Here vj =

(vj1, vj2, · · · , vjn) ∈ Z
n and xvj = x

vj1
1 x

vj2
2 · · ·xvjn

n . Note that the number of non-zero terms is
equal to the number of variables. If the square matrix

M(f) = (v1,v2, · · · ,vn)

is nonsingular, i.e., det(M(f)) �= 0, where vj =

( v1j

...
vnj

)

∈ Z
n, then, f is called a diagnoal

Laurent polynomial.

Proposition 8.17 A diagonal f is non-degenerate over Fq, if and only if p � det(M(f)).

Write

M(f) ∼

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

d1 0 · · · 0

0 d2 · · · 0

0 0
. . . 0

0 0 · · · dn

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, d1|d2| · · · |dn,

where {d1, d2, · · · , dn} are the invariant factors of the finite abelian group Z
n/M(f)Zn.

Proposition 8.18 (see [46]) Let dn be the largest invariant factor of a diagonal Laurent
polynomial f over Fq. If p ≡ 1 mod dn, then NP(f) = HP(Δ).

Example 8.19 The polynomial f(x) = xd1
1 + xd2

2 + · · · + xdn
n , where di > 0, is diago-

nal. It is non-degenerate, if and only if p � d1d2 · · · dn. It is ordinary, if and only if p ≡ 1
mod [d1, d2, · · · , dn], where [d1, d2, · · · , dn] is the largest invariant factor.

Example 8.20 Let f(x) = xd, p ≡ 1 mod d. Then the slope sequence is
{

0
d
,
1
d
, · · · , d− 1

d

}

and n! Vol(Δ) = d.

8.4 Facial Decomposition Theorem

Returning to the general non-degenerate Laurent polynomial case. Recall that Δ = Δ(f)
is n-dimensional in R

n. Let {δ1, δ2, · · · , δh} be all the closed codimension-one faces of Δ, not
containing the origin O. Then the restriction

f δi =
∑

vj∈δi

ajx
vj

is also non-degenerate with respect to Δ(fi) = Δi. The decomposition

Δ =
h
⋃

i=1

Δi

is called the facial decomposition of Δ. See Figure 6 for this.



1270 WAN DAQING

O

Δ1

δ1

Δ2
δ2

Δ3

δ3

δ3

Δ3

δ2

Δ2
δ1

Δ1

δ6

Δ6

δ5

Δ5

δ4
Δ4

OOOOOOO

Figure 6 Facial decomposition

Theorem 8.21 (see [46]) Let f be non-degenerate over Fq. Then NP(f) = HP(Δ) if and
only if NP(fi) = HP(Δi) for all 1 ≤ i ≤ h.

Example 8.22 Let f(x) = xd
1 + xd

2 + · · · + xd
n + g<d(x1, x2, · · · , xn) ∈ Fq[x1, x2, · · · , xn].

Then Δ(f) has a unique codimensional-1 face δ not containing the origin. One checks that

f δ = xd
1 + xd

2 + · · · + xd
n.

By the facial decomposition theorem, f is ordinary, if and only if f δ is ordinary, if and only if
xd is ordinary, if and only if p ≡ 1 mod d.

Example 8.23 Let f(x) = xd + a1x
d−1 + · · · + a0. If p ≡ 1 mod d, then it is ordinary.

The slope sequence
{

0
d
,
1
d
, · · · , d− 1

d

}

is the same as the case f(x) = xd.

Example 8.24 Let

f(x1, x2, · · · , xn) = x1 + x2 + · · · + xn +
λ

x1x2 · · ·xn
=

n+1
∑

j=1

ajx
vj , λ �= 0,

where

(v1,v2, · · · ,vn+1) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 0 · · · 0 −1

0 1 · · · 0 −1

0 0
. . . 0 −1

0 0 · · · 1 −1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

n×(n+1)

and n! Vol(Δ) = n + 1. For each 1 ≤ i ≤ n + 1, let δi be the codimensional-one face with
vertices {v1, v2, · · · , vn+1} − {vi}. Then det δi = ±1. Then f δi is ordinary for all p, and hence
f is ordinary for all p, i.e., the slope sequence of L(f, T )(−1)n−1

is {0, 1, · · · , n}, see Figure 7.
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δ1

(−1,−1)

δ2

δ3

Figure 7 Facial decomposition and Kloosterman sums

This result was first proved by Sperber[48] for p > n.

Example 8.25 (Xu and Zhu[49]) In their work on Bessel F -crystals for reductive groups,
one class of generalized Kloosterman sums is the toric exponential sums associated to the
Laurent polynomial,

f(x1, x2 · · · , x2n+1) = x1 + · · · + x2n − xd
2n+1 +

axd
2n+1

x1x2 · · ·x2n
,

where a ∈ F
×
q , p ≡ 1 mod d. Applying the facial decomposition, they deduce that the slope

sequence for L(f, T ) is
{

0,
1
d
,
2
d
, · · · , 2n+

d− 1
d

}

.

Example 8.26 (Chen and Lin[50]) For a1, a2, · · · , a4 ∈ F
×
q , let

Sk(a) =
∑

1
x1x2

+ 1
x3x4

=1, xi∈F
×
qk

ζTrk(a1x1+a2x2+···+a4x4)
p .

This sum arises from many applications in analytic number theory, including Zhang’s work on
the twin prime conjecture. Let L(T ) = exp

(
∑∞

k=1
T k

k Sk(a)
)

. Then

L(T ) = (1 − T )(1 − qT )
6
∏

i=1

(1 − αiT ),

where |αi| =
√
q3 for 1 ≤ i ≤ 6, and the slope sequence for the αi’s is {0, 1, 1, 2, 2, 3}.

Several additional interesting examples can be found in Sperber[51, 52], Wan[47], Hong[53, 54],
Yang[55], Zhu[56, 57], Blache[58, 59], Le[60], Zhang and Feng[61], Chen[62] and Fu and Wan[63].
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9 Exponential Sums of Higher p-Power Orders

Previously, we considered exponential sums associated to the additive character of order p.
In this last section, we consider exponential sums associated to characters of all higher p-power
orders.

For simplicity of illustration, we restrict to one variable exponential sums, namely, the
polynomial f(x) has one variable:

f(x) = adx
d + ad−1x

d−1 + · · · + a0 ∈ Fq[x], ad �= 0, p � d.

Let ζp be a primitive p-th root of 1. Let

Sk(f) =
∑

x∈F
qk

ζTrk(f(x))
p ∈ Z[ζp], k ∈ N.

The L-function is

L(f, T ) = exp

( ∞
∑

k=1

T k

k
Sk(f)

)

=
d−1
∏

i=1

(1 − αiT
k).

As a complex number, by Weil’s celebrated theorem, |αi| =
√
q for 1 ≤ i ≤ d − 1. As a p-adic

number, the slope sequence
{vq(α1), vq(α2), · · · , vq(αd−1)}

is unknown in general. If p ≡ 1 mod d, then

{vq(α1), vq(α2), · · · , vq(αd−1)} =
{

1
d
,
2
d
, · · · , d− 1

d

}

.

Now, for each m ∈ N, let ζpm be a primitive pm-th root of 1. Let

fω(x) =
d
∑

i=0

ω(ai)xi ∈ Zq[x],

where ω denotes the Teichmüller character. Define the pm-th order exponential sums by

Sk,m(f) =
∑

x∈F
qk

ζ
Trk(fω(ω(x)))
pm ∈ Z[ζpm ].

The number Sk,m(f) now has two integer parameters k and m. The integer k denotes the
extension degree, and the integer m determines the order of the character.

For each fixed m, we define the m-th L-function by

Lm(f, T ) = exp

( ∞
∑

k=1

T k

k
Sk,m(f)

)

.

In the case m = 1, this L-function L1(f, T ) reduces to the previous L-function L(f, T ). For
general m ≥ 1, the L-function Lm(f, T ) is a polynomial of degree pm−1(d− 1). Write

Lm(f, T ) =
pm−1d−1
∏

i=1

(1 − αi(m)T k), m ∈ N.
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Again, as complex numbers, Weil’s celebrated theorem shows that |αi(m)| =
√
q, for 1 ≤ i ≤

pm−1d− 1. As p-adic numbers, what is the q-slope sequence for Lm(f, T )? i.e.,
{

vq(α1(m)), · · · , vq(αpm−1d−1(m)
}

=?

As mentioned above, this is already unknown for m = 1, if p �≡ 1 mod d.
We raise a question here:
Question: Any stable behaviour for the m-th slope sequence

{

vq(α1(m)), vq(α2(m)), · · · , vq(αpm−1d−1(m)
}

as m→ ∞?

Theorem 9.1 (Liu and Wan[64]) If p ≡ 1 mod d, then for all m ≥ 1, the m-th slope
sequence is given explicitly by

{

vq(α1(m)), vq(α2(m)), · · · , vq(αpm−1d−1(m)
}

=
{

1
dpm−1

,
2

dpm−1
, · · · , dp

m−1 − 1
dpm−1

}

.

The truncation of an arithmetic progression.

The idea is to introduce the sequence of the universal t-adic exponential sums

Sk(f, t) =
∑

x∈F
qk

(1 + t)Trk(fω(ω(x))) ∈ Zp�t�, |t|p < 1,

and its t-adic L-function

L(f, t, T ) = exp

( ∞
∑

k=1

T k

k
Sk(f, t)

)

∈ Zp�T ��t�.

Note
Sk,m(f) = Sk(f, ζpm − 1), Lm(f, T ) = L(f, ζpm − 1, T ).

Thus, it is enough to study the t-adic L-function.

Proposition 9.2 Lm(f, T ) is ordinary for one m, if and only if L(f, t, T ) is ordinary, if
and only if Lm(f, T ) is ordinary for all 1 ≤ m <∞. If p ≡ 1 mod d, then L1(f, T ) is ordinary,
which implies that Lm(f, T ) is ordinary for all m.

What if p �≡ 1 mod d? We have a slightly weaker but similar stability result.

Theorem 9.3 (see [65]) The m-th slope sequence for Lm(f, T ) can be recovered from the
m0-th slope sequence for all m ≥ m0, where

q = pr, m0 =
⌈

1 + logp

(d− 1)2r
8d

⌉

.

(Note that m0 = 2 if p ≥ dr
8 ). More precisely, let {s1, s2, · · · , sdpm0−1−1} be the slope sequence

for Lm0(f, T ). Then for all m ≥ m0, the slope sequence for Lm(f, T ) is given by

pm−m0
⋃

i0=0

{

i

pm−m0
,
i+ s1
pm−m0

, · · · , i+ sdpm0−1−1

pm−m0

}

− {0}.

This is a truncation of dpn0−1 arithmetic progressions!
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The idea is that for p �≡ 1 mod d, the t-adic L-function is not ordinary, but it is partially
ordinary in the sense that the Newton polygon and its lower bound (the Hodge polygon) agree
at all vertices in an arithmetic progression. Then we can get a tight upper bound. Then we
get finite number of arithmetic progressions.

Remark 9.4 In the special cases f(x) = xd + axd−1 or f(x) = xd + ax, where p ≡
−1 mod d, more precise improvements were obtained by Ouyang and Zhang[66], Ouyang and
Yang[67, 68].

Remark 9.5 This striking slope stability has been generalized to various cases when the
polynomial fω(x) is replaced by

1) Any polynomial g(x) ∈ Zq[x], see Li[69].

2) A much larger class of convergent power series g(x) ∈ Zq[[x]], see Kosters and Zhu[70].

3) Generalization to higher rank and higher dimensional case, see Ren, et al.[71] and Ren[72].

4) Generalization to higher genus curves ramified at several points, see forthcoming works of
Joe Kramer-Miller and James Upton.

Remark 9.6 These ideas also inspired the works in another direction.

• Wan, et al.[73]. On slopes of p-adic modular forms.

• Liu, et al.[74]. On the spectral halo conjecture for eigenvalues near the boundary.

This last paper further inspired the works of

• L. Ye’s Harvard Ph.D thesis[75]. On eigenvarieties for definite unitary groups.

• Johansson and Newton[76]. On Hilbert modular eigenvarieties.

• Ren and Zhao[77]. On spectral halo for Hilbert modular forms.

10 Concluding Remarks

Recall that we defined the exponential sum

Sk(f) =
∑

x1,x2,··· ,xn∈F
pk

ζTrk(f(x1,x2,··· ,xn))
p ∈ Z[ζp]

for polynomial f(x1, x2, · · · , xn) in Fp[x1, x2, · · · , xn].
The main questions are

Question 1:
∑∞

k=1 |Sk(f)|T k ∈ R(T )?
As indicated earlier, the answer is probably no although we do not have an explicit
counter-example. But something slightly weaker is true:

∑∞
k=1 |Sk(f)|2 T k ∈

R(T ).
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Question 2:
∑∞

k=1 |Sk(f)|p T k ∈ Q(T )?
It is not clear if this would be true. But we can make a slightly weaker conjecture:
∑∞

k=1 |Sk(f)|p T k is a meromorphic function in T ∈ C, and
∑∞

k=1 vp(Sk(f))T k is
a p-adic meromorphic function in T ∈ Cp.

Question 3:
∑∞

k=1 deg(Sk(f))T k ∈ Q(T )?

In a forthcomming joint work, we prove that the third question has a positive answer.
Namely,

Theorem 10.1 The sequence deg Sk(f) is periodic for k >> 0. In particular,

∞
∑

k=1

deg(Sk(f))T k ∈ Q(T ).

As a corollary,

Corollary 10.2 Sk(xd) is periodic, ∀k >> 0. Kln,k(λ) is periodic, ∀k >> 0.

But explicitly, what are these two virtual periodic sequences? Are they effectively com-
putable? We have given a number of partial results in this course. It would be very interesting
to know the complete answer, even for these two most classical examples!
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