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Abstract Networked control systems (NCSs) are facing a great challenge from the limitation of

network communication resources. Event-triggered control (ETC) is often used to reduce the amount

of communication while still keeping a satisfactory performance of the system, by transmitting the

measurements only when an event-triggered condition is satisfied. However, some network-induced

problems would happen inevitably, such as communication delay and packet loss, which can degrade

the control performance significantly and can even lead to instability. In this paper, a periodic event-

triggered NCS considering both time-varying delay and packet loss is studied. The system is discretized

into a piecewise linear system with uncertainty. Then the model is handled by a polytopic over-

approximation method to be more suitable for stability analysis. Finally, stability conditions are

obtained and presented in terms of linear matrix inequalities (LMIs). The result is illustrated by a

numerical example.

Keywords Delay, event-triggered control, networked control systems, packet loss, stability analysis.

1 Introduction

In the past decades there has been a widespread attention in networked control systems
(NCSs), in which the control loop is closed over a digital communication network, see [1, 2].
Compared to the traditional control systems, NCSs offer enormous benefits with respect to
lower costs, simplified installation and maintenance.

However, the communication network has a considerable influence on the control perfor-
mance since its load affects the quality of service by inducing communication delays or packet
losses, which may degrade the system performance and may even cause instability of the system.

WANG Zhao · SUN Jian · BAI Yongqiang

The Key Laboratory of Intelligent Control and Decision of Complex System, Beijing Institute of Technology,

Beijing 100081, China. Email: byfengyun@bit.edu.cn.
∗This research was supported by the National Natural Science Foundation of China under Grant Nos.

61522303, 61621063, 61720106011, Program for Changjiang Scholars and Innovative Research Team in Uni-

versity (IRT1208), Youth Changjiang Scholars Program.
�This paper was recommended for publication by Editor LIU Guoping.



266 WANG ZHAO · SUN JIAN · BAI YONGQIANG

The essential reason for the problems is the limitation of network communication resources.
Actually, we should make efforts to use as few transmissions as possible to ensure a satisfactory
performance of the system. To do so, a technique named event-triggered control (ETC) was
proposed, see [3, 4]. “Event-triggered” means that measurements are transmitted not peri-
odically any more, but only when an event generated by some well-designed event-triggered
conditions occurs. Thus, by designing a proper event-triggered condition, we can decrease the
amount of transmissions without making too much influence on the performance of the system.

In some results about ETC, such as [5], the event-triggered conditions are monitored con-
tinuously, which is actually inapplicable due to the limitation of the hardware. While in [6, 7],
a so-called periodically event-triggered control (PETC) strategy was proposed where the event-
triggered conditions are only verified periodically, right at the sampling instant.

Although the amount of transmissions can be decreased by using ETC, some network-
induced problems would happen inevitably, such as delay and packet loss, which can degrade
the control performance significantly and even lead to instability. The delay and packet loss also
make obstacles for stability analysis of the NCSs. However, only a few works about stabilizing
the system consider ETC, time-varying delay and packet loss at the same time, as shown below.

In [7], a delay system method was proposed to design event-triggered controllers of NCSs. [8]
studied quantized control for stochastic Markov jump systems with interval time-varying delays
and bounded system noise under the event-triggered mechanism. [9] formulated the NCSs with
time delay and uncertainty into an aperiodic sampled data system. [10] investigated eventtrig-
gered output feedback H∞ control for a networked control system with transmission delays.
Besides, [11] proposed a predictor-based controller combined with event-triggering mechanisms
in order to control an LTI system with large input and output delays. Some other works,
disposed the continuous system with time-varying delay by discretization and used polytopic
over-approximation methods to handle the uncertainty, see [12–14].

In [15], the authors proposed a structure of NCSs with a communication logic, which incor-
porates model-based NCSs, predictive control, and an event-triggered communication scheme
into a unified framework to consider the packet loss. [16] focused on a special Lyapunov-based
ETC design with consideration of packet dropouts. [17] investigated the event-triggered pre-
dictive control problem for networked nonlinear systems where the data dropout induced by
the networks can be actively compensated by a fuzzy predictive controller. Besides, [18] in-
vestigated an NCS whose sensor can choose different power levels at which it can transmit its
measurement to the controller. The level of transmission power determines the probability of
packet loss. The objective of this study is to find an appropriate transmission power probabil-
ity distribution and a system controller jointly such that NCSs can be exponentially stabilized
within a given energy budget. Moreover, [19] provided a probabilistic characterization for the
packet losses and investigated almost sure stabilization under an event-triggered control law.
The closed-loop system with ETC and packet dropouts can be rewritten as a switched system,
switching between the normal transmission and the communication dropout.

In [20], a distributed event-triggered NCS with communication delay and packet loss was
studied. However it dealt with the normal ETC in which the event-triggered conditions are
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monitored continuously. Furthermore, an improved event-triggered communication scheme and
a sampled-state-error dependent tracking model for NCSs with communication delay and packet
loss were presented in [21].

The purpose of this paper is to analyse the stability of an NCS with PETC strategy, time-
varying delay and packet loss. Instead of using a zero-order hold for the control input generation,
the input signal is determined by a dynamic model of the continuous-time state-feedback loop.
The system is discretized into a piecewise linear model with exponential uncertainty caused by
the time-varying delay. Then a newly proposed method of polytopic over-approximation in our
previous work [14] is used to make the model suitable for stability analysis. The packet loss is
handled by means of a switched system approach, see [19]. Finally we obtain LMIs conditions
for the globally asymptotic stability (GAS) of the system.

The rest of the paper is as follows. In Section 2, description of an NCS with PETC, time-
varying delay and packet loss is given. In Section 3, we discretize the system into a piecewise
linear model and give the main points of the polytopic over-approximation method to deal
with the uncertainty. Section 4 gives the stability conditions in terms of LMIs for GAS of the
system. Section 5 uses a numerical example to illustrate the results. Conclusions are presented
in Section 6.

2 System Description

In this paper, we study a periodically event-triggered NCS with time-varying delay and
packet loss. The structure of the system is shown in Figure 1.

Plant SensorActuator

Controller ETC

Communication Network

Figure 1 Structure of the NCS

A linear continuous-time plant is considered

ẋ(t) = Ax(t) + Bu(t), (1)

where A ∈ R
np×np and B ∈ R

np×mp are system matrices. It is controlled through a communi-
cation network.
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The state is measured periodically by sensor at each sampling time nh, n ∈ N, for some
properly chosen sampling interval h > 0. By means of PETC, the state measurements are
transmitted over the network only when a certain event-triggered condition is satisfied. We
define the kth sampling time that triggers a transmission by tk. Clearly, tk should be an
integral multiple of h. Suppose tk = nkh, nk ∈ N.

In this system, the data is transmitted with a chance of failure caused by the packet loss.
In this paper the packet loss only in the communication path from sensor to controller is
considered. We model the packet loss by the dynamics of its total number in the whole process
of the system, which is presented by {L(k) ∈ N}, k ∈ N. L(k) denotes the total number of the
packet loss among the time t ∈ [0, tk−1] and is calculated by

L(k) =
k−1∑

i=0

l(i), (2)

where l(i) ∈ {0, 1} denotes whether the transmission at trigger time ti is successful or not. In
detail, l(i) = 0 stands for success, while l(i) = 1 indicates failure. About the packet loss, we
make an assumption as follow.

Assumption 2.1 There exists a real number ρ ∈ [0, 1] satisfying
∞∑

k=1

P [L(k) > ρk] < ∞. (3)

If the data is transmitted successfully, time-varying communication delay is involved. In
this paper, we only consider delays in the feedback path from sensor to controller. About the
system delay another assumption is made.

Assumption 2.2 For any k ∈ N, τk ∈ [τmin, τmax] with 0 ≤ τmin < τmax < h.

The time schedule of the network transmission is shown in Figure 2. The upper circles stand
for the sensor side at each sampling time, and the lower ones present the controller side. Circles
in gray show that the event trigger condition is satisfied and therefore transmission occurs at
this point. Arrows from top to bottom show the successful transmissions with some delay, while
at tk+1 the transmission is failed.

kt

k kt

1kt 2kt 3kt

2 2k kt 3 3k kt

Figure 2 Time schedule of the NCS
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The state-feedback controller of the system can be described as

u(t) = Kx̂(t), (4)

where K ∈ R
mp×np and x̂(t) is a right-continuous signal, given by

˙̂x(t) = (A + BK)x̂(t),

x̂(tk + τk) = x(tk) if l(k) = 0. (5)

At triggering time tk, only if l(k) = 0 which means no packet loss occurs, the measured
state of plant x(tk) is transmitted to the controller through the network and x̂ is then updated
at time tk + τk. Otherwise, x̂ keeps following its own dynamic rule, as shown in (5). In this
dynamic model, x̂ can be seen as the state of the controller.

According to the periodic event-triggered strategy, the triggering times tk, k ∈ N, are
determined by the event-triggered condition. In this paper, we focus on an important class of
event-triggered conditions, which has been applied in [22], given by

‖x̂(tk) − x(tk)‖ > σ‖x(tk)‖, (6)

where σ > 0.
Define ξ := [xT x̂T]T ∈ R

nξ . Clearly, (6) is equivalent to a quadratic event-triggered
condition, i.e.,

ξT(tk)Qξ(tk) > 0, (7)

where

Q =

⎡

⎣ (1 − σ2)I −I

−I I

⎤

⎦ . (8)

Also, a simple condition is adopted to make sure the interval between two adjacent triggering
times is not bigger than a certain value θh, θ ∈ N

+.
Thus, the triggering time tk can be described as

tk+1 := min{t = nh, n > nk|ξT(t)Qξ(t) > 0 ∨ n − nk ≥ θ}. (9)

Here, n ∈ N, nk = tk/h ∈ N and we suppose n0 = 0 and t0 = n0h = 0.

3 System Formulation

3.1 System Discretization

In order to obtain a condition for globally asymptotic stability (GAS) of the system, a
piecewise linear system (PLS) approach is applied. This approach is based on a discrete-time
PLS model which is obtained by discretizing the system at sampling times nh, n ∈ N. Define
discrete state xn := x(nh), x̂n := x̂(nh) and ξn := [xT

n x̂T
n ]T.
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If l(k) = 1, which means the measurement supposed to be transmitted is lost, according
to (5), the controller state x̂ follows its dynamic rule for t ∈ [tk, tk+1),

˙̂x(t) = (A + BK)x̂(t). (10)

Thus the discretized controller state is

x̂n+1 = e(A+BK)hx̂n, (11)

for n ∈ [nk, nk+1) ∩ N. Next from (1) and (4), we have

ẋ(t) = Ax(t) + BKx̂(t), (12)

for t ∈ [tk, tk+1). Then from (10) and (12), it can be inferred that for n ∈ [nk, nk+1) ∩ N,

xn+1 = eAhxn +
∫ h

0

eAsBKx̂((n + 1)h − s)ds, (13)

x̂n+1 = eAhx̂n +
∫ h

0

eAsBKx̂((n + 1)h − s)ds. (14)

Therefore,

xn+1 − eAhxn = x̂n+1 − eAhx̂n. (15)

Thus, the discretized plant state is

xn+1 = eAhxn + (e(A+BK)h − eAh)x̂n (16)

for n ∈ [nk, nk+1) ∩ N.
If l(k) = 0, which means no packet loss occurs, the controller refresh its state x̂ at the time

t = tk + τk. After that it still follows the dynamic rule (10) for t ∈ (tk + τk, tk+1). From
Assumption 2.2, we know tk + τk < tk + h. So the discretized controller state should be

x̂n+1 =

⎧
⎨

⎩
e(A+BK)(h−τk)xn, if n = nk,

e(A+BK)hx̂n, if n ∈ [nk + 1, nk+1) ∩ N.
(17)

As for the plant state x, (12) still holds for t ∈ [tk, tk+1). Therefore, similar to (15), it can be
obtained that

x(tk + τk) − eAτkx(tk) = x̂(tk + τk) − eAτk x̂(tk), (18)

x(tk + h) − eA(h−τk)x(tk + τk) = x̂(tk + h) − eA(h−τk)x̂(tk + τk), (19)
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and

x(tk + (i + 1)h) − eAhx(tk + ih) = x̂(tk + (i + 1)h) − eAhx̂(tk + ih), (20)

for i ∈ (0, nk+1 − nk) ∩ N. Thus, the discretized state of plant is

xn+1 =

⎧
⎪⎨

⎪⎩

(eAh + e(A+BK)(h−τk) − eA(h−τk))xn + (eAh+BKτk − eAh)x̂n, if n = nk,

eAhxn + (e(A+BK)h − eAh)x̂n, if n ∈ [nk + 1, nk+1) ∩ N.
(21)

From (11), (16), (17) and (21), the discretized lifted state ξn, n ∈ [nk, nk+1) ∩ N can be
described by

ξn+1 =

⎧
⎨

⎩
A0(τk)ξn, if n = nk ∧ l(k) = 0,

A1ξn, otherwise,
(22)

where

A0(τk) =

⎡

⎣ eAh + e(A+BK)(h−τk) − eA(h−τk) eAh+BKτk − eAh

e(A+BK)(h−τk) 0

⎤

⎦ (23)

and

A1 =

⎡

⎣ eAh e(A+BK)h − eAh

0 e(A+BK)h

⎤

⎦ . (24)

Therefore, the PLS model (22) is essentially an uncertain system with the uncertain param-
eter τk ∈ [τmin, τmax]. It can be noticed that the uncertainty appears in an exponential fashion
in A0(τk), which is an obstacle to apply existing robust stability analysis techniques directly.
A polytopic over-approximation method is used to deal with the uncertainty.

3.2 Polytopic Over-Approximation

The exponential uncertainty in (22) can be entirely represented by the matrix A0(τ) satis-
fying A0(τ) ∈ A0, with

A0 := {A0(τ) | τ ∈ [τmin, τmax]} . (25)

To perform the robust stability analysis we approximate the set of matrices in (25) in a
fashion of polytope as

A0 ⊆

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

N∑

i=1

αiA0i

∣∣∣∣∣ α =

⎡

⎢⎢⎢⎣

α1

...

αN

⎤

⎥⎥⎥⎦ ∈ A

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭
, (26)
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where A0i ∈ R
n×n, i ∈ [1, N ]∩N are suitably constructed matrices, N ∈ N denotes the number

of vertices in the polytopic over-approximation and

A=

{
α ∈ R

N
∣∣∣αi ≥ 0, i = 1, 2, · · · , N and

N∑

i=1

αi = 1

}
. (27)

In the literature, different ways of constructing such polytopic embeddings of the uncertain
system as in (26) were proposed, for example, the Jordan form method[12, 23, 24], the Cayley-
Hamilton method[25] and the Taylor series method[13]. These methods are evaluated in two
criteria: Computing complexity (related to N) and conservatism (related to the approximation
error), see [26]. In this paper, we use a new method of polytopic over-approximation which
performs relatively better in both two criteria, see our work [14]. The approach to get A0i,
i ∈ [1, N ] ∩ N can be seen in [14] and is omitted here.

According to (26) and A0(τk) ∈ A0, k ∈ N, we know that there exists α(k) ∈ A satisfying

A0(τk) =
N∑

i=1

α
(k)
i A0i, (28)

for k ∈ N.
Consequently the PLS model (22) can be written as

ξn+1 =

⎧
⎪⎪⎨

⎪⎪⎩

N∑

i=1

α
(k)
i A0iξn, if n = nk ∧ l(k) = 0,

A1ξn, otherwise.

(29)

4 Stability Analysis

In this section we use a piecewise quadratic Lyapunov function of the form

V (ξn) =

⎧
⎨

⎩
ξT
n P0ξn, if n = nk,

ξT
n P1ξn, if n ∈ (nk, nk+1) ∩ N,

(30)

where P0, P1 ∈ R
2np×2np . Stability conditions are presented in the theorem below.

Theorem 4.1 The NCS described by (1), (4), (5) and (9) is GAS if there exist matrices
P0, P1 ∈ R

2np×2np , and scalars φ > 1, β ∈ (0, 1), k1 ≥ 0, k2 ≥ 0, and as ≥ 0, bs ≥ 0,
s ∈ {1, 2, · · · , 6} such that

P0 − k1Q > 0, (31a)

P1 + k2Q > 0, (31b)
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AT
0i(P0 + a1Q)A0i < φθ−1βP0 − b1Q, (32a)

AT
1 (P0 + a2Q)A1 < φθP0 − b2Q, (32b)

AT
0i(P1 − a3Q)A0i < βP0 − b3Q, (32c)

AT
1 (P1 − a4Q)A1 < φP0 − b4Q, (32d)

AT
1 (P1 − a5Q)A1 < φP1 + b5Q, (32e)

AT
1 (P0 + a6Q)A1 < φP1 + b6Q, (32f)

for i ∈ {1, 2, · · · , N}, and

(1 − ρ) ln β + (θ − 1 + ρ) ln φ < 0. (33)

Proof Firstly, we should prove V (ξn) given by (30) can serve as a Lyapunov function.
Given the event-triggered condition (9), when n ∈ {nk|k ∈ N}, we have ξT

n Qξn > 0, then

V (ξn) = ξT
n P0ξn > ξT

n (P0 − k1Q)ξn > 0. (34)

When n /∈ {nk|k ∈ N}, we have ξT
n Qξn ≤ 0, then

V (ξn) = ξT
n P1ξn > ξT

n (P1 + k2Q)ξn > 0. (35)

Thus, V (ξn) is always positive and can be used as a Lyapunov function.
Next we consider possible situations in the process for n ∈ [nk, nk+1) ∩ N.
When n = nk, n + 1 = nk+1, we have ξT

n Qξn > 0 and ξT
n+1Qξn+1 > 0. So if l(k) = 0,

V (ξn+1) = ξT
n+1P0ξn+1

< ξT
n+1(P0 + a1Q)ξn+1

= ξT
n

( N∑

i=1

α
(k)
i AT

0i

)
(P0 + a1Q)

( N∑

i=1

α
(k)
i A0i

)
ξn

< ξT
n (φθ−1βP0 − b1Q)ξn

< φθ−1βξT
n P0ξn

= φθ−1βV (ξn), (36)

and if l(k) = 1,

V (ξn+1) = ξT
n+1P0ξn+1

< ξT
n+1(P0 + a2Q)ξn+1

= ξT
n AT

1 (P0 + a2Q)A1ξn

< ξT
n (φθP0 − b2Q)ξn

< φθξT
n P0ξn

= φθV (ξn). (37)
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When n = nk, n + 1 �= nk+1, we have ξT
n Qξn > 0 and ξT

n+1Qξn+1 ≤ 0. So if l(k) = 0,

V (ξn+1) = ξT
n+1P1ξn+1

≤ ξT
n+1(P1 − a3Q)ξn+1

= ξT
n

( N∑

i=1

α
(k)
i AT

0i

)
(P1 − a3Q)

( N∑

i=1

α
(k)
i A0i

)
ξn

< ξT
n (βP0 − b3Q)ξn

< βξT
n P0ξn

= βV (ξn), (38)

and if l(k) = 1,

V (ξn+1) = ξT
n+1P1ξn+1

≤ ξT
n+1(P1 − a4Q)ξn+1

= ξT
n AT

1 (P1 − a4Q)A1ξn

< ξT
n (φP0 − b4Q)ξn

< φξT
n P0ξn

= φV (ξn). (39)

When n �= nk, n + 1 �= nk+1, we have ξT
n Qξn ≤ 0 and ξT

n+1Qξn+1 ≤ 0. So

V (ξn+1) = ξT
n+1P1ξn+1

≤ ξT
n+1(P1 − a5Q)ξn+1

= ξT
n AT

1 (P1 − a5Q)A1ξn

< ξT
n (φP1 + b6Q)ξn

≤ φξT
n P1ξn

= φV (ξn). (40)

When n �= nk, n + 1 = nk+1, we have ξT
n Qξn ≤ 0 and ξT

n+1Qξn+1 > 0. So

V (ξn+1) = ξT
n+1P0ξn+1

< ξT
n+1(P0 + a6Q)ξn+1

= ξT
n AT

1 (P0 + a6Q)A1ξn

< ξT
n (φP1 + b6Q)ξn

≤ φξT
n P1ξn

= φV (ξn). (41)

Since θ is the largest number of samples between two trigger times, we have nk+1 −nk ≤ θ.
Above all, it can be inferred that if l(k) = 0,

V (ξnk+1) < φθ−1βV (ξnk
), (42)
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and if l(k) = 1

V (ξnk+1) < φθV (ξnk
). (43)

Combining (42) with (43) yields

V (ξnk+1) < ((1 − l(k))φθ−1β + l(k)φθ)V (ξnk
). (44)

Thus, we have

V (ξnk
) < η(k)V (ξ0), (45)

where

η(k) =
k−1∏

i=0

((1 − l(i))φθ−1β + l(i)φθ). (46)

On the one hand, from Assumption 2.1, we know there exists a real number ρ ∈ [0, 1] such
that (3) holds. According to [19], it can be proved that

lim
k→∞

sup
L(k)

k
≤ ρ. (47)

The proof can be seen in [19] and is omitted.
On the other hand, from the equation

ln((1 − l)β + lφ) = (1 − l) ln β + l ln φ, (48)

for l ∈ {0, 1}, it can be inferred that

ln η(k) =
k=1∑

i=0

ln((1 − l(i))φθ−1β + l(i)φθ)

=
k−1∑

i=0

(1 − l(i))((θ − 1) ln φ + ln β) +
k−1∑

i=0

l(i)θ ln φ

= (k − L(k))((θ − 1) ln φ + ln β) + L(k)θ ln φ

= (k − L(k)) lnβ + (kθ − k + L(k)) lnφ. (49)

Thus,

lim
k→∞

sup
ln η(k)

k
= lim

k→∞
sup

((
1 − L(k)

k

)
ln β +

(
θ − 1 +

L(k)
k

)
ln φ

)

≤ (1 − ρ) ln β + (θ − 1 + ρ) ln φ. (50)

From (33), we know limk→∞ sup ln η(k)
k < 0 holds. That is to say, limk→∞ sup ln η(k) = −∞,

and consequently, limk→∞ sup η(k) = 0.
Finally, according to (45), it can proved that limk→∞ V (ξnk

) = 0, which implies GAS of the
system.
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5 Numerical Example

In this section, the presented method is illustrated by a numerical example based on a
state-feedback controller.

5.1 Trajectories of the System

The example is taken from [27] with plant (1) given by

ẋ =

⎡

⎣ 0 1

−2 3

⎤

⎦ +

⎡

⎣ 0

1

⎤

⎦ , (51)

and the state-feedback controller (4), where K = [1 − 4]. Here we take h = 0.2, τmin = 0,
τmax = 0.1 and ρ = 0.2. The event-triggered condition is given by (9) with σ = 0.1 and θ = 6.

Firstly, by using the polytopic over-approximation method presented in [14], we can get
A0i, i ∈ [1, N ] ∩ N that satisfy (26) as follows. Because np = 2 in this example, we have
N = np + 1 = 3.

A01 =

⎡

⎢⎢⎢⎢⎢⎣

0.9882 0.1215 0 0

−0.2982 0.7918 0 0

0.9882 0.1215 0 0

−0.2982 0.7918 0 0

⎤

⎥⎥⎥⎥⎥⎦
, (52a)

A02 =

⎡

⎢⎢⎢⎢⎢⎣

1.4244 0.1897 −0.3135 −0.0891

−0.4540 1.2365 0.1783 −0.5809

1.3339 0.1640 0 0

−0.4025 1.0688 0 0

⎤

⎥⎥⎥⎥⎥⎦
, (52b)

A03 =

⎡

⎢⎢⎢⎢⎢⎣

0.9617 0.1600 0.0222 −0.0891

−0.5420 1.3283 0.1452 −0.5809

0.9997 0.0058 0 0

−0.2336 0.9037 0 0

⎤

⎥⎥⎥⎥⎥⎦
. (52c)

Next choose β and φ properly to make (33) hold. For a given β, take

φ = e
−0.01−(1−ρ) ln β

θ+ρ−1 . (53)

Thus, we can make a rough traversal for β ∈ (0, 1). For example, choose β arbitrarily from
{0.01, 0.02, · · · , 0.99}.

Finally with A0i, β and φ determined, we use the LMIs toolbox in Matlab to check if the
LMIs conditions in Theorem 4.1, i.e., (31) and (32) are satisfied. For this given example, a
solution can be obtained which means the system is GAS.

Suppose that the original states are x(0) = [1 − 3]T and x̂(0) = [0 0]T. Figure 3 shows the
trajectories of x and x̂, and Figure 4 gives the random delay and packet loss. Note that when
the measurement is not transmitted there are no delay and packet loss.
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Figure 3 Trajectories of x and x̂
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Figure 4 The random delay and packet loss

5.2 Stability Region

In this part, we employ the same example, however, make τmax, ρ and σ be undetermined
parameters.

On one hand, suppose ρ = 0.2, a stability region can be drawn by τmax and σ that make sure
the GAS of the system according to Theorem 4.1, see Figure 5. The region is below the line in
the picture. On the other hand, suppose τmax = 0.1, similarly a stability region constructed by
ρ and σ is presented in Figure 6.

It can be seen that the parameters given by former part is inside the regions, which implies
the GAS of the system. In fact, some possible values of the parameters outside the regions also
make the system stable, due to the conservativeness of the derived results.
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Figure 5 The stability region when ρ = 0.2
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Figure 6 The stability region when τmax = 0.1

6 Conclusion

In this paper, we focus on stability analysis of an NCS with PETC considering both time-
varying delay and packet loss. Instead of using the tradition zero-hold fashion, the controller
input follows its own dynamic rule when there is no measurement arrived. The system is
discretized and formulated into a piecewise linear model with uncertainty caused by delay. Then
the model is embedded in a polytopic over-approximation with a better structure suitable for
stability analysis. A switched system method is used to deal with the stochastic packet loss.
Finally LMIs stability conditions are obtained. A numerical example shows the effectiveness of
our method for stability analysis.
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