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Abstract Community structure is an integral characteristic of real world networks whichever pro-

cesses or areas they emerge from. This paper addresses the problem of community structure detection

theoretically as well as computationally. The authors introduce a number of concepts such as the neigh-

bourhood and strength of a subgraph, p-community, local maximal p-community, hubs, and outliers

that play elemental role in formalising the concept of community structure in complex networks. A

few preliminary results have been derived that lead to the development of an algorithm for community

structure detection in undirected unweighted networks. The algorithm is based on a local seed expan-

sion strategy that uses the concept of interaction coefficient. The authors have analysed the algorithm

on a number of parameters such as accuracy, stability, and quality on synthetic and real world networks

from different areas.

Keywords Algorithm, hub, local maximal p-community, outlier, p-community, strength of a sub-

graph.

1 Introduction

The era of network science has emerged as a consequence of the study of graphs represent-
ing real data from different areas such as, but not limited to, biology[1], physics[2, 3] and social
sciences[4]. However, due to large size, real world networks are often expressed into smaller,
yet cohesive subgraphs that have least possible interconnections. Such subgraphs are loosely
referred to as “communities”. Quite a lot of efforts were made to define communities quantita-
tively in the last few decades, which resulted in a plethora of definitions. This may possibly be
due to the diversity of the areas where real networks, and of course the researchers, belong to.
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Traditionally a clique (or a maximal clique) was treated as a definition of a community,
especially by social scientists[5]. Such a definition is, however, so stringent that one can easily
overlook the subgraphs which lack only a few edges to be a maximal clique. In the last half a
century, a number of variations of the definition of community including LS-sets[6], n-clique[7],
n-club and n-clan[8], k-core and k-plex[9], λ-sets and α-sets[10] were proposed and studied.
Two meaningful characteristics one can infer from these definitions are “connectedness” and
“cohesiveness”. Connectedness implies that in a community there must be a path (a chain of
nodes and edges) between every pair of its members. Cohesiveness generally means that the
intra-community interactions are higher than the inter-community interactions. For example,
Flake, et al. defined web communities as the vertex subsets with each vertex having internal
degree no smaller than its external degree[11]. In the same spirit, Radicchi and co-workers
proposed definitions of community in strong and weak sense[12]. They define a weak community
as a subgraph whose internal degree is higher than its external degree and a strong community
as a subgraph whose each vertex has internal degree greater than its external degree.

Many researchers even do not define communities explicitly. Instead, they treat a partition
algorithmically optimised through some quality measure[13] as a plausible community structure
of the input network. While optimisation of a quality function can offer appealing results
in some cases, it carries with it a risk of overestimating or underestimating the number of
communities. This phenomenon is often called the “resolution limit”[14]. And possibly, there
is a very narrow scope for development of resolution limit-free methods that depend on global
optimisation of a quality function[15].

Along with communities, real world networks also contain “hubs”[16, 17]. However, just
like the case of communities, there is lack of clarity about what it means to be a hub. A
general sense prevailing about hubs is that they have high degree and connect the different
“parts” (cores or communities) of a network. Sometimes they form groups called “rich clubs”
of a network[18]. While there are several methods that detect communities and cores[3, 11, 19],
and even rich clubs[18, 20] in real world networks, there is no method which can detect both
communities as well as hubs.

In this article, we aim, primarily to build a necessary framework for community structure
theoretically. We introduce a number of concepts such as the neighbourhood and strength of
a subgraph, p-community, local maximal p-community, hubs, and outliers that play elemental
role in formalising the concept of community structure in complex networks. A few preliminary
results have been derived that lead to the development of an algorithm for community structure
detection in undirected unweighted networks. The algorithm is based on a local seed expansion
strategy that uses the concept of interaction coefficient. We have tested the algorithm on real
world networks of different sizes and from different areas and found satisfying results.
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2 Theoretical Framework

2.1 Basic Terminology

For the theory that follows, we have assumed that G = (V, E) is an undirected unweighted
graph. A subgraph C of a graph G is said to be induced by a set S ⊆ V (G) if V (C) = S and
E(C) = {(u, v) ∈ E(G) : u, v ∈ S}. Note that a single vertex of a graph is an induced subgraph
of the graph. We shall use the notation C ⊆ G to denote that C is an induced subgraph of G.
For S ⊆ V (G) and C ⊆ G, whenever we write S∩C, S ∪C or S\C, we mean that the operation
intersection, union, or subtraction respectively takes place between the set S and the vertex set
of C. Let C1 and C2 be two subgraphs of G, then an edge-cut or simply a cut of C1 and C2,
denoted by cut(C1, C2), is the set of all edges that have one end point in C1 and the other in
C2. Symbolically,

cut(C1, C2) = {(u, v) ∈ E(G) : u ∈ C1, v ∈ C2}.
When v /∈ C, we shall use the notation cut(v, C) to denote the set of edges with one endpoint
as v, and another in C. Thus, cut(v, C) = ∅ is equivalent to Nv ∩ C = ∅.

We generalise the neighbourhood of a vertex to the neighbourhood of a subgraph as follows.

Definition 2.1 (Neighbourhood of a subgraph) Let G be a graph and C ⊆ G. The
neighbourhood of C, denoted as NC , is defined as

NC = {u ∈ G\C : u ∈ Nv for some v ∈ C}.

Definition 2.2 (Vertex/edge disjoint subgraphs) Let G be a graph and C1, C2 ⊆ G.
Then, C1 and C2 are said to be vertex-disjoint if V (C1) ∩ V (C2) = ∅. C1 and C2 are said to
be edge-disjoint if V (C1) ∩ V (C2) = ∅ and cut(C1, C2) = ∅.

While detecting the community structure of a graph, it is natural to take union of two or
more subgraphs to form a larger subgraph. Recall that the union of two graphs G1 and G2

is the graph G with V (G) = V (G1) ∪ V (G2) and E(G) = E(G1) ∪ E(G2)[21]. However, this
definition cannot be applied to two subgraphs C1 and C2 of the same graph, because it does
not take into account the edges in cut(C1, C2). For this reason, below we present a generalised
definition of the union of two subgraphs.

Definition 2.3 (Union of subgraphs) Let G be a graph and C1, C2 ⊆ G. The union of
C1 and C2 is the subgraph C1 ∪ C2 induced by V (C1) ∪ V (C2).

To clarify the definition, we have V (C1 ∪C2) = V (C1) ∪ V (C2) and E(C1 ∪C2) = E(C1) ∪
E(C2) ∪ cut(C1, C2).

2.2 Strength of a Subgraph

Here we present the concepts prerequisite to the notion of a community. Two important
characteristics of a community as we have mentioned in the introduction are connectedness and
cohesiveness. To address the cohesiveness, we present the notion of the strength of a subgraph.

Definition 2.4 (Strength of a subgraph) Let G be graph. Let C ⊆ G with d(C) �= 0.
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Then the strength of C, denoted as s(C), is defined as

s(C) =
dint(C) − dext(C)

d(C)
, (1)

where dint(C) =
∑

v∈C |Nv ∩ C|, dext(C) =
∑

v∈C |Nv\C|, and d(C) =
∑

v∈C |Nv| are respec-
tively the internal degree, the external degree and the degree of C.

Note that the strength of a subgraph that contains all isolated vertices is not defined, because
such a subgraph would have total degree zero. In any case, such subgraphs are unimportant
as far as we are concerned with community structure detection. However, the strength of an
isolated vertex may be needed, so we set it to 1. Now, from the definition of strength, note that

∣
∣dint(C) − dext(C)

∣
∣ ≤ dint(C) + dext(C) = d(C).

This implies s(C) ∈ [−1, 1]. It can easily be observed that when C has no internal edges
s(C) = −1 and when C has no external edges s(C) = 1. Thus the strength of a subgraph
indicates the level of cohesiveness it possesses. Note that cohesiveness have been defined in
many other ways too, for example, as the density of edges inside a subgraph, i.e., the ratio of
the number of edges present in the subgraph to the maximum possible number of edges. Here,
the strength offers an alternate view on cohesiveness. It compares the the number of internal
edges with the external edges.

Note that in the terminology of strength, Radicchi’s weak community is a subgraph with
positive strength, i.e., a subgraph C of a graph G is said to be a weak community if s(C) > 0.
If we define dint

C (v) = |Nv ∩ C|, and dext
C (v) = |Nv\C|, then Radicchi’s strong community is a

subgraph C with dint
C (v) > dext

C (v) for all v ∈ C. However, defining a community merely on
the basis of strength is severely flawed. For instance, look at the subgraphs C1, C2 and C3 in
Figure 1. We find that the strength of each of them is 1, which is the maximum. But C1 is
not even connected, and C2 is minimally connected in the sense that removal of any edge can
disrupt the communication between the other nodes. The subgraph C3, on the other hand,
is maximally connected, i.e., it is a clique. By Radicchi’s definition, all the three subgraphs
C1, C2, and C3 are weak as well as strong communities. Thus Radicchi’s definitions fail to
distinguish between the three subgraphs.

C1 C2 C3

Figure 1 Three subgraphs with the same strength, but with different internal degrees
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Before we come to our definition of community, let us look at a few preliminary results
concerning the strengths of the union of two subgraphs.

Theorem 2.5 Let G be a graph. Let C1 and C2 be two vertex-disjoint subgraphs of G

with s(C1) = p > −1 and s(C2) = q > −1. Also, let dint(C1) = d1, d
int(C2) = d2 and

k = |cut(C1, C2)|. Then

s(C1 ∪C2) =
(1 + p)(1 + q)2k + (1 + p)qd2 + (1 + q)pd1

(1 + p)d2 + (1 + q)d1
. (2)

Proof Let k1 = |cut(C1, G\(C1 ∪ C2))| and k2 = |cut(C2, G\(C1 ∪C2))|. Then, note that

p = s(C1) =
d1 − (k + k1)
d1 + (k + k1)

.

It can be rewritten as

k + k1 =
(

1− p

1 + p

)

d1. (3)

Similarly, we can write

k + k2 =
(

1− q

1 + q

)

d2. (4)

These give us

s(C1 ∪C2) =
(d1 + d2 + 2k)− (k1 + k2)
(d1 + d2 + 2k) + (k1 + k2)

(5)

=
d1 + d2 + 4k −

(
1−p
1+p

)
d1 −

(
1−q
1+q

)
d2

d1 + d2 +
(

1−p
1+p

)
d1 +

(
1−q
1+q

)
d2

=
(1 + p)(1 + q)2k + (1 + p)qd2 + (1 + q)pd1

(1 + p)d2 + (1 + q)d1
.

The proof is finished.
Theorem 2.5 gives us a precise formula for computation of the strength of the union of two

vertex-disjoint subgraphs. The following corollary follows immediately from Theorem 2.5.

Corollary 2.6 Let C1 and C2 be two edge-disjoint subgraphs of a graph G with strengths
p and q, respectively. Then

min{p, q} ≤ s(C1 ∪ C2) ≤ max{p, q}.
If we are given that the strength of two subgraphs is greater than their individual strengths

then there must be at least a certain number of edges crossing the two subgraphs. This is stated
below.

Theorem 2.7 Let C1 and C2 be two disjoint subgraphs of a graph G, with strengths
p > −1 and q > −1,respectively. Then, if s(C1 ∪ C2) > max{p, q}, then cut(C1, C2) �= ∅.

The proof of this theorem is given in the Appendix. It can be seen from the proof of
Theorem2.7 that its converse is not true. For a counter-example, look at the subgraphs C1 =
{1, 2, 3, 4, 5} and C2 = {6, 7, 8, 9} in Figure 2. Here s(C1) = 2

3 and s(C2) = 1
11 . Also s(C1 ∪

C2) = 15
23 , which is not greater than the maximum of s(C1) and s(C2), although cut(C1, C2) �= ∅.
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C1 C2

C1 ∪ C2

Figure 2 C1 and C2 are the subgraphs induced by {1, 2, 3, 4, 5} and {6, 7, 8, 9, 10}, respec-

tively. s(C1) = 2
3

and s(C2) = 1
11

. Also s(C1 ∪ C2) = 15
23

, which is no greater than

max{ 2
3
, 1

11
}

If we take p = q in Theorem 2.7, we get a much stronger result as given in the following
corollary.

Corollary 2.8 Let C1 and C2 be two subgraphs of a graph with strength −1 < p < 1.
Then s(C1 ∪ C2) > p iff cut(C1, C2) �= ∅.

Proof Trivial.
All the results discussed above are aimed at computing the lower bounds on the strength of

the union of two vertex-disjoint subgraphs. Now, let us consider the subgraphs C1 and C2 of
a graph G as shown in Figure 3. Note that s(C1) = 1/3 = s(C2). Also you can compute that
s(C1 ∪C2) = 2/3. So in this case we have

s(C1 ∪ C2) ≥ s(C1) + s(C2). (6)

Is this true for all pairs of subgraphs of G? Clearly, the answer is no. Because, for example, if
we look at the subgraphs C2 and C3 of G in Figure 3 we find that s(C2 ∪ C3) = 19/21 which
is smaller than s(C2) + s(C3).

C1 C2 C3

G

Figure 3 Three subgraphs C1, C2 and C3 of a graph G with s(C1) = 1/3 = s(C2) and

s(C3) = 2/3
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So under what conditions on C1 and C2, we can ensure that (6) holds? The answer lies in
the following theorem.

Theorem 2.9 Let C1 and C2 be two vertex-disjoint subgraphs of a graph G with s(C1) =
p, s(C2) = q and p + q < 1. Then s(C1 ∪C2) ≥ p + q if and only if

|cut(C1, C2)| ≥ 1
2

[(
q

1− p

)

dext(C1) +
(

p

1− q

)

dext(C2)
]

. (7)

The proof of Theorem 2.9 is given in the Appendix. An important thing about Theorem2.9
is that its premise and conclusion imply each other. It gives us the precise condition under
which the strength of the union of two subgraphs is greater than or equal to the sum of the
strengths of the individual subgraphs. We shall return to it in Section 3 to see its application.

2.3 Community Structure at Local Level

Here we shall present the basic ingredients essential for defining the “community structure”
in a graph.

Definition 2.10 (Partition) Let G be a graph, and P a collection of subgraphs of G.
Then P is called a partition of G if

i) each C ∈ P is an induced subgraph of G,

ii) V (C1) ∩ V (C2) = ∅, whenever C1, C2 ∈ P and C1 �= C2,

iii) ∪C∈PV (C) = V (G).

When the condition (ii) is relaxed, P is called a cover of G.

So what kind of subgraphs can P hold? Here we propose different notions essential for
determining the community structure of a graph. First we define the notion of p-community.

Definition 2.11 (p-community) A connected subgraph C of a graph G with strength
s(C) = p > 0 is called a p-community of G.

From a user’s point of view p-communities with p closer to 1 might be useful. Since, 1-
communities are precisely the components of the graph, they can be treated the most generalised
communities. However, if the size of a component is large it is possible that it contains many
meaningful communities of small size and with comparatively small p. On the other hand
p-communities with p close to 0 might be numerous, and hence they would also be unrealistic.

Thus, it would be desirable to search for those p-communities that have maximised p in
the interval (0, 1), at local or global scale. However, global maximisation of p may overlook
meaningful communities at local level. This is what Corollary 2.8 tells us about. For example,
in the graph given in Figure 4 the subgraphs C1 and C2 have strengths equal to 29/35 each.
But, their union has strength s(C1 ∪ C2) = 31/35 which is greater than 29/35. In fact, it can
be verified that

s(C1 ∪ C2 ∪C3) > max{s(C1 ∪ C2), s(C3)}.
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Thus, a global optimisation of the strengths would not resolve the individual communities
C1, C2, C3 etc. This motivates us to look for p-communities which have maximum strengths
within their neighborhoods. We define them as follows.

Definition 2.12 (Local maximal p-community) Let C be a p-community of a graph G.
Then C is said to be a local maximal p-community if

s(C ∪X) < p, for all X ⊆ NC . (8)

The definition of a local maximal p-community can be distinguished from all the other
existing definitions of community. We shall present a few examples. First a local maximal
p-community need not be a clique or an n-clique. Neither it is necessarily a k-core or a k-
plex. This is because, the definition of local maximal p-community emphasises the requirement
of minimum external degree and/or maximum internal degree at local level, i.e., within the
neighbourhood. As a result, it is quite possible that a local maximal p-community may include
nodes with internal degree smaller than their external degree if their inclusion does not decrease
its strength . This means that a local maximal p-community need not be a strong community
or an LS-set.

Example 2.13 Consider the subgraph C = {1, 2, 3, 4, 5} in Figure 4, where C is a web
community and 3/17-community. But, you can see that C is not a local maximal 3/17-
community, because s(C ∪ NC) = 7/27 > 3/17. However, C ∪ NC is a local maximal 7/27-
community.

Example 2.14 Consider the graph in Figure 4 again. A little computation reveals that
s(C1) = s(C2) = s(C4) = 29/35 and s(C3) = s(C5) = 7/9. Now, it can be proved that each
of C1, C2 and C4 is a local maximal 29/35-community, whereas each of C3 and C5 is a local
maximal 7/9-community.

Figure 4 A graph showing with local maximal p-communities
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The notion of p-community or local maximal p-community captures just one aspect of real
world systems. Networks emerging, for example, from biological[16, 18] and social sciences[22]

are often composed of “hubs”, that inescapably influence their dynamics. Hubs have been
defined in different ways, depending on their role and the type of networks. A hub generally
possesses high degree, connects different communities, and may participate in a rich club of the
network[20]. Let us look at a simple description of a modular network in Figure 5. The node v

connects the communities C1, C2, and C3. No communication would take place among C1, C2,
and C3 if v is removed. Thus, v works as a ‘hub’ through which information is exchanged
between different modules of the network. Formally, we define it as follows.

Figure 5 A model graph showing a community structure with hubs and outliers

Definition 2.15 (Hub/outlier) Let G be a graph with partition P . Then a vertex v ∈ P
is called a hub if

i) there exist at least three subgraphs C1, C2, C3 ∈ P such that for each 1 ≤ i ≤ 3, s(Ci) > 0
and cut(v, Ci) �= ∅.

ii) whenever C1, C2 ∈ P are such that C1 �= C2, cut(v, C1) �= ∅ and cut(v, C2) �= ∅, then
cut(C1, C2) = ∅.

A connected subgraph C ∈ P is called an outlier if s(C) ≤ 0.

A hub essentially controls the flow of information among the modules that are connected to
it. On the other hand, outliers are usually small connected subgraphs attached to a hub or a
p-community. Look at the community structure in Figure 5 again. Here

P = {C1, C2, C3, C4, C5, v, w, {x, y}},
where we have assumed that for each 1 ≤ i ≤ 5, s(Ci) > 0. We can see that v is a hub, because
it satisfies all the three conditions of a hub. However, node w is not a hub, as the strength of
the subgraph {x, y} is −1/3. Rather, w is an outlier. Likewise, {x, y} is also an outlier.

Note that if P is a partition of a graph G, and C ∈ P is connected, then C must be either
a p-community or a hub, or an outlier. So, now we can give a formal meaning to the term
“community structure”. For this we need a quality measure.
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Definition 2.16 (Disjoint/overlapping community structure) Let G be a graph and P a
partition of G. Then P is called a disjoint community structure of G with respect to a quality
measure M if

i) every C ∈ P is a local maximal p-community, a hub, or an outlier;

ii) M(P) ≥ 0.5.

If P is a cover, instead of a partition, then P is called an overlapping community structure of
G w.r.t. M .

Obviously, there can be multiple partitions/covers of a graph. One has to look for the one
which is optimal with respect to some quality measure M , that is, for which M attains the
maximum value. Unfortunately not all quality measures correlate strongly[4]. The traditional
quality measure called “modularity” by Newman and Girvan[13] has serious drawbacks. Once
such drawback is its resolution limit[14] which shows that the communities smaller than a
specific size are undetectable by the modularity. But due to lack of other sophisticated quality
measures it was almost treated as a benchmark quality measure in the last decade. Recently,
the quality measure overlapping modularity (Qov) of Nicosia, et al.[23] was compared with a
new measure called the weighted overlapping modularity (Qwo)[24]. It was found that the Qwo

measure evaluates the quality of overlapping community structures more sharply than Qov.
Both of these measures can equally be applied on disjoint community structures in undirected
and unweighted real world networks. Below we reproduce the formula for Qwo for a cover P

Qwo(P) =
1
|P|

∑

C∈P

(

1−
∑

v∈C |mv|
|C| . |P|

)
dint(C)
d(C)

,

where mv is the set of all the memberships of v. When P is a partition, the formula reduces to

Qwo(P) =
(

1− 1
|P|

)[
1
|P|

∑

C∈P

dint(C)
d(C)

]

. (9)

This is because for all C ∈ P ∑

v∈C

|mv| = |C| .

Arguably, every overlapping community structure can be expressed into a disjoint community
structure. To see how, let P be a cover of a graph and C ∈ P . Assume that C is connected,
otherwise we can write it as the disjoint union of connected components. Assume that |C| > 1.
Then s(C) > 0 or s(C) ≤ 0 which implies that either C is a p-community or an outlier. On the
other hand, when |C| = 1, either C is a hub or an outlier.

Let us look at a particular example. Consider the cover

P =
{{1, 2, 3, 4, 5, h1, h2, h3, h4, h5}, C1, C2, C3, C4, C5

}



190 KUMAR PAWAN · DOHARE RAVINS

of the graph in Figure 4. Note that each hi has dual membership. We can compute that

Qwo(P) =
1
6

[
45
60
× 34

54
+

5
6

(

3× 32
35

+ 2× 32
36

)]

= 0.71.

If we look at the community structure closely, we find that removal of hi’s leads to several
disjoint communities. In fact, for each i, Ci\hi represents four local maximal p-communities,
each with strength p = 5/7. This means each hi could be a hub if we decompose the overlapping
structure into a disjoint one. Let the new community structure be represented by the partition
P ′ defined as

P ′ =
{{1, 2, 3, 4, 5}}

5⋃

i=1

{hi

} 5⋃

i=1

{Ci\hi

}
.

In this partition, {1, 2, 3, 4, 5} is a 3/17-community, each hi is a hub, and for each i, Ci\hi is
group of 4 disjoint local maximal p-communities each with strength p = 5/7. Thus, there are
total 26 subgraphs in P ′ whereas P contains just 6 subgraphs. Thus P ′ gives a finer community
structure than P ′. Let us now compute the Qwo score for P ′. We have

Qwo(P ′) =
1
26

(

1− 1
26

) (
10
17

+ 5× 0 + 20× 6
7

)

= 0.66.

Likewise we computed the overlapping modularity scores for both the partitions, and obtained
Qov(P) = 0.84 and Qov(P ′) = 0.82. So, qualitywise P is slightly better than P ′. Nevertheless,
P ′ gives deeper and finer structure than P .

2.4 Interaction Coefficient

Broadly there are two kinds of methods, namely global methods[25] and local methods[26],
that explore the community structure of a network. The algorithm we shall develop in the next
section, is based on a local method that expands seeds through their neighbourhoods. In the
expansion phase of such a method, there is a subgraph C and a node v in C’s neighbourhood,
between which the interaction takes place. Inclusion of v into C depends on the strength of their
interaction. To quantify the interaction of a node with a community, we define the following
coefficient.

Definition 2.17 (α-interaction coefficient) Let C be a subgraph of a graph G and 0 ≤
α ≤ 1. The α-interaction coefficient of a vertex v ∈ V (G) with C is defined as

ξα(v, C) =
α |Nv ∩ C|+ (1− α) |NvC |

dv
, (10)

where NvC = Nv ∩NC , and dv is the degree of v.

By definition, ξα(v, C) is the weighted average of the quantities |Nv ∩ C| and |NvC |, where
the first one represents the number of neighbours of v in C, and the second one the number of
neighbours of v in the neighbourhood of C. It is clear that ξα(v, C) ≥ 0. The lower bound is
achieved when Nv ∩ C = NvC = ∅. In order to estimate the upper bound, note that

ξα(v, C) =

⎧
⎨

⎩

α, when Nv ⊆ C,

1− α, when Nv ⊆ NC .
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This implies that ξα(v, C) ≤ max{α, 1− α}. Let us consider an example.

Example 2.18 Consider the graph in Figure 5. We can compute that

ξα(v, C1) =
α � 1 + (1− α) � 0

3
=

α

3
.

To compute ξα(w, C5), note that |Nw ∩ C5| = |NwC5| = 1. So,

ξα(w, C5) =
α � 1 + (1 − α) � 1

3
=

1
3
.

From the example above we can see that ξα(v, C) does not always depend on α. In fact, it
can easily be seen that ξα(v, C) is independent of α when |Nv ∩ C| = |NvC |. So, what exactly
is the importance of α? We shall address this question in the next section. At the moment,
let us look at the role the interaction coefficient plays in detecting the community structure
of a network. Note that ξα(v, C) measures the strength of interaction between v and C. This
information can be used by an algorithm that detects communities through a seed expansion
technique. Assume, for example, an algorithm starts at a subgraph C as an ‘initial community’
and expands it by adding nodes from its neighbourhood to it as long a certain condition is
satisfied. Then to get the maximum possible expansion of C into a full community, one needs
to add nodes that have highest interaction coefficient with C at each step. This is because, if
ξα(v, C) is highest for some v ∈ NC , then it indicates that a large fraction of the neighbours of
v is in C ∪NC .

3 The Algorithm

3.1 Rationale of the Algorithm

The theoretical framework that we have proposed in the preceding section throws the fun-
damental question: Can we precisely detect the local maximal p-communities? If yes, how
efficiently? The answer to the first question demands further work on the structure of the
local maximal p-communities. To answer second, consider a subgraph C with |NC | = � and
s(C) = p. Then there are

∑�
i=0

(
�
i

)
= 2� − 1 nonempty subsets T of NC for which we have

to test the condition (8). Thus it would take exponential time O(2�) for checking whether C

is local maximal p-community or not. However, we can always develop a local expansion type
algorithm that begins each community with a single vertex and extends it as long as a certain
quality function is increased[27]. Here we can employ strength as a quality function. Usually
expansion algorithms expand seeds by adding one vertex at a time. We shall develop a method
that allows a bunch of vertices to be added at each step during expansion phase. For this task
we need another function that can control the vertices to be added at each step. We shall
use the interaction coefficient for this task as it essentially determines the closeness between a
vertex and a subgraph.

3.2 Description of the Algorithm

The algorithm takes a graph G as input, and returns a partition that contains p-communities,
hubs and outliers. It uses primarily three functions, namely EXPAND, GET-NEAREST-
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COMS, and GET-HUBS. First we describe the main algorithm, and then each of these functions,
in detail.

Algorithm 1: Algorithm to find p-communities, hubs and outliers in an unweighted
undirected network .
Data: A graph G

Result: p-communities, hubs and outliers of G

U ← V (G),P ← ∅;
i← 1;
while U �= ∅ do

C ← {u}, where u is a seed chosen from U ;
EXPAND(G, C, U);
U ← U\C;
if 0 ≤ s(C) < 0.5 and P �= ∅ then

L←GET-NEAREST-COMS(G,P , C);
if L �= ∅ then

Pick � ∈ L randomly.;
P [�]← P [�] ∪ C;

else
P [i]← C;
i← i + 1;

end

else
P [i]← C;
i← i + 1;

end

end
H ←GET-HUBS(G,P);
O ← ∅;
foreach C ∈ P do

if C /∈ H and s(C) ≤ 0 then
O ← O ∪ {C};

end

end

Main Algorithm The main algorithm (given in Algorithm 1) maintains four sets namely
U,P , H , and O. The set U stores the vertices that are still unexplored, i.e., the vertices whose
memberships to a community is yet to be decided. The set P stores the communities that
have been explored. The sets H and O store hubs and outliers, respectively. Note that P is
an indexed set, and P [i] indicates the community in P at the ith index. Step 1 initializes U

with V (G), and P with ∅. The variable i holds the index of the community being expanded.
Then Steps 3–20 describe a while loop which runs as long as U is nonempty. In Step 4, a set
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C is initialized with a randomly chosen vertex u from U . The set C, actually, represents the
community being expanded currently. To expand C, the function EXPAND is called at line 5.
Afterwards, C is removed from U .

Now the condition at line 7 checks whether or not 0 ≤ s(C) < 0.5 and P �= ∅. Note that
at the first encounter of this condition P is empty, which means that C is the first community.
So, C is stored in P at the ith index, and i is incremented by 1 (lines 16–19). On the other
hand, if the condition at line 7 is true, the indices of the communities that are nearest to C are
obtained in the set L, using the function GET-NEAREST-COMS. Next, if L is nonempty, an
index � is chosen from L randomly and C is stored in P at the �th index. Otherwise, L = ∅,
which means that there is no community in P nearest to C. In this case again, C is stored in
P at the ith index, and i is incremented by 1.

The next task is to detect the hubs in the network, which is done by calling the function
GET-HUBS. Finally, the lines 22–27 detect the outliers, which are stored in O.

Seed Expansion The function EXPAND (given in Procedure 2) takes a set C as input
along with a set U , and the input graph G. The set C, which initially contains a single node,
is expanded by adding to it the vertices from U . For this task, a set S is needed that stores
the nodes to be added to C. The variables p and pnew are initialised to −1. Now a repeat-until
loop (lines 3–17) runs until p becomes larger than pnew. In this loop, look at the line 5, which
puts in S those nodes of U that lie in the neighbourhood of C. Note that S = ∅ means that C

cannot be expanded further, and so we must break out of the loop.
Here we shall discuss how the choice of α is crucial to the expansion phase of the algorithm.

Since in the beginning C contains just one vertex, the expansion of C solely depends on the
distribution of the edges among NC . This is because each vertex v ∈ NC has exactly one
neighbour in C, with rest of the neighbours in NC or possibly outside C ∪NC . So, in this case
we take α = 0. Consequently, Equation (10) reduces to

ξα(v, C) =
|NvC |

dv
.

This indicates that if v has a large fraction of neighbours in NC , its chances for inclusion to C

are high. Now as C grows there are sufficient internal members in C, so v’s chance for inclusion
to C must depend on the number of neighbours of v in C, rather than in NC . Due to these
observations, we fix the value of α as follows.

α = 1− 1
|C| .

This means, as C grows larger, S must contain fewer, and carefully selected vertices. Accord-
ingly, S must retain only those vertices v in it for which ξα(v, C) is higher than or equal to the
average value of α-interaction coefficients of all the vertices in S with C (see line 10). Moreover,
when C reaches a certain size threshold, which can vary from network to network, expansion
of C must be even more sophisticated. It is reasonable to assume that when C attains the size
√|G|, the set S could be refined by repeating the process at line 10 one more time (this is done
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at lines 11–13). Finally, S is included to C, strength of C is computed and stored in pnew, and
S is removed from U .

Note that the loop repeat-until terminates in two cases, namely when S = ∅ or pnew < p.
In case, it terminates due to pnew < p, S must be removed from C in order to retain the old
version of C.

Procedure EXPAND(G, C, U)

Result: C

S ← ∅;
p← −1, pnew← −1;
repeat

p← pnew;
S ← NC ∩ U ;
if S = ∅ then

break;
end
α← 1− 1/ |C|;
S ←

{
v ∈ S : ξα(v, C) ≥ 1

|S|
∑

u∈S

ξα(u, C)
}

;

if |C|2 ≥ |G| then

S ←
{
v ∈ S : ξα(v, C) ≥ 1

|S|
∑

u∈S

ξα(u, C)
}
;

end
C ← C ∪ S;
pnew ← s(C);
U ← U\S;

until pnew < p ;
if S �= ∅ then

C ← C\S;
end

Getting Nearest Communities The function GET-NEAREST-COMS (given in Pro-
cedure GET-NEAREST-COMS) takes the parameters G,P , and C and returns the indices of
the communities in P that are ‘nearest’ to C. Note that P is an indexed set that stores the
communities that have been explored. The criterion for deciding whether a community C′ ∈ P
is nearest to C or not is as follows.

Let p = s(C) and q = s(C′) be such that 0 < p < 0.5 and 0 < q < 0.5. Then Theorem 2.9
implies that s(C ∪ C′) is greater than or equal to p + q if and only if

|cut(C, C′)| ≥ 1
2

[(
q

1− p

)

dext(C) +
(

p

1− q

)

dext(C′)
]

. (11)

So, when the above condition is satisfied the index of C′ is stored in the set L.
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Procedure GET-NEAREST-COMS(G,P, C)

Result: L

L← ∅;
foreach C′ ∈ P do

p← s(C), q ← s(C′);
if 0 ≤ q < 0.5 then

if cut(C, C′) = ∅ then
continue;

end
if Condition (11) is true then

L← L ∪ {�}, where � is the index of C ′ in P ;
end

end

end

Getting Hubs To detect the hubs we use the function GET-HUBS (given in Procedure
GET-HUBS) which takes G, and P as parameters and returns a set H containing all the hubs
in P . The procedure is as follows.

Let C ∈ P be such that C = {u}, for some u ∈ G. Let L contain the indices of all those
communities in P that contain a neighbour of u. Also let adj pcoms, initialised to zero, contain
the count of the p-communities that contain a neighbour of u. Look at the for loop at lines 7–13
now. Its task is to increase the counter adj pcoms if there are any p-communities containing a
neighbour of u. The loop stops as soon as adj pcoms reaches to 3. Thus, at the end of this loop
if adj pcoms still remains smaller than 3, it means that u is not a hub, and as a consequence
the rest of the code is skipped.

On the other hand, if adj pcoms is equal to 3, we test whether any three p-communities
adjacent to u are mutually edge-disjoint or not. If yes, u is included to H (see lines 18–31).

4 Results and Analysis

Community detection algorithms are apparently heuristic, that is, they use some kind ran-
domness at some phase. For example, the seed expansion phase of our algorithm selects seeds
randomly. Not surprisingly, then such algorithms produce different partitions at different runs.
Accordingly, we analyse our algorithm in terms of stability and accuracy. Besides we shall also
see how the performance of our algorithm can be improved. Finally we shall look at its running
time on different real world networks.

4.1 Real World Networks and Quality Measures

In this section we apply our algorithm on real world networks and analyse the commu-
nity structures using Qov and Qwo. The selected real world networks are given in Table 1.
These networks are taken from diverse areas such as social sciences (POLBLOGS), technol-
ogy (INTERNET, POWER-GRID), communication (FACEBOOK, EMAIL-ENRON, LOC-
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Procedure GET-HUBS(G,P)
Result: H

H ← ∅;
foreach C ∈ P do

if |C| = 1 then
Let u be the single node in C;
Let L contain the indices of the communities in P that contain the neighbours of
u;
adj pcoms← 0;
foreach � ∈ L do

if adj pcoms < 3 then
if s(P [�]) > 0 then

adj pcoms← adj pcoms + 1;
end

end

end
if adj pcoms < 3 then

continue;
end
flag ← true;
foreach � ∈ L do

foreach �′ ∈ L do
if �′ > � and cut(P [�],P [�′]) �= ∅ then

flag← false;
break;

end

end
if flag =false then

break;
end

end
if flag = true then

H ← H ∪ {u};
end

end

end
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BRIGHTKITE), biology (YEAST-PPI), and scientific collaborations (NETSCIENCE, HEP-
THEORY, ASTRO-PHSICS, COND-MATTER). We run the algorithm 10 times on each of
these networks, and record the average number of total communities, p-communities, and hubs
in Table 2, along with the average scores of Qov and Qwo.

Table 1 Details of networks studied in this paper

Network Nodes Edges Ref.

POLBLOGS 1490 16715 [28]

NETSCIENCE 1589 2742 [25]

YEAST-PPI 2361 6646 [29]

FACEBOOK 4039 88234 [30]

POWER-GRID 4941 6594 [31]

HEP-THEORY 5835 13815 [32]

ASTRO-PHYSICS 14845 119652 [32]

INTERNET 22963 48436 [33]

EMAIL-ENRON 36693 183831 [34]

COND-MATTER 39577 175692 [32]

LOC-BRIGHTKITE 58228 214078 [35]

Table 2 Assessment of community structures of real world networks using Qov and Qwo

Networks p-coms hubs outliers Qov Qwo

POLBLOGS 4 0 3 0.78 0.56

NETSCIENCE 36 1 8 0.80 0.70

YEAST-PPI 50 3 97 0.52 0.40

FACEBOOK 50 0 20 0.90 0.60

POWER-GRID 540 30 60 0.75 0.68

HEP-THEORY 430 12 138 0.69 0.63

ASTRO-PHYSICS 100 2 118 0.64 0.60

INTERNET 310 0 380 0.55 0.44

EMAIL-ENRON 1500 6 94 0.68 0.86

COND-MATTER 1510 0 120 0.60 0.88

LOC-BRIGHTKITE 1480 5 705 0.60 0.44



198 KUMAR PAWAN · DOHARE RAVINS

It can be seen that both Qov and Qwo achieve moderate to high score for all the networks
except YEAST-PPI, INTERNET and LOC-BRIGHTKITE where Qwo scores are below 0.50.
The largest number of hubs are observed in POWER-GRID.

4.2 Stability

The stability of an algorithm indicates how similar two partitions produced at different runs
are. There are some well known measures, e.g., normalised mutual information (NMI)[36], that
can be used to assess the stability of community detection algorithms.

To analyse the stability of our algorithm we use the NMI measure, which in the context of
disjoint community structure can be defined as follows. Let G be a graph, and P1 and P2 its
two partitions. Then a confusion matrix N = (Nij) is defined with |P1| rows and |P2| columns,
where Nij is the number of nodes in the community i of P1 that appear in the community j of
P2. Then the NMI measure of similarity between two partitions P1 and P2 is:

NMI(P1,P2) =
−2

∑|P1|
i=1

∑|P2|
j=1 Nij log

(
Nij |G|
Ni�N�j

)

∑|P1|
i=1 Ni� log

(
Ni�
|G|

)
+

∑|P2|
j=1 log

(
N�j
|G|

) .

Here Ni� =
∑|P2|

j=1 Nij and N�j =
∑|P1|

i=1 Nij . The NMI score of a pair of partitions can vary
from 0 to 1, where 0 indicates that the partitions are completely different, and 1 that they are
identical.

We select four real world networks namely, POWER-GRID, HEP-THEORY, EMAIL-ENRON,
and COND-MATTER, and run the algorithm 10 times on each of these networks. The NMI
scores between each pair of partitions of these networks produced by the algorithm are shown
in the image plots in Figure 6. The four plots in this figure correspond to the four selected
networks. The rows and columns in a plot refer to the partition index, and the intensity of
shade of the (i, j)th box refers to the NMI score of Partition i and Partition j. The shades of
the boxes in the figure vary from dark (0.3) to white (1). A darker shade indicates that the
NMI score between the corresponding partitions is low, whereas a fairer one indicates a higher
NMI score.

It can be seen that in the networks POWER-GRID and HEP-THEORY, all the NMI scores
are above 0.80, validating the high partition similarity. In EMAIL-ENRON, most of the NMI
scores are above 0.75, and in COND-MATTER most of the NMI scores are above 0.60. These
results reasonably indicate that the algorithm is stable.
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Figure 6 NMI scores between mutual pairs of partitions produced in 10 runs of the algo-

rithm on each of the networks POWER-GRID, HEP-THEORY, EMAIL-ENRON,

COND-MATTER

4.3 Accuracy

To assess the accuracy of the algorithm, we use the Lancichinetti-Fortunato-Radicchi (LFR)
benchmarks. The benchmark offers a reasonable platform for assessment of community struc-
ture detection algorithm. It has a number of parameters, of which the most relevant ones for
our study are N — the number of vertices, k — the average degree, kmax — the maximum
degree and μ — the mixing parameter. We leave other parameters at their default value. Of
special interest is the parameter μ which varies from 0 to 1. When μ = 0, the the communi-
ties have no edges between them. As μ increases the edges between communities start falling.
When μ = 0.5, the vertices in all communities have roughly as many neighbors inside their
own communities as in the rest of the network. For the values of μ in the range 0.5 to 1, the
community structure is rather unrealistic.

We assess the accuracy of our algorithm using two parameters. The first one is again
the NMI measure. However, this time we compute NMI scores between the so called “actual
communities” and the detected communities in LFR as a function of μ. The second parameter
is the mean of the quantity Ca/Cd as a function of μ, where Ca is the number of actual
communities and Cd is the number of communities detected by our algorithm in LFR.

So, we generated 10 instances of LFR benchmarks for each value of μ in the range {0.0, 0.1,

0.2, · · · , 0.5}, with other parameters at N = 1000, k = 5, kmax = 100. For each instance we ran
our algorithm once. Thus for each value of μ we have 10 values of NMI and Ca/Cd scores. The
mean of these scores is plotted as a function of μ in Figure 7. In Figure 7(a), the horizontal
axis represents the parameter μ of LFR, and the vertical axis represents the mean NMI scores,



200 KUMAR PAWAN · DOHARE RAVINS

which are plotted as circles. The length of the vertical bar crossing each circle represents the
standard deviation in the NMI scores. In Figure 7(b), the horizontal axis is the same as in part
(a), but the vertical axis is the mean of Ca/Cd. The length of the vertical bar crossing each
circle is the standard deviation between the Ca/Cd scores. We can see that as μ increases NMI
scores decreases gradually until μ = 0.35, with low standard deviations. As μ crosses 0.35 there
is a rapid decrease in the mean NMI scores with increased standard deviations.
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Figure 7 (a) Mean NMI as a function of µ; (b) Mean Ca/Cd as a function of µ

4.4 Quality Improvement

Let us revisit Equation (9). Let P be any partition of a graph. For any C ∈ P , we can write

dint(C)
d(C)

= s(C) +
dext(C)
d(C)

.

So, if C is a p-community, the right hand side in the equation above is greater than or equal
to p as dext(C)/d(C) ≥ 0. Thus in order to make the quantity 1

|P|
∑

C∈P
dint(C)
d(C) large, P must

contain a large number of p-communities, with high values of p.
To validate this observation, we select the networks HEP-THEORY, ASTRO-PHYSICS,

INTERNET, EMAIL-ENRON, COND-MATTER, and LOC-BRIGHTKITE. On each of these
networks we run our algorithm 100 times. Thus for each network, we got 100 partitions.
Then we sorted these 100 partitions in the ascending order of the fraction of p-communities
(correct upto 2 decimal places) they contain. If any two partitions have the same fraction of
p-communities, they are grouped together. For each group then the mean scores of Qwo and
Qov is computed along with the standard deviations. The results are shown in Figure 8. For
comparison of the results, we also select another algorithm called SLPA[37] which has been used
extensively in the last decade to detect disjoint as well as the overlapping community structure
in complex networks. So, we have repeated the above procedure for SLPA with its parameter
r = 0.45 and restricting it to detect only disjoint community structure, the results of which are
given in Figure 9.

Let us first look at Figure 8, where the horizontal axis represents the Fraction of p-communities
obtained in the partitions. The vertical axis represents the mean scores of Qwo and Qov, marked
by circles and triangles, respectively. The length of the vertical line on each point (circle or
triangle) shows the standard deviation in the scores.
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We can see that Qwo increases with small deviations, as the fraction of p-communities
increases in the network partitions. However, Qov does not show the same behaviour in all the
networks. In particular, its behaviour in COND-MATTER seems strange (Figure 8(e)). The
Qov score increases for some time, and then start decreasing as the partitions contain more
and more p-communities. Now look at Figure 9. Here also x and y-axes are the same as in
Figure 8. In this figure too, we get the same observation except for Figure 9(c) in which Qov

decreases as the Fraction of p-communities increases. This somewhat contrasting behaviour of
Qov can be attributed to the notion it is derived from. Its formulation depends on an arbitrary
choice of the function f , whose behaviour is not well understood. On the other hand, the
formulation of Qwo is based on the simple assumption that a partition is good if it contains a
large number of communities with high internal degrees. Thus treating Qwo as a reference of
quality, the performance of our algorithm can be improves when the partition contains large
number of p-communities. It means that to get high quality partition it is sufficient to run our
algorithm a number times, say 10, and keep the partition that contains the largest fraction of
p-communities.
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Figure 8 Effect of increase in the fraction of p-communities on the partition quality
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Figure 9 Effect of increase in the fraction of p-communities on the partition quality

4.5 Running Time of the Algorithm

Running time analysis of an algorithm shows how its run time scales as the input network
size increases. For this task, again we choose the real world networks listed in Table 1. The
runtime (in seconds) of our algorithm are shown in Figure 10. It can be seen that on the
network LOC-BRIGHTKITE, which contains 58, 228 nodes and 2, 14, 078 edges, the algorithm
takes roughly one minute on a machine with 4 processors and 8GB RAM.
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5 Conclusion

In this article, we have presented a theoretical and computational framework for community
structure detection in complex networks. Theoretically, we have addressed the fundamental
questions such as when a subgraph is called a community?, what is a community structure?, is
a community structure all about communities, or it includes a wider class of subgraphs? In this
connection we have proposed the concepts such as strength of a subgraph, p-community, and
local maximal p-community, hubs, and outliers. We have defined that a community structure
includes local maximal p-communities. However, as we have seen there are practical difficulties
in checking whether a p-community is a local maximal p-community or not. So, to detect
disjoint community structures in a network we have restricted our attention to the partitions
that just contain p-communities, hubs and outliers.

Accordingly, we have developed a local seed based expansion algorithm for disjoint commu-
nity structure detection in real world networks. For seed expansion we have proposed a new
technique called the interaction coefficient, tunable by a parameter α. Presently, the algorithm
works only for undirected and unweighted networks. We have analysed our algorithm on a
number of parameters and found satisfactory results. Finally, we hope the study in this paper
would enrich the knowledge of community structure detection in complex networks.
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Appendix

Proof [Proof of Theorem 2.7] From Equation (2), we have

s(C1 ∪C2) =
(1 + p)(1 + q)2k + (1 + p)qd2 + (1 + q)pd1

(1 + p)d2 + (1 + q)d1
.

Without loss of generality, we can assume that max{p, q} = p. Then

s(C1 ∪ C2) > p ⇐⇒ (1 + p)(1 + q)2k + (1 + p)qd2 + (1 + q)pd1

(1 + p)d2 + (1 + q)d1
> p

⇐⇒ (1 + p)(1 + q)2k + qd2 + pqd2 + pd1 + pqd1 > pd2 + p2d2 + pd1 + pqd1

⇐⇒ 2(1 + p)(1 + q)k > (1 + p)(p− q)d2

⇐⇒ k >
1
2

(
p− q

1 + q

)

d2

=⇒ k > 0

=⇒ cut(C1, C2) �= ∅.

The proof is finished.

Proof [Proof of Theorem 2.9] From Equation (2), we can see that

s(C1 ∪C2) ≥ p + q ⇐⇒ (1 + p)(1 + q)2k + (1 + p)qd2 + (1 + q)pd1

(1 + p)d2 + (1 + q)d1
≥ p + q

⇐⇒ (1 + p)(1 + q)2k + (1 + p)qd2 + (1 + q)pd1 ≥ (p + q)((1 + p)d2 + (1 + q)d1)

⇐⇒ (1 + p)(1 + q)2k ≥ p(1 + p)d2 + q(1 + q)d1

⇐⇒ |cut(C1, C2)| ≥ 1
2

[(
q

1 + p

)

d1 +
(

p

1 + q

)

d2

]

⇐⇒ |cut(C1, C2)| ≥ 1
2

[(
q

1− p

)

dext(C1) +
(

p

1− q

)

dext(C2)
]

.

The last equality follows from the observation that

d1 =
(

1− p

1 + p

)

dext(C1) and d2 =
(

1− q

1 + q

)

dext(C2).

The proof is finished.


