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Abstract In this paper, using the Bootstrap approach and generalized approach, the authors consider

the one-sided hypothesis testing problems for variance component functions in the two-way random

effects model. Firstly, the test statistics and confidence intervals for the sum of variance components

are constructed. Next, the one-sided hypothesis testing problems for the ratio of variance components

are also discussed. The Monte Carlo simulation results indicate that the Bootstrap approach is better

than the generalized approach in most cases. Finally, the above approaches are applied to the real data

examples of mice blood pH and molded plastic part’s dimensions.

Keywords Bootstrap, generalized approach, two-way random effects model, variance component

function.

1 Introduction

The two-way random effects model is widely used in quality control, experimental design,
biomedical research, econometric modelling, market analysis and many other practical fields.
For example, Wang, et al.[1] studied the impact of the plate material and ambient temperature of
a specific type battery on its maximum output voltage using the two-way random effects model.
Thompson[2] used this model to analyse the fuze burning time data with a view of estimating
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the precisions of the instruments. Cheng and Shao[3] considered five clinical trials and focused
on the treatment-by-center interaction among them to discuss whether the treatment effect is
significant or not.

In view of the wide applications of variance component, research has been done about its
parameter estimation problems. Some estimation methods has been established including anal-
ysis of variance, maximum likelihood, restricted maximum likelihood, spectral decomposition,
and minimum norm quadratic unbiased estimation. See [4–10] for more details. These above-
mentioned methods, however, are adequate for single variance component in general, but not
for direct application for statistical inference on variance component function. For this reason,
Gilder, et al.[11] studied the properties on intraclass correlation coefficients based on the mod-
ified large sample approach and generalized approach in the balanced two-way random effects
model. Further, Ye and Wang[12] extended the conclusions of Gilder, et al.[11] to unbalanced
scenarios. Li[13] derived the generalized confidence interval for the ratio of variance compo-
nents in the unbalanced two-fold nested designs. Recent studies indicate that, the generalized
approach performs satisfactorily in controlling the Type I error probabilities in most scenarios,
but lacks robustness with small sample size[14–16].

Since it is difficult to directly apply the traditional test approaches to construct exact test
statistics, Efron[17] proposed the Bootstrap approach based on computer numerical algorithm.
This approach has been widely used for statistical inference problems such as error estimation,
hypothesis testing and interval estimation. Ma, et al.[18] studied homogeneous testing problems
of inverse Gaussian means under heterogeneity, whose results showed that the Bootstrap ap-
proach is better than the generalized approach in large sample cases. Yue, et al.[19] constructed
the Bootstrap test statistics of regression coefficients for two-way error component regression
model. Ye and Jiang[20] applied the Bootstrap approach into panel data model and discussed
the hypothesis testing problems of regression coefficients and variance components. In this pa-
per, for one-sided hypothesis testing and interval estimation problems of variance component
functions in the two-way random effects model, the Bootstrap approach and generalized ap-
proach are established, and the excellent statistical properties of the Bootstrap approach are
verified by the Monte Carlo simulation.

This paper is organized as follows. In Section 2, the two-way random effects model is
introduced. In Section 3, using the Bootstrap approach and generalized approach, the test
statistics and pivot quantities for the sum of variance components are constructed. In Section 4,
the one-sided hypothesis testing and interval estimation problems for the ratio of variance
components are analyzed. In Section 5, the Monte Carlo simulation results are presented to
verify the statistical excellent properties of the proposed approaches. In Section 6, the proposed
approaches are applied to the real data examples of mice blood pH and molded plastic part’s
dimensions. In Section 7, the summary of this paper is given.
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2 Preliminaries

In this paper, we consider the two-way random effects model with interaction

yijk = μ + αi + βj + γij + εijk, (1)

where i = 1, 2, · · · , a, j = 1, 2, · · · , b, k = 1, 2, · · · , c, μ is the fixed effect, αi, βj and γij

are random effects, εijk is the random error. Assume that αi ∼ N(0, σ2
α), βj ∼ N(0, σ2

β),
γij ∼ N(0, σ2

γ), εijk ∼ N(0, σ2
ε), and all random variables are mutually independent.

Denote y = (y111, y112, · · · , y11c, · · · , yab1, yab2, · · · , yabc)′, α = (α1, α2, · · · , αa)′, β = (β1, β2,

· · · , βb)′, γ = (γ11, γ12 · · · , γab)′, ε = (ε111, ε112 · · · , εabc)′. Besides, 1T is a T × 1 vector with
every element unity, IT is an identity matrix of order T . ⊗ denotes the Kronecker product,
rank(A) is the rank of matrix A, and n = abc. The corresponding design matrices of random
effects αi, βj and γij are

Zα = Ia ⊗ 1b ⊗ 1c, Zβ = 1a ⊗ Ib ⊗ 1c, Zγ = Ia ⊗ Ib ⊗ 1c.

Then the model (1) can be rewritten in matrix form as

y = 1nμ + Zαα + Zββ + Zγγ + ε. (2)

The covariance matrix of y is

Σ = Cov(y)

= σ2
αZαZα

′ + σ2
βZβZβ

′ + σ2
γZγZγ

′ + σ2
εIn

= σ2
α(Ia ⊗ Jb ⊗ Jc) + σ2

β(Ja ⊗ Ib ⊗ Jc) + σ2
γ(Ia ⊗ Ib ⊗ Jc) + σ2

εIn,

where Ja = 1a1′a. Define Ja = Ja/a. It can be concluded that Σ is as follows after spectral
decomposition

Σ =
4∑

i=1

σ2
i Mi + σ2

0Jn, (3)

where σ2
0 = bcσ2

α + acσ2
β + cσ2

γ + σ2
ε , σ2

1 = bcσ2
α + cσ2

γ+σ2
ε , σ2

2 = acσ2
β + cσ2

γ+σ2
ε , σ2

3 =
cσ2

γ+σ2
ε , σ4

2 = σ2
ε . Accordingly, M1 = (Ia − Ja) ⊗ Jb ⊗ Jc, M2 = Ja ⊗ (Ib − Jb) ⊗ Jc,

M3 = (Ia − Ja) ⊗ (Ib − Jb) ⊗ Jc, M4 = Ia ⊗ Ib ⊗ (Ic − Jc).

Lemma 2.1 (a) Mi (i = 1, 2, 3, 4) and Jn are symmetric idempotent matrix and mutually
orthogonal.

(b) rank(Mi)=ni(i= 1,2, 3, 4), rank(Jn)=1, where n1 = a−1, n2 = b−1, n3 = (a−1)(b−1),
n4 = ab(c − 1).

(c)
∑4

i=1 Mi+Jn = In.

From the definitions of Mi (i = 1, 2, 3, 4) and Jn, Lemma 2.1 is easy to be proved.
By premultipling (2) by Mi (i = 1, 2, 3, 4), the transformed model has the form of

yi = ei, E(ei) = 0, Cov(ei) = σ2
i Mi, i = 1, 2, 3, 4, (4)
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where yi = Miy, ei = Mie, e = Zαα + Zββ + Zγγ + ε. Because Mi is a singular matrix, the
model (4) is a singular linear model. By the unified theory of least square, we have

σ̂2
i =

y′Miy

ni
, i= 1,2, 3, 4,

where ni ≥ 1. According to the definition of χ2 distribution, it is clear that

Vi =
niσ̂

2
i

σi
2

∼ χ2
ni

, i = 1, 2, 3, 4,

and Vi (i = 1, 2, 3, 4) are mutually independent.

3 Inference on the Sum of Variance Components

In practical applications, the sum of variance components is used to characterize the vari-
ability of several random effects, which is common in improving the accuracy of the gun tube.
See [10, 21, 22] for more details. For this, the Bootstrap approach and generalized approach are
applied into hypothesis testing problems for the sum of two variance components in Model (1).
The hypotheses of interest are

H0 : σ2
α + σ2

ε ≤ c0 versus H1 : σ2
α + σ2

ε > c0, (5)

H0 : σ2
β + σ2

ε ≤ c0 versus H1 : σ2
β + σ2

ε > c0, (6)

H0 : σ2
γ + σ2

ε ≤ c0 versus H1 : σ2
γ + σ2

ε > c0, (7)

where c0 is a specified value.

3.1 The Bootstrap Approach

For the hypothesis testing problem (5), we have

T1=
(bc)−1(σ̂2

1 − σ̂2
3) + σ̂2

4 − c0√
(bc)−2

(
2σ4

1
n1

+ 2σ4
3

n3

)
+ 2σ4

4
n4

. (8)

If σ2
1 , σ2

3 and σ2
4 are known, T1 in (8) will be the test statistic of hypothesis testing prob-

lem (5). However, σ2
1 , σ2

3 and σ2
4 are often unknown in practical application. In such cases, the

parameters might be replaced by their estimators σ̂2
1 , σ̂2

3 and σ̂2
4 . The test statistic is given by

T1=
(bc)−1(σ̂2

1 − σ̂2
3) + σ̂2

4 − c0√
(bc)−2

(
2σ̂4

1
n1

+ 2σ̂4
3

n3

)
+ 2σ̂4

4
n4

. (9)

It is difficult to obtain the exact distribution of T1, then the Bootstrap approach is used to
construct the test statistic. Thus, the Bootstrap test statistic based on (9) is expressed as

TB1=
(bc)−1(σ̂2

1B − σ̂2
3B) + σ̂2

4B − c0√
(bc)−2

(
2σ̂4

1B

n1
+ 2σ̂4

3B

n3

)
+ 2σ̂4

4B

n4

, (10)
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where σ̂2
1B ∼ σ̂2

1
n1

χ2
n1

, σ̂2
3B ∼ σ̂2

3
n3

χ2
n3

, σ̂2
4B ∼ c0−(bc)−1(σ̂2

1−σ̂2
3)

n4
χ2

n4
. Further, the Bootstrap p-value

is computed by TB1 in (10) as

p1=P (TB1 ≥ t1|H0), (11)

where t1 denotes the observed value of T1. The calculation of p1 can be realized later by
Algorithm 1 in Section 5. Let δ be the nominal significance level. The null hypothesis H0 in (5)
is rejected whenever the above p-value is less than the nominal significance level of δ.

Similarly, the Bootstrap test statistics for the hypothesis testing problems (6) and (7) are
respectively defined as

TB2=
(ac)−1(σ̂2

2B − σ̂2
3B) + σ̂2

4B − c0√
(ac)−2

(
2σ̂4

2B

n2
+ 2σ̂4

3B

n3

)
+ 2σ̂4

4B

n4

,

TB3=
(c)−1(σ̂2

3B − σ̂2
4B) + σ̂2

4B − c0√
(c)−2

(
2σ̂4

3B

n3
+ 2σ̂4

4B

n4

)
+ 2σ̂4

4B

n4

,

where σ̂2
2B ∼ σ̂2

2
n2

χ2
n2

. Then the Bootstrap p-values based on TB2 and TB3 are respectively
computed as

p2=P (TB2 ≥ t2|H0), p3=P (TB3 ≥ t3|H0).

Similar to t1 in (11), t2 and t3 are observed values.

Remark 3.1 The Bootstrap pivot quantity of σ2
α+σ2

ε can be constructed as TB∗
1 based

on TB1 (see [14]). Suppose that TB∗
1(η) is the 100η empirical percentile of TB∗

1 . Then the
approximate 100(1 − δ)% Bootstrap confidence interval for σ2

α+σ2
ε is given by

[
(bc)−1(s2

1 − s2
3) + s2

4 − TB∗
1(1 − δ/2)

√

(bc)−2

(
2s4

1

n1
+

2s4
3

n3

)
+

2s4
4

n4
,

(bc)−1(s2
1 − s2

3) + s2
4 − TB∗

1(δ/2)

√

(bc)−2

(
2s4

1

n1
+

2s4
3

n3

)
+

2s4
4

n4

]
,

where s2
i is the observed value of σ̂2

i (i = 1, 2, 3, 4). In the same way, the approximate
100(1 − δ)% Bootstrap confidence intervals based on TB∗

2 and TB∗
3 for σ2

β+σ2
ε and σ2

γ+σ2
ε

respectively are also available.

3.2 The Generalized Approach

Firstly, considering the hypothesis testing the problem (5), the generalized test variable has
the form of

T4 =
1
bc

(
σ2

1s
2
1

σ̂2
1

− σ2
3s2

3

σ̂2
3

)
+

σ2
4s2

4

σ̂2
4

− (σ2
α + σ2

ε)

=
1
bc

(n1s
2
1V

−1
1 − n3s

2
3V

−1
3 ) + n4s

2
4V

−1
4 − (σ2

α + σ2
ε). (12)
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It is apparent that t4, the observed value of T4, is free of any unknown parameters. Note that
Vi = niσ̂

2
i /σi

2 ∼ χ2
ni

(i = 1, 3, 4), thus the distribution of T4 is free of the nuisance parameters.
From the expression in (12), T4 is stochastically decreasing in σ2

α + σ2
ε . In other words, T4 is a

generalized test variable. Then, based on T4, the generalized p-value for the hypothesis testing
problem (5) can be computed as

p4 = P (T4 ≤ 0|H0)

= P (V1 ≥ n1s
2
1(n3s

2
3V

−1
3 − bcn4s

2
4V

−1
4 + bcc0)−1)

= 1 − EV3,V4

[
Fχ2

n1
(n1s

2
1(n3s

2
3V

−1
3 − bcn4s

2
4V

−1
4 + bcc0)

−1
)
]
, (13)

where Fχ2
n1

is the cumulative distribution function (cdf) of χ2 distribution with n1 degrees of
freedom, and the expectation of (13) is taken with respect to V3 and V4. The null hypothesis
H0 in (5) will be rejected if p4 is less than the nominal significance level of δ.

Next, we prove that the test based on (13) is p-invariant test. Regard to the following scale
transformations

(σ2
1 , σ2

3 , σ
2
4 , σ2

α + σ2
ε) → (aσ2

1 , aσ2
3 , aσ2

4 , a(σ2
α + σ2

ε)),

(σ̂2
1 , σ̂2

3 , σ̂
2
4) → (aσ̂2

1 , aσ̂2
3 , aσ̂2

4), a > 0, (14)

the parameter space of the hypothesis testing problem (5) has changed under the scale trans-
formations (14). So this hypothesis testing problem is not invariant. Hence, consider the
equivalent hypothesis

H0 : θ ≤ θ0 versus H1 : θ > θ0, (15)

where θ = σ2
α+σ2

ε

s2
1

and θ0 = c0
s2
1
. By the scale transformations

(σ2
1 , σ2

3 , σ
2
4 , θ) → (aσ2

1 , aσ2
3 , aσ2

4 , θ),

(σ̂2
1 , σ̂2

3 , σ̂
2
4) → (aσ̂2

1 , aσ̂2
3 , aσ̂2

4), a > 0, (16)

the hypothesis testing problem (5) is invariant under the scale transformations (16). However,
the test variable T4 is not an invariant test variable. To obtain the invariant test variable, we
define

T̃4 =
[

1
bc

(
σ2

1

σ̂2
1

− σ2
3s2

3

σ̂2
3s2

1

)
+

σ2
4s2

4

σ̂2
4s2

1

]
− θ. (17)

The corresponding generalized p-value is p̃4 = P (T̃4 ≤ 0 |θ = θ0). Therefore, for the hypothesis
testing problem (5), the test based on p̃4 is p-invariant under the scale transformations (16).

Then, to obtain the confidence interval of σ2
α + σ2

ε , we define

T4
∗ =

1
bc

(
σ2

1s2
1

σ̂2
1

− σ2
3s

2
3

σ̂2
3

)
+

σ2
4s2

4

σ̂2
4

.

Obviously, the observed value t∗4 = σ2
α + σ2

ε of T ∗
4 is free of nuisance parameters, and the

distribution of T ∗
4 is free of any unknown parameters. Thus, T ∗

4 is a generalized pivot quantity.
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According to the quantile of T ∗
4 , the generalized upper confidence limit and lower confidence

limit of σ2
α + σ2

ε are obtained at the confidence level of 1− δ, which are written as T ∗
4 (1 − δ/2)

and T ∗
4 (δ/2) respectively. Further, to obtain the invariant confidence interval for σ2

α + σ2
ε , the

invariant confidence interval of θ is considered under the scale transformations (16). Define

T̂ ∗
4 =

1
bc

(
σ2

1

σ̂2
1

− σ2
3s

2
3

σ̂2
3s

2
1

)
+

σ2
4s2

4

σ̂2
4s2

1

.

It is easy to verify T̂ ∗
4 is a generalized pivot quantity for θ and invariant under the scale

transformations (16). Hence, the invariant confidence interval of θ can be constructed by the
quantiles of T̂ ∗

4 .
Similarly, the generalized test variables of the hypothesis testing problems (6) and (7) are

expressed respectively as

T5 =
1
ac

(n2s
2
2V

−1
2 − n3s

2
3V

−1
3 ) + n4s

2
4V

−1
4 − (σ2

β + σ2
ε),

T6 =
1
c
(n3s

2
3V

−1
3 − n4s

2
4V

−1
4 ) + n4s

2
4V

−1
4 − (σ2

γ + σ2
ε).

Based on T5 and T6, the generalized p-values for the hypothesis testing problems (6) and (7)
are computed as follows

p5 = 1 − EV3,V4

[
Fχ2

n2
(n2s

2
2(n3s

2
3V

−1
3 − acn4s

2
4V

−1
4 + acc0)

−1
)
]
,

p6 = 1 − EV4

[
Fχ2

n3
(n3s

2
3(cc0 + (1 − c)n4s

2
4V

−1
4 )

−1
)
]
.

Further, the generalized pivot quantities for σ2
β + σ2

ε and σ2
γ + σ2

ε are

T5
∗ =

1
ac

(
σ2

2s2
2

σ̂2
2

− σ2
3s

2
3

σ̂2
3

)
+

σ2
4s2

4

σ̂2
4

, T6
∗ =

1
c

(
σ2

3s
2
3

σ̂2
3

− σ2
4s2

4

σ̂2
4

)
+

σ2
4s2

4

σ̂2
4

.

Similar to σ2
α +σ2

ε , the invariant tests and invariant confidence intervals for σ2
β +σ2

ε and σ2
γ +σ2

ε

can be obtained easily.

4 Inference on the Ratio of Variance Components

Using the Bootstrap approach and generalized approach, the hypothesis testing problems
for the ratio of two variance components in the model (1) are also discussed. To be specific,
the hypotheses of interest are

H0 : σ2
α/σ2

ε ≤ c1 versus H1 : σ2
α/σ2

ε > c1, (18)

H0 : σ2
β/σ2

ε ≤ c1 versus H1 : σ2
β/σ2

ε > c1, (19)

H0 : σ2
γ/σ2

ε ≤ c1 versus H1 : σ2
γ/σ2

ε > c1, (20)

where c1 is a specified value.
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4.1 The Bootstrap Approach

For the hypothesis testing problem (18), we have

T7=
n1σ̂

2
1

bcc1σ2
4 + σ2

3

. (21)

If σ2
3 and σ2

4 are already known, T7 in (21) can be used for the hypothesis testing problem (18).
However, σ2

3 and σ2
4 are often unknown in real application, so the test statistic can be obtained

by replacing the parameters by their estimators σ̂2
3 and σ̂2

4 . The test statistic has the form of

T7=
n1σ̂

2
1

bcc1σ̂2
4 + σ̂2

3

. (22)

Similar to T1, the exact distribution of T7 is difficult to obtain, then the Bootstrap approach
is used to construct the test statistic. Therefore, the Bootstrap test statistic based on (22) is
defined as

TB7=
n1σ̂

2
1B

bcc1σ̂2
4B + σ̂2

3B

, (23)

where σ̂2
1B ∼ bcc1σ̂2

4+σ̂2
3

n1
χ2

n1
, σ̂2

3B ∼ (cc1+1)σ̂2
4

n3
χ2

n3
, σ̂2

4B ∼ σ̂2
4

n4
χ2

n4
. Then, the Bootstrap p-value is

computed by TB7 in (23) as

p7=P (TB7 ≥ t7|H0), (24)

where t7 denotes the observed value of T7. The null hypothesis H0 in (18) is rejected whenever
the above p-value is less than the nominal significance level of δ.

Likewise, the Bootstrap test statistics for the hypothesis testing problems (19) and (20) can
be represented as

TB8=
n2σ̂

2
2B

acc1σ̂2
4B + σ̂2

3B

, TB9=
n3σ̂

2
3B

(cc1 + 1)σ̂2
4B

,

where σ̂2
2B ∼ acc1σ̂2

4+σ̂2
3

n2
χ2

n2
. Based on TB8 and TB9, the Bootstrap p-values are computed

respectively as

p8=P (TB8 ≥ t8|H0), p9=P (TB9 ≥ t9|H0).

Similar to t7 in (24), t8 and t9 are observed values.

Remark 4.1 Similar to Remark 3.1, the Bootstrap pivot quantity of σ2
α/σ2

ε is constructed
as TB∗

7 based on TB7. Let TB∗
7(η) be the 100η empirical percentile of TB∗

7 . The 100(1− δ)%
Bootstrap confidence interval for σ2

α/σ2
ε is given by

[
n1s

2
1

bcs2
4TB∗

7(1 − δ/2)
− s2

3

bcs2
4

,
n1s

2
1

bcs2
4TB∗

7(δ/2)
− s2

3

bcs2
4

]
.

Likewise, the 100(1−δ)% Bootstrap confidence intervals based on TB∗
8 and TB∗

9 for σ2
β/σ2

ε and
σ2

γ/σ2
ε are also obtained.
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4.2 The Generalized Approach

For the hypothesis testing problem (18), the generalized test variable is

T10 =
1
bc

(
σ2

1s2
1

σ̂2
1

− σ2
3s

2
3

σ̂2
3

) (
σ2

4s2
4

σ̂2
4

)−1

− (σ2
α/σ2

ε)

=
1

bcs2
4

(Fn4,n1s
2
1 − Fn4,n3s

2
3) − (σ2

α/σ2
ε). (25)

It is obvious that t10, the observed value of T10, is free of any unknown parameters. From the
expression of T10 in (25), it is easy to see that the distribution of T10 is free of nuisance parame-
ters. In addition, T10 is stochastically decreasing in σ2

α/σ2
ε . Therefore, T10 is a generalized test

variable for the hypothesis testing problem (18) and the generalized p-value is computed as

p10 = P (T10 ≤ 0|H0) = P (Fn4,n3 ≥ s−2
3 (Fn4,n1s

2
1 − bcc1s

2
4))

= 1 − EFn4,n1

[
FFn4,n3

(s−2
3 (Fn4,n1s

2
1 − bcc1s

2
4))

]
, (26)

where FFn4,n3
is the CDF of F distribution with (n4, n3) degrees of freedom, and the expectation

of (26) is taken with respect to Fn4,n1 . The null hypothesis H0 in (18) will be rejected if p10 is
less than the nominal significance level of δ.

Next, we show that the test based on (26) is p-variant. Apparently, under the scale trans-
formations

(σ2
1 , σ2

3 , σ
2
4) → (aσ2

1 , aσ2
3 , aσ2

4),

(σ̂2
1 , σ̂2

3 , σ̂
2
4) → (aσ̂2

1 , aσ̂2
3 , aσ̂2

4), a > 0, (27)

the generalized test variable T10 and the hypothesis testing problem (18) are both invariant.
Accordingly, for the hypothesis testing problem (18), the test based on p10 is p-invariant under
the scale transformations (27).

To obtain the confidence interval of σ2
α/σ2

ε , we define

T10
∗ =

1
bcs2

4

(Fn4,n1s
2
1 − Fn4,n3s

2
3).

Obviously, T10
∗ is an invariant generalized pivot quantity for σ2

α/σ2
ε under the scale transforma-

tions (27). Hence, the invariant generalized upper confidence limit and lower confidence limit
of σ2

α/σ2
ε are constructed as T ∗

10(1 − δ/2) and T ∗
10(δ/2), respectively.

Similar to (18), the invariant generalized test variables for the hypothesis testing problems
(19) and (20) are

T11 =
1

acs2
4

(Fn4,n2s
2
2 − Fn4,n3s

2
3) − (σ2

β/σ2
ε),

T12 =
1
c

(
Fn4,n3

s2
3

s2
4

− 1
)
− (σ2

γ/σ2
ε).

Thus, the generalized p-values based on T11 and T12 for the hypothesis testing problems (19)
and (20) are computed as

p11 = 1 − EFn4,n2

[
FFn4,n3

s−2
3 (Fn4,n2s

2
2 − bcc1s

2
4)

]
,

p12 = FFn4,n3
((cc1+1)s2

4/s2
3).
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Further, the invariant generalized pivot quantities for σ2
β/σ2

ε and σ2
γ/σ2

ε are

T11
∗ =

1
acs2

4

(Fn4,n2s
2
2 − Fn4,n3s

2
3), T12

∗ =
1
c

(
Fn4,n3

s2
3

s2
4

− 1
)

.

5 Simulation Study

In this section, Type I error probabilities and powers of the above testing approaches are
investigated from the numerical perspective by using the Monte Carlo simulation. For con-
venience, we only provide the algorithm of the Boostrap approach for the hypothesis testing
problem (5) as follows.

Algorithm 1
Step 1 For a given (a, b, c, σ2

α, σ2
γ , c0), generate σ̂2

i ∼ σ̂2
i

ni
χ2

ni
,i = 1, 3, 4, where σ2

i and ni are
given by (3) and Lemma 2.1, respectively.

Step 2 Compute T1 in (9) and denote it as t1.
Step 3 Generate σ̂2

1B ∼ σ̂2
1

n1
χ2

n1
, σ̂2

3B ∼ σ̂2
3

n3
χ2

n3
, σ̂2

4B ∼ c0−(bc)−1(σ̂2
1−σ̂2

3)
n4

χ2
n4

, then compute
TB1 in (10).

Step 4 Repeat Step 3 m1 times and compute p1 by (11). If p1 ≤ δ, then Q = 1. Otherwise,
Q = 0.

Step 5 Repeat Steps 1–4 m2 times and get Q1, Q2, · · · , Qm2 . Then Type I error probability
is

∑m2
i=1 Qi/m2.

Based on the above steps, the power of the hypothesis testing problem (5) under H1 can be
obtained similarly.

In this simulation, the parameters and sample sizes are set as follows. Firstly, let the
nominal significance level δ be 0.025, 0.05, 0.075, and 0.1, the numbers of inner loops m1 and
outer loops m2 both be 2500, and sample sizes (a, b, c) are (3, 3, 3), (3, 4, 5), (4, 5, 6), (6, 8, 10),
(8, 10, 12), and (10, 12, 15). Secondly, for the hypothesis testing problem (5), we set c0 = 5,
σ2

α = 2, 2.5, 3, 3.5, 4.5, and σ2
γ = 0.5, 1, 1.5, 2, 3. Finally, for the hypothesis testing problem (18),

we suppose c1 = 1, σ2
α = 1, 1.2, 1.5, 1.8, 2, and σ2

γ = 1, 1.1, 1.2, 1.5, 1.8.
For the hypothesis testing problem (5), Table 1 presents the simulated Type I error prob-

abilities of the Bootstrap approach (BA) and generalized approach (GA) at different nominal
significance levels. When the sample size is small, Type I error probabilities of the BA is slightly
liberal, while those of the GA is slightly conservative. With the increase of the sample size, the
actual levels of the proposed two approaches are closer to the nominal significance levels. Table
2 presents the simulated powers of the BA and GA at different nominal significance levels. The
powers of the BA are apparently better than those of the GA in most cases.

For the hypothesis testing problem (18), Tables 3 and 4 give the simulated Type I error
probabilities and powers of the BA and GA at different nominal significance levels, respectively.
As in Table 3, similar to (5), the BA is slightly liberal whereas the GA is slightly conservative,
when the sample size is small. However, this result is improved significantly as the sample
size increases. Namely, the above two approaches both can efficiently control Type I error
probabilities. As in Table 4, it is clear that the powers of these two approaches both increase as
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σ2
α/σ2

ε departs from the null hypothesis and as the sample size increases, but the BA is better
than the GA in most cases.

Table 1 Type I error probabilities for the hypothesis testing problem (5) (σ2
α + σ2

ε = c0)

δ

a b c σ2
α σ2

γ 0.025 0.05 0.075 0.1

BA GA BA GA BA GA BA GA

3 3 3 2 0.5 0.0552 0.0228 0.0776 0.054 0.1064 0.0804 0.1232 0.1104

2.5 1 0.0432 0.0212 0.0712 0.0488 0.0952 0.0748 0.1188 0.1028

3 1.5 0.0316 0.0208 0.0604 0.0456 0.0868 0.0688 0.11 0.0932

3.5 2 0.026 0.018 0.056 0.0408 0.0824 0.064 0.1072 0.0908

4.5 3 0.0192 0.0156 0.0448 0.0364 0.0752 0.0588 0.1024 0.0808

3 4 5 2 0.5 0.0444 0.0276 0.0668 0.0564 0.0944 0.0844 0.1156 0.1116

2.5 1 0.0324 0.0244 0.0628 0.0512 0.0848 0.0784 0.1072 0.1032

3 1.5 0.026 0.0216 0.0552 0.0472 0.0792 0.072 0.1056 0.098

3.5 2 0.0228 0.0204 0.0512 0.0456 0.0768 0.07 0.1024 0.094

4.5 3 0.022 0.0216 0.0492 0.0428 0.0752 0.0664 0.1 0.0924

4 5 6 2 0.5 0.0364 0.0292 0.06 0.0556 0.0836 0.0808 0.1096 0.1092

2.5 1 0.0304 0.0248 0.0556 0.0524 0.0812 0.0788 0.1044 0.1032

3 1.5 0.0272 0.0236 0.0512 0.0508 0.0772 0.0752 0.102 0.0988

3.5 2 0.0264 0.0232 0.0512 0.048 0.0748 0.0744 0.1024 0.0964

4.5 3 0.0264 0.0228 0.046 0.0468 0.0748 0.0744 0.0992 0.0948

6 8 10 2 0.5 0.0284 0.0264 0.0544 0.052 0.0788 0.0788 0.1036 0.104

2.5 1 0.0244 0.0244 0.0532 0.0504 0.0764 0.076 0.1016 0.102

3 1.5 0.0244 0.024 0.0512 0.0508 0.0752 0.0752 0.098 0.0984

3.5 2 0.0252 0.0244 0.0496 0.0496 0.0736 0.074 0.1 0.0996

4.5 3 0.0244 0.024 0.0484 0.0488 0.0744 0.072 0.1016 0.0988

8 10 12 2 0.5 0.0276 0.026 0.0532 0.0516 0.0756 0.0776 0.1036 0.1032

2.5 1 0.0252 0.0248 0.0524 0.0504 0.0752 0.0752 0.0996 0.0996

3 1.5 0.0256 0.0244 0.0516 0.05 0.0756 0.0752 0.0996 0.1004

3.5 2 0.0244 0.0244 0.05 0.0496 0.0756 0.0744 0.0996 0.1

4.5 3 0.0244 0.0252 0.05 0.0496 0.0752 0.0744 0.1 0.0996

10 12 15 2 0.5 0.0244 0.026 0.0512 0.0508 0.0772 0.076 0.1012 0.1

2.5 1 0.0248 0.0248 0.052 0.05 0.0764 0.0752 0.0988 0.1004

3 1.5 0.0248 0.0248 0.0516 0.0504 0.0744 0.0744 0.1 0.1004

3.5 2 0.0256 0.0248 0.0512 0.0492 0.074 0.0744 0.0984 0.0996

4.5 3 0.0256 0.0248 0.0508 0.0492 0.072 0.0748 0.0984 0.0992
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Table 2 Powers for the hypothesis testing problem (5) (σ2
γ = 1)

δ

a b c σ2
α σ2

γ 0.025 0.05 0.075 0.1

BA GA BA GA BA GA BA GA

3 3 3 3.5 3 0.1208 0.0728 0.162 0.1172 0.2092 0.164 0.2416 0.2052

4 3.5 0.198 0.1164 0.2568 0.174 0.2972 0.2396 0.328 0.2884

4.5 4 0.2928 0.1664 0.3436 0.2452 0.3976 0.3148 0.4316 0.372

5 4.5 0.3836 0.2116 0.4388 0.3068 0.4804 0.3964 0.5132 0.452

5.5 5 0.4648 0.268 0.5168 0.3816 0.5556 0.464 0.5896 0.522

3 4 5 3.5 3 0.114 0.0908 0.1676 0.1392 0.2172 0.198 0.2492 0.2384

4 3.5 0.2208 0.1644 0.2748 0.2364 0.3224 0.2956 0.3656 0.346

4.5 4 0.3408 0.256 0.4052 0.334 0.4516 0.4108 0.488 0.4656

5 4.5 0.4752 0.3596 0.5256 0.4516 0.5704 0.5268 0.6068 0.5788

5.5 5 0.5888 0.46 0.6372 0.5576 0.6788 0.6364 0.7052 0.6788

4 5 6 3.5 3 0.1376 0.1164 0.1996 0.1904 0.2396 0.2348 0.2792 0.2788

4 3.5 0.2688 0.2316 0.3476 0.3216 0.4084 0.3924 0.4472 0.4432

4.5 4 0.4456 0.3916 0.5184 0.4788 0.5724 0.554 0.612 0.6072

5 4.5 0.6244 0.5516 0.6768 0.6372 0.7192 0.6964 0.7428 0.7376

5.5 5 0.7556 0.6872 0.802 0.7632 0.828 0.8116 0.8484 0.8412

6 8 10 3.5 3 0.178 0.1784 0.2496 0.2396 0.308 0.308 0.352 0.3556

4 3.5 0.3884 0.372 0.4816 0.4676 0.5472 0.542 0.598 0.6004

4.5 4 0.646 0.6256 0.7076 0.698 0.7616 0.7532 0.7872 0.7868

5 4.5 0.8516 0.8288 0.8832 0.8712 0.906 0.9016 0.9196 0.9188

5.5 5 0.962 0.9488 0.9736 0.9688 0.9784 0.9772 0.982 0.9828

8 10 12 3.5 3 0.2188 0.2188 0.3008 0.2912 0.3492 0.3516 0.4104 0.4108

4 3.5 0.488 0.472 0.586 0.5812 0.634 0.634 0.6756 0.6808

4.5 4 0.7744 0.7512 0.8216 0.818 0.8552 0.8552 0.876 0.8772

5 4.5 0.9452 0.9324 0.9612 0.9588 0.9704 0.9696 0.9752 0.9748

5.5 5 0.996 0.9948 0.9972 0.9968 0.998 0.998 0.9992 0.9992

10 12 15 3.5 3 0.2548 0.26 0.3456 0.346 0.4128 0.4128 0.4696 0.4684

4 3.5 0.5844 0.5796 0.66 0.6648 0.7216 0.7204 0.76 0.7588

4.5 4 0.8576 0.8456 0.8972 0.8944 0.9188 0.9196 0.9352 0.9352

5 4.5 0.9844 0.9768 0.99 0.988 0.9924 0.9924 0.9928 0.9928

5.5 5 0.9984 0.9984 0.9992 0.9988 0.9996 0.9996 1 1
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Table 3 Type I error probabilities for the hypothesis testing problem (18) (σ2
α/σ2

ε = c1)

δ

a b c σ2
α σ2

γ 0.025 0.05 0.075 0.1

BA GA BA GA BA GA BA GA

3 3 3 1 1 0.0336 0.014 0.0576 0.0304 0.0848 0.0508 0.1048 0.0676

1.2 1.1 0.034 0.014 0.06 0.0316 0.086 0.0492 0.1076 0.0676

1.5 1.2 0.0344 0.014 0.0628 0.0312 0.0876 0.0512 0.1128 0.0692

1.8 1.5 0.034 0.014 0.062 0.0312 0.0872 0.0504 0.112 0.0684

2 1.8 0.0336 0.014 0.06 0.0316 0.0868 0.0496 0.1092 0.068

3 4 5 1 1 0.03 0.0188 0.0536 0.0404 0.078 0.0608 0.1092 0.0832

1.2 1.1 0.0312 0.0192 0.0544 0.04 0.0792 0.0608 0.1116 0.084

1.5 1.2 0.0316 0.0196 0.0576 0.042 0.0816 0.0604 0.1152 0.0836

1.8 1.5 0.0316 0.0188 0.0568 0.042 0.0808 0.06 0.1128 0.084

2 1.8 0.0316 0.0192 0.0552 0.0408 0.0796 0.0604 0.112 0.084

4 5 6 1 1 0.028 0.0224 0.0536 0.0432 0.0768 0.07 0.1036 0.0932

1.2 1.1 0.0296 0.0232 0.0572 0.0432 0.0784 0.07 0.1072 0.092

1.5 1.2 0.0296 0.0224 0.0596 0.0436 0.0824 0.0704 0.1112 0.092

1.8 1.5 0.0296 0.0224 0.058 0.0432 0.0812 0.0704 0.11 0.0928

2 1.8 0.0296 0.0224 0.0572 0.0428 0.0796 0.0696 0.1088 0.092

6 8 10 1 1 0.026 0.024 0.05 0.0488 0.0764 0.0728 0.102 0.0976

1.2 1.1 0.026 0.024 0.0516 0.0492 0.0784 0.0732 0.1028 0.0976

1.5 1.2 0.0284 0.0244 0.0556 0.0492 0.0816 0.0732 0.1068 0.0984

1.8 1.5 0.028 0.024 0.0544 0.0492 0.0808 0.0732 0.1064 0.098

2 1.8 0.026 0.024 0.0516 0.0492 0.0792 0.0732 0.1036 0.098

8 10 12 1 1 0.026 0.0244 0.0484 0.0484 0.076 0.0732 0.1008 0.0992

1.2 1.1 0.026 0.0248 0.0504 0.0488 0.0796 0.0736 0.1036 0.0992

1.5 1.2 0.0276 0.0244 0.0528 0.0492 0.0832 0.0736 0.1064 0.0984

1.8 1.5 0.0268 0.0248 0.0524 0.0492 0.0828 0.0736 0.106 0.0988

2 1.8 0.0264 0.0248 0.0512 0.0492 0.0804 0.0736 0.1036 0.0992

10 12 15 1 1 0.0236 0.0244 0.0496 0.0488 0.076 0.0748 0.1 0.0984

1.2 1.1 0.0248 0.0248 0.0516 0.0496 0.0772 0.0744 0.1024 0.0992

1.5 1.2 0.0284 0.0248 0.0532 0.0492 0.0812 0.0744 0.1072 0.0992

1.8 1.5 0.028 0.0248 0.0528 0.0492 0.08 0.0744 0.106 0.0992

2 1.8 0.026 0.0248 0.0516 0.0496 0.0772 0.0744 0.1036 0.0992
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Table 4 Powers for the hypothesis testing problem (18) (σ2
ε = 1)

δ

a b c σ2
α σ2

γ 0.025 0.05 0.075 0.1

BA GA BA GA BA GA BA GA

3 3 3 1.5 0.5 0.088 0.04 0.136 0.0764 0.1716 0.114 0.2068 0.1432

2 0.6 0.1304 0.0704 0.1868 0.1244 0.2344 0.1608 0.2756 0.2012

3 0.7 0.2152 0.14 0.2888 0.2072 0.3428 0.2636 0.3828 0.3104

6 0.8 0.4172 0.3232 0.496 0.41 0.5468 0.4816 0.5844 0.5248

10 1 0.5508 0.4696 0.6144 0.5624 0.66 0.6188 0.688 0.6556

3 4 5 1.5 0.5 0.0864 0.0592 0.1456 0.0988 0.1816 0.1448 0.2188 0.1772

2 0.6 0.1472 0.108 0.2036 0.1596 0.252 0.206 0.2996 0.252

3 0.7 0.2404 0.1956 0.316 0.268 0.37 0.3256 0.4156 0.3756

6 0.8 0.46 0.4128 0.5392 0.4924 0.5936 0.554 0.6284 0.5972

10 1 0.6056 0.5744 0.6672 0.636 0.6996 0.6844 0.7324 0.716

4 5 6 1.5 0.5 0.1064 0.082 0.1664 0.1332 0.2032 0.1696 0.2532 0.2092

2 0.6 0.1784 0.1544 0.256 0.2172 0.3016 0.2692 0.35 0.316

3 0.7 0.318 0.2928 0.4148 0.3792 0.474 0.4376 0.5248 0.4892

6 0.8 0.6084 0.5884 0.6796 0.6616 0.718 0.7008 0.7464 0.7348

10 1 0.7524 0.746 0.8032 0.7968 0.8288 0.822 0.8488 0.8444

6 8 10 1.5 0.5 0.1312 0.1084 0.1972 0.17 0.2592 0.2272 0.296 0.2696

2 0.6 0.254 0.2228 0.34 0.3108 0.4116 0.3784 0.4544 0.4292

3 0.7 0.47 0.4452 0.5728 0.5472 0.6312 0.6128 0.6708 0.6556

6 0.8 0.7944 0.7884 0.8432 0.8344 0.8736 0.8636 0.892 0.8864

10 1 0.9112 0.9116 0.9364 0.936 0.952 0.9504 0.9588 0.9584

8 10 12 1.5 0.5 0.1572 0.1388 0.228 0.2016 0.2856 0.256 0.334 0.2984

2 0.6 0.308 0.2856 0.4064 0.3808 0.476 0.4432 0.5312 0.4968

3 0.7 0.5904 0.5676 0.6716 0.6576 0.7232 0.7084 0.758 0.7436

6 0.8 0.8964 0.8892 0.9228 0.92 0.9428 0.9396 0.9524 0.9496

10 1 0.9728 0.9728 0.9824 0.982 0.9872 0.986 0.9888 0.9892

10 12 15 1.5 0.5 0.178 0.1544 0.2656 0.2328 0.3164 0.2872 0.374 0.3408

2 0.6 0.3712 0.3444 0.4812 0.4552 0.5452 0.5196 0.6048 0.5764

3 0.7 0.6828 0.6636 0.7636 0.746 0.7984 0.7828 0.8296 0.8152

6 0.8 0.9496 0.9456 0.9668 0.9656 0.9752 0.9732 0.9812 0.9784

10 1 0.992 0.9928 0.9948 0.9948 0.9952 0.9956 0.9964 0.9964
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6 Illustrative Examples

To analyze the effectiveness of the proposed methods, we apply them to the examples of
mice blood pH and molded plastic part’s dimensions.

Example 1 The approaches above are applied to the study of mice blood pH of different
strains. Firstly, the five strains used for the experiment are randomly selected from all available
strains. Secondly, the interest is in the magnitude of fluctuation in daily blood pH rather than
the comparison of daily average levels, so the time variable is also viewed as a random factor.
Thus, this experiment can be fitted by the two-way random effects model with interaction. Let
yijk denote the blood pH of the kth mouse of the ith strain in the jth day, then the statistical
model is

yijk = μ + αi + βj + γij + εijk,

where i = 1, 2, · · · , 5, j = 1, 2, · · · , 6, k = 1, 2, · · · , 5, μ is the fixed effect, αi is the effect of the
ith strain, βj is the effect of the jth day, γij is the interaction between the ith strain and the jth
day, and εijk is the random error. Assume that αi ∼ N(0, σ2

α), βj ∼ N(0, σ2
β), γij ∼ N(0, σ2

γ),
εijk ∼ N(0, σ2

ε), and all random variables are mutually independent. Weir[23] presented the
ANOVA results for this experiment (see Table 5).

Table 5 Analysis of variance

SV DF MS

Mouse strains 4 0.092

Days of test 5 0.0101

Interaction 20 0.0052

Random error 120 0.0034

Firstly, consider the hypothesis testing problem for the sum of variance components

H0 : σ2
α + σ2

ε ≤ 0.05 versus H1 : σ2
α + σ2

ε > 0.05. (28)

Based on (11) and (13), the Bootstrap p-value and generalized p-value are 0.0980 and 0.0968
respectively by 104 loops. Hence, the null hypothesis H0 in (28) is not rejected by the two
approaches at the nominal significance level of 5%.

Next, consider the hypothesis testing problem for the ratio of variance components

H0 : σ2
α/σ2

ε ≤ 10 versus H1 : σ2
α/σ2

ε > 10. (29)

The Bootstrap p-value based on (24) is 0.0170, and the generalized p-value based on (26) is
0.0337. Consequently, at the nominal significance level of 5%, the above two p-values indicate
that these two approaches both reject the the null hypothesis H0 in (29).

Example 2 The empirical data of molded plastic part’s dimensions are analyzed in this
example. In this experiment, two operators are randomly selected from those who often use
coordinate measuring machine to measure the part’s dimension. Each operator randomly tests
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ten parts in which each part is loaded twice into the fixture. Therefore, this data can be fitted
by the two-way random effects model with interaction. Let yijk denote the dimension of the
kth loading of the ith part by the jth operator. The statistical model for data analysis has the
form of

yijk = μ + αi + βj + γij + εijk,

where i = 1, 2, · · · , 10, j = 1, 2, k = 1, 2, μ denotes the fixed effect, αi and βj are the effects of
the ith part and the jth operator respectively, γij is the interaction between the ith part and
the jth operator, and εijk is the random error. Assume that αi ∼ N(0, σ2

α), βj ∼ N(0, σ2
β),

γij ∼ N(0, σ2
γ), εijk ∼ N(0, σ2

ε), and all random variables are mutually independent. Gilder, et
al.[11] gave the ANOVA results (See Table 6).

Table 6 Analysis of variance

SV DF MS

BArts 9 1.3055 × 10−3

Operators 1 6.4803 × 10−4

Interaction 9 2.8197 × 10−4

Random error 20 1.6348 × 10−4

Firstly, consider the hypothesis testing problem for the sum of variance components

H0 : σ2
α + σ2

ε ≤ 0.005 versus H1 : σ2
α + σ2

ε > 0.005. (30)

Based on (11) and (13), the Bootstrap p-value and generalized p-value are 0.9976 and 0.9766
respectively by 104 loops. Thus, the null hypothesis H0 in (30) is not rejected by the two
approaches at the nominal significance level of 5%.

Next, consider the hypothesis testing problem for the ratio of variance components

H0 : σ2
α/σ2

ε ≤ 2 versus H1 : σ2
α/σ2

ε > 2. (31)

The Bootstrap p-value based on (24) is 0.0103, and the generalized p-value based on (26) is
0.0217. Therefore, at the nominal significance level of 5%, the above two p-values indicate that
these two approaches both reject the the null hypothesis H0 in (31).

7 Conclusion

Using the Bootstrap approach and generalized approach, we study the one-sided hypothesis
testing and interval estimation problems for the sum and ratio of variance components in
the two-way random effects model with interaction. Firstly, the test statistics and confidence
intervals for the sum of variance components are constructed. Secondly, the test statistics
and confidence intervals for the ratio of variance components are established. Thirdly, the
Monte Carlo simulation results show that the Bootstrap approach is better than the generalized
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approach in most cases, whether for the sum or ratio of variance components. Finally, the above
approaches are applied to the examples of mice blood pH and molded plastic part’s dimensions
to verify the rationality and validity of the proposed approaches. In summary, for two-way
random effects model with interaction, the Bootstrap approach is preferentially suggested to be
used for hypothesis testing and interval estimation problems for the sum and ratio of variance
components.
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