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Abstract This paper investigates the adaptive stabilization for a class of uncertain PDE-ODE cas-

caded systems. Remarkably, the PDE subsystem allows unknown control coefficient and spatially

varying parameter, and only its one boundary value is measurable. This renders the system in ques-

tion more general and practical, and the control problem more challenging. To solve the problem,

an invertible transformation is first introduced to change the system into an observer canonical form,

from which a couple of filters are constructed to estimate the unmeasurable states. Then, by adaptive

technique and infinite-dimensional backstepping method, an adaptive controller is constructed which

guarantees that all states of the resulting closed-loop system are bounded while the original system

states converging to zero. Finally, a numerical simulation is provided to illustrate the effectiveness of

the proposed method.

Keywords Adaptive stabilization, output-feedback, PDE-ODE cascaded systems, unknown control

coefficient, unknown spatially varying parameter.

1 Introduction

Many dynamic processes in engineering can be described by partial differential equation
(PDE) cascaded with ordinary differential equation (ODE). For example, the metal rolling
processes are represented by first-order hyperbolic PDE-ODE cascaded systems[1], the fluid-
structure interaction models are described by parabolic PDE-ODE cascaded systems[2] and
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the flexible air-breathing hypersonic vehicles are described by the cascaded systems consisting
of Euler-Bernoulli beam equations and ODEs[3]. Roughly speaking, due to the presence of
both PDE and ODE subsystems, the feedback control design of PDE-ODE cascaded systems
is more difficult than that of pure PDE or ODE systems, and hence attracts lots of attention
over the last two decades (see, e.g., [4–18] and references therein). Several control methods
for this kind of systems have been developed, for example, the method of infinite-dimensional
backstepping[9, 14], active disturbance rejection control[4, 5] and sliding mode control[16, 17].

Recently, the stabilization and tracking control problems of first-order hyperbolic PDE-ODE
cascaded systems have been investigated under different assumptions on system uncertainties[5–9].
Specifically, stabilization has been addressed in [5, 9], but all the system parameters in [5, 9] are
required to be exactly known. Moreover, by modelling unknown time-delay as a first-order hy-
perbolic PDE, tracking and stabilizing controllers have been respectively designed for uncertain
first-order hyperbolic PDE-ODE cascaded systems in [6] and [7, 8], but the unknown parame-
ters are constants rather than spatially varying functions. It is necessary to point out that the
actual values of spatially varying parameters in PDE systems are difficult (even impossible) to
obtain in most cases. Hence, the output-feedback control of first-order hyperbolic PDE-ODE
cascaded systems with unknown spatially varying parameters deserves further investigation.

In this paper, we consider the stabilization for the following PDE-ODE cascaded system
with unknown control coefficient and spatially varying parameter:

⎧
⎪⎪⎨

⎪⎪⎩

Ẋ(t) = AX(t) + Bv(0, t),

vt(x, t) = vx(x, t) + λ(x)v(x, t),

v(1, t) = kU(t),

(1)

where X : R+ → Rn and v : [0, 1]×R+ → R with initial values X(0) = X0 and v(x, 0) = v0(x)
are the states of ODE and PDE subsystems, respectively; U(t) is the input to the entire system;
vt = ∂v

∂t and vx = ∂v
∂x ; the pair (A, B) with A ∈ Rn×n and B ∈ Rn×1 is stabilizable; k is an

unknown nonzero constant, called control coefficient and its sign (i.e., sign(k)) is known; λ(x)
is an unknown continuous function defined on [0, 1]. In the system (1), only X(t) and v(0, t)
are the measurable information which are available for feedback.

System (1) can describe the dynamics of distributed chemical reaction processes, in which
the evolution of substance in the transport pipe is represented by PDE while the evolution of
substance in the reactor being described by ODE (see, e.g., [19, 20] and references therein). In
such dynamic process, control coefficient k is used to denote the deviation between the input
acting on the plant and the designed one, which always exists and is unknown in practice.
Although the first-order hyperbolic PDE-ODE cascaded systems similar as (1) have been studied
in [5, 9], the system parameters in [5, 9] are known and all the system states are required to be
available for feedback.

The control objective of this paper is to design an adaptive controller to guarantee that all
states of the resulting closed-loop system are bounded, meanwhile the original system states
converge to zero. To achieve the objective, the following assumptions are respectively imposed
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on the unknown control coefficient k and spatially varying parameter λ(x) of the system (1).

Assumption 1 There exist known nonzero constants k and k with the same sign such
that

k ≤ k ≤ k.

Assumption 2 There exist known constants λ and λ such that

λ ≤ λ(x) ≤ λ, ∀x ∈ [0, 1].

To solve the control problem under investigation, an adaptive controller is designed in this
paper. Specifically, by an invertible transformation, the system (1) is first transformed into an
observer canonical form. Then, based on the obtained observer canonical form, some filters
are constructed to estimate the unmeasurable states. Finally, by adaptive technique based on
gradient algorithm and projection operator, an adaptive controller is designed which guarantees
the desired performance of the resulting closed-loop system. It is worthwhile emphasizing that,
the designed controller depends on ODE state and only one boundary value rather than all
states of the PDE subsystem. Moreover, unknown control coefficient is also allowed in this
paper, which makes the existing methods ineffective for the control problem under investigation.

The rest of this paper is organized as follows. Section 2 gives the controller design procedure.
Section 3 presents the stability analysis of the resulting closed-loop system. Section 4 provides
a numerical simulation to illustrate the effectiveness of the proposed method. Section 5 gives
some concluding remarks. This paper ends with an Appendix which collects some useful criteria
and the proofs of an important proposition and some inequalities.

Notation The following notation will be used in the paper. For any symmetric matrix
Q, λmin(Q) and λmax(Q) denote its minimum and maximum eigenvalues, respectively. For the
vector or matrix X , ‖X‖ means the Euclidean norm for vectors or the corresponding induced

norm for matrices. Let ‖u(·, t)‖ =
√∫ 1

0 u2(x, t)dx denote the L2-norm of u(x, t) defined on
[0, 1] × [0, +∞).

2 Adaptive Control Design

In this section, the detailed controller design procedure is given. First, System (1) is trans-
formed into an observer canonical form (i.e., System (4) below) by an invertible transformation.
Then, certain proper filters are designed to estimate the unmeasurable states of the system.
Finally, an adaptive controller is constructed by adaptive technique based on gradient algorithm
and projection operator.

2.1 Construction of Observer Canonical Form

Since not all the states of System (1) are measurable, proper filters should be designed to
estimate the unmeasurable states. To make the construction of filters convenient, an invertible
transformation is introduced to change System (1) into an observer canonical form. In addition,
the states of observer canonical form will be estimated in the next subsection.
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First, we introduce the following transformation:

w(x, t) = μ(x)v(x, t)− Ke(A+BK)xX(t), (2)

where μ(x) = exp
(∫ x

0 λ(s)ds
)

and K ∈ R1×n is a row vector such that A + BK is Hurwitz. It
is not difficult to obtain the inverse transformation of (2) as follows:

v(x, t) =
1

μ(x)

(
w(x, t) + Ke(A+BK)xX(t)

)
. (3)

Then, System (1) is transformed into the following new one under transformation (2), which
is referred to as the observer canonical form of System (1):

⎧
⎪⎪⎨

⎪⎪⎩

Ẋ(t) = (A + BK)X(t) + Bw(0, t),

wt(x, t) = wx(x, t) + θ(x)w(0, t),

w(1, t) = ρU(t) − KeA+BKX(t),

(4)

where ρ = k μ(1) and θ(x) = −Ke(A+BK)xB.
From (4), it can be seen that ρ is the new unknown control coefficient formed by the original

control coefficient k and parameter λ(x). Then, we only need to compensate the unknown
parameter ρ in control design. Moreover, by Assumptions 1 and 2, we know that ρ belongs to
a known bounded interval, i.e.,

ρ ≤ ρ ≤ ρ, (5)

where ρ = k eλ, ρ = k eλ if k > 0 and ρ = k eλ, ρ = k eλ if k < 0.

2.2 Estimations of System States

To estimate the unmeasurable states of System (4), by the measurable information X(t)
and v(0, t), we design the following filters:

⎧
⎪⎪⎨

⎪⎪⎩

φt(x, t) = φx(x, t), φ(1, t) = U(t),

ϕt(x, t) = ϕx(x, t), ϕ(1, t) = v(0, t),

Nt(x, t) = Nx(x, t), N(1, t) = X(t),

(6)

with the corresponding initial values φ(x, 0) = φ0(x), ϕ(x, 0) = ϕ0(x) and N(x, 0) = N0(x)
being continuous functions defined on [0, 1].

For the aim of estimating w(x, t), a nonadaptive estimation for w(x, t) in the following form
is constructed:

w(x, t) = ρφ(x, t) − KeA+BKN(x, t) +
∫ 1

x

θ(ξ)ϕ(1 + x − ξ, t)dξ

−
∫ 1

x

θ(ξ)KN(1 + x − ξ, t)dξ. (7)
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Define nonadaptive estimation error e(x, t) = w(x, t) − w(x, t). From this, the second equation
of (4), the last two equations of (6) and (7), and noting v(0, t) = w(0, t) + KX(t), we obtain

et(x, t) − ex(x, t) = wt(x, t) − wx(x, t) + wx(x, t) − wt(x, t)
= θ(x)w(0, t) − θ(x)ϕ(1, t) + θ(x)KN(1, t)
= θ(x)w(0, t) − θ(x)v(0, t) + θ(x)KX(t)
= 0. (8)

Then, from the third equation of (4), the first equation of (6) and (7), we have

e(1, t) = w(1, t) − w(1, t)
= ρU(t) − KeA+BKX(t) − ρφ(1, t) + KeA+BKN(1, t)
= 0. (9)

Equations (8) and (9) imply that e(x, t) = 0 on [0, 1]× [1, +∞), that is, nonadaptive estimation
w(x, t) can estimate w(x, t) in finite time.

Since ρ is unknown, the nonadaptive estimation w(x, t) given by (7) is inapplicable. By
replacing unknown parameter ρ by its dynamic compensation, an adaptive state estimation of
w(x, t) is obtained:

ŵ(x, t) = ρ̂(t)φ(x, t) − KeA+BKN(x, t) +
∫ 1

x

θ(ξ)ϕ(1 + x − ξ, t)dξ

−
∫ 1

x

θ(ξ)KN(1+x−ξ, t)dξ, (10)

where ρ̂(t) is the dynamic compensation to ρ whose updating law will be given later.
For the adaptive state estimation ŵ(x, t) of w(x, t), we present the following proposition to

give the equations that ŵ(x, t) satisfies.

Proposition 2.1 The adaptive state estimation ŵ(x, t) of w(x, t) satisfies the following
equations:

⎧
⎨

⎩

ŵt(x, t) = ŵx(x, t) + ˙̂ρ(t)φ(x, t) + θ(x) (v(0, t) − KX(t)) ,

ŵ(1, t) = ρ̂(t)U(t) − KeA+BKX(t).
(11)

Proof First, letting x = 1 in (10) and using (6), we have that the second equation of (11)
holds. Then, calculating the first order partial derivatives of ŵ(x, t) with respect to t and x,
respectively, it yields

ŵt(x, t) = ρ̂(t)φt(x, t)+˙̂ρ(t)φ(x, t)−KeA+BKNt(x, t) +
∫ 1

x

θ(ξ)ϕt(1 + x − ξ, t)dξ

−
∫ 1

x

θ(ξ)KNt(1 + x − ξ, t)dξ, (12)

ŵx(x, t) = ρ̂(t)φx(x, t) − KeA+BKNx(x, t) +
∫ 1

x

θ(ξ)ϕx(1 + x − ξ, t)dξ

−
∫ 1

x

θ(ξ)KNx(1 + x − ξ, t)dξ − θ(x) (v(0, t) − KX(t)) . (13)

Subtracting both sides of (12) and (13), and by (6), we obtain the first equation of (11).



OUTPUT-FEEDBACK STABILIZATION FOR PDE-ODE SYSTEMS 303

2.3 Design of the Adaptive Controller

In this subsection, we will first design the updating law of ρ̂(t) by gradient algorithm, and
then derive the explicit controller by infinite-dimensional backstepping method.

Define ê(x, t) = w(x, t)− ŵ(x, t), and hence there holds ê(0, t) = w(0, t)− ŵ(0, t). Then, by
letting x = 0 in (7) and (10) and noting that e(0, t) = w(0, t) − w(0, t), we have

ê(0, t) = e(0, t) + w(0, t) − ŵ(0, t) = e(0, t) + (ρ − ρ̂(t))φ(0, t).

By this, we define the following normalized performance index:

J(ρ̂(t)) =
ê2(0, t)

2(1 + φ2(0, t))
.

Note that e(0, t) = 0 on [1, +∞), and hence there holds ê(0, t) = (ρ − ρ̂(t)) φ(0, t) on [1, +∞).
Then, by gradient algorithm, we choose the following updating law:

˙̂ρ(t) =

⎧
⎪⎨

⎪⎩

0, 0 ≤ t < 1,

γ1Proj[ρ,ρ]

{
ê(0, t)

1 + φ2(0, t)
φ(0, t), ρ̂(t)

}

, t ≥ 1,
(14)

where γ1 is a positive constant; ρ̂(0) ∈ [ρ, ρ] and the projection operator Proj[·,·]{·, ·} is defined
by

Proj[ρ,ρ]{ε, ρ̂} =

⎧
⎪⎪⎨

⎪⎪⎩

0, if ρ̂ = ρ and ε < 0,

0, if ρ̂ = ρ and ε > 0,

ε, else.

(15)

To give the explicit form of controller U(t), the following invertible transformation for Sys-
tem (11) is introduced:

ζ(x, t) = ŵ(x, t) −
∫ x

0

g(x − ξ)ŵ(ξ, t)dξ, (16)

where

g(x) =
+∞∑

i=1

gi(x), (17)

with
⎧
⎪⎨

⎪⎩

g1(x) = −θ(x),

gi(x) =
∫ x

0

gi−1(x − ξ)θ(ξ)dξ, i ≥ 2.
(18)

It is necessary to point out that the above infinite series is convergent on [0, 1] by the method
of successive approximation[21]. Then, there exists a constant Mg such that |g(x)| ≤ Mg,
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∀x ∈ [0, 1]. Moreover, it can be verified from (17) and (18) that g(x) satisfies the following
equality:

g(x) =
∫ x

0

g(x − ξ)θ(ξ)dξ − θ(x). (19)

Then, the inverse transformation of (16) is given by

ŵ(x, t) = ζ(x, t) −
∫ x

0

θ(x − ξ)ζ(ξ, t)dξ, (20)

which can be verified by inserting (20) into (16) and using (19).
Under transformation (16), System (11) is transformed into a new one, from which the

explicit controller is more convenient to design.

Proposition 2.2 Under transformation (16), System (11) is transformed into
⎧
⎪⎪⎨

⎪⎪⎩

ζt(x, t)=ζx(x, t)−g(x)ê(0,t) + ˙̂ρ(t)φ(x, t) − ˙̂ρ(t)
∫ x

0

g(x − ξ)φ(ξ, t)dξ,

ζ(1, t) = ρ̂(t)U(t) −
∫ 1

0

g(1 − ξ)ŵ(ξ, t)dξ − KeA+BKX(t).
(21)

Moreover, there exist positive constants M1 and M2 such that

‖ζ(·, t)‖ ≤ M1‖ŵ(·, t)‖, ‖ŵ(·, t)‖ ≤ M2‖ζ(·, t)‖. (22)

Proof See Appendix A.1.
Letting ζ(1, t) = 0 in the second equation of (21), we obtain the following explicit controller:

U(t) =
1

ρ̂(t)

(∫ 1

0

g(1 − ξ)ŵ(ξ, t)dξ + KeA+BKX(t)
)

. (23)

It is worth pointing out that controller (23) depends on X(t), ŵ(x, t) and ρ̂(t) which are all
available for feedback, and hence is implementable although the foregoing transformation (2)
depends on unknown parameter λ(x).

3 Stability Analysis

Before giving the main results, we present the following proposition to collect two properties
of updating law (14), which will be frequently used in the later stability analysis.

Proposition 3.1 For updating law (14) with projection operator (15), the following
claims hold:

(i) |ê(0,t)|√
1+φ2(0,t)

is bounded and square integrable on [1, +∞),

(ii)
∣
∣
∣ ˙̂ρ(t)

∣
∣
∣ is bounded and square integrable on [0, +∞).

Proof To prove claim (i), the following Lyapunov function is chosen:

V (t) =
1

2γ1
ρ̃2(t),
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where ρ̃(t) = ρ − ρ̂(t). Calculating the time derivative of V (t), and then using (14) and claim
(ii) of Proposition 5.1 in Appendix A.3, we obtain

⎧
⎪⎨

⎪⎩

V̇ (t) = 0, 0 ≤ t < 1,

V̇ (t) ≤ − ê(0, t)
1 + φ2(0, t)

ρ̃(t)φ(0, t), t ≥ 1.
(24)

Noting that ê(0, t) = ρ̃(t)φ(0, t) on [1, +∞), there holds

V̇ (t) ≤ − ê2(0, t)
1 + φ2(0, t)

, ∀t ≥ 1, (25)

which, together with the first equality of (24), implies that V (t) is nonincreasing and hence
bounded on [0, +∞). Then, integrating (25) with respect to t over [1, +∞) gives

∫ +∞
1

ê2(0,t)
1+φ2(0,t)dt <

+∞, which implies that |ê(0,t)|√
1+φ2(0,t)

is square integrable on [1, +∞).

Moreover, by (5) and claim (i) of Proposition 5.1 in Appendix A.3, we conclude that ρ̃(t) is
bounded on [0, +∞). Then, from the fact that ê(0, t) = ρ̃(t)φ(0, t) on [1, +∞), we have

|ê(0, t)|
√

1 + φ2(0, t)
≤ |ρ̃(t)| |φ(0, t)|

√
1 + φ2(0, t)

≤ |ρ̃(t)|, ∀t ≥ 1.

This, together with the boundedness of ρ̃(t), gives that |ê(0,t)|√
1+φ2(0,t)

is bounded on [1, +∞).

We finally prove claim (ii). Using claim (i) of Proposition 5.1 in Appendix A.3, we obtain

| ˙̂ρ(t)| ≤ γ1
|ê(0, t)|

√
1 + φ2(0, t)

|φ(0, t)|
√

1 + φ2(0, t)

≤ γ1
|ê(0, t)|

√
1 + φ2(0, t)

, ∀t ≥ 1,

which, together with claim (i) and noting ˙̂ρ(t) = 0 on [0, 1), implies that claim (ii) holds.
Now we are in a position to present the main results of this paper which are summarized in

the following theorem.

Theorem 3.2 Consider System (1) under Assumptions 1 and 2. The proposed adaptive
controller consisting of (6), (10), (14) and (23) guarantees that all the resulting closed-loop sys-
tem states X(t), v(x, t), φ(x, t), ϕ(x, t), N(x, t), ŵ(x, t) and ρ̂(t) are bounded on their separate
domains of definition while the original system states X(t) and v(x, t) converging to zero, i.e.,

lim
t→+∞ X(t) = 0, lim

t→+∞ sup
x∈[0,1]

|v(x, t)| = 0.

Proof The proof is divided into two parts. The first part shows the boundedness of all
states of the resulting closed-loop system and the second one shows the convergence of the
original system states.

(i) Proof of the boundedness of all states of the resulting closed-loop system.
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First, we choose the following four Lyapunov functions:

V1(t) = XT(t)PX(t),

V2(t) =
1
2

∫ 1

0

(1 + x)ζ2(x, t)dx,

V3(t) =
1
2

∫ 1

0

(1 + x)φ2(x, t)dx,

V4(t) =
1
2

∫ 1

0

(1 + x)ϕ2(x, t)dx,

where P = PT > 0 is the solution of (A + BK)TP + P (A + BK) = −Q for some Q = QT >

0. Calculating the time derivatives of Vi(t), i = 1, 2, 3, 4 (see Appendix A.2 for the detailed
derivation), the following four inequalities are obtained:

V̇1(t) ≤ −λmin(Q)
2

‖X(t)‖2+
4‖PB‖2

λmin(Q)
ζ2(0, t)+

4‖PB‖2

λmin(Q)
ê2(0, t)

1 + φ2(0, t)
φ2(0, t)+l1(t), (26)

V̇2(t) ≤ 8M2
g

ê2(0, t)
1 + φ2(0, t)

φ2(0, t) − 1
2
ζ2(0, t) − 1

4
V2(t) + l2(t)V3(t) + l3(t), (27)

V̇3(t) ≤ h1V2(t) + h2‖X(t)‖2 − 1
2
φ2(0, t) − 1

2
V3(t), (28)

V̇4(t) ≤ 3
ê2(0, t)

1 + φ2(0, t)
φ2(0, t)+3ζ2(0, t)− 1

2
V4(t)+3‖K‖2‖X(t)‖2− 1

2
ϕ2(0, t)+l4(t), (29)

where h1 and h2 are positive constants, li(t), i = 1, 2, 3, 4 are bounded and integrable functions
defined on [1, +∞) whose specified forms are given in Appendix A.2.

Then, with Vi(t)’s in hand, we define

V5(t) = k1V1(t) + k2V2(t) + V3(t) + V4(t),

where k1 > 2
λmin(Q)

(
h2+3‖K‖2

)
and k2 > max

{
k1

8‖PB‖2

λmin(Q) +6, 4h1

}
. Then, using (26)–(29), we

obtain

V̇5(t) ≤
(

k1
4‖PB‖2

λmin(Q)
+ 8k2M

2
g + 3

)
ê2(0, t)

1 + φ2(0, t)
φ2(0, t)

−1
2
φ2(0, t) − c1V5(t) + l5(t)V5(t) + l6(t), (30)

where c1 = 1
max{k1,k2,1} min

{
k1

λmin(Q)
2 −3‖K‖2−h2

λmax(P )
, k2

4 − h1,
1
4

}
, l5(t) = k2l2(t) and l6(t) =

k1l1(t) + k2l3(t) + l4(t).
To prove the boundedness of the resulting closed-loop system states, we first show that

V5(t) is bounded on [0, +∞) by a contradiction argument. Suppose that V5(t) is unbounded
on [1, +∞), then there exists a set S(t) ⊂ [1, +∞) whose measure increases unboundedly as
t → +∞ such that for s ∈ S(t),

ê2(0, s)
1 + φ2(0, s)

>
1
2

(

k1
4‖PB‖2

λmin(Q)
+ 8k2M

2
g + 3

)−1

.
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This, together with (25), implies that limt→+∞ V (t) = −∞, which contradicts the definition
of V (t). Thus, V5(t) is bounded on [1, +∞). From this and the continuity of V5(t) on [0, 1], it
follows that V5(t) is bounded on [0, +∞).

By the definition of V5(t) and its boundedness, we see that X(t), ‖ζ(·, t)‖, ‖φ(·, t)‖ and
‖ϕ(·, t)‖ are all bounded on [0, +∞). From the third equation of (6) and the boundedness of
X(t) on [0, +∞), it follows that N(x, t) is bounded on [0, 1] × [0, +∞). In addition, by (22)
and the fact that ‖ζ(·, t)‖ is bounded on [0, +∞), we have that ‖ŵ(·, t)‖ is bounded on [0, +∞).
This, together with (23) and the boundedness of ρ̂(t), g(x) and X(t) on their separate domains
of definition, gives that U(t) is bounded on [0, +∞). Then, the first equation of (6) indicates
the boundedness of φ(x, t) on [0, 1] × [0, +∞). Subsequently, (7) and (10) respectively imply
that w(x, t) and ŵ(x, t) are bounded on [0, 1] × [0, +∞) by noting the boundedness of ρ̂(t),
φ(x, t), N(x, t), θ(x) and ‖ϕ(·, t)‖.

Since both w(x, t) and e(x, t) are bounded on [0, 1] × [0, +∞), we obtain that w(x, t) is
bounded on [0, 1]× [0, +∞). Then, by transformation (3) and noting the boundedness of μ(x)
and X(t), we conclude that v(x, t) is bounded on [0, 1] × [0, +∞). This, together with the
second equation of (6), gives the boundedness of ϕ(x, t) on [0, 1] × [0, +∞).

In summary, we obtain the boundedness of all the resulting closed-loop system states X(t),
v(x, t), φ(x, t), ϕ(x, t), N(x, t), ŵ(x, t) and ρ̂(t) on their separate domains of definition.

(ii) Proof of the convergence of original system states X(t) and v(x, t).
From (30), we have

V̇5(t) ≤ −c1V5(t) + l5(t)V5(t) + l7(t), (31)

with

l7(t) = l6(t) +
(

k1
4‖PB‖2

λmin(Q)
+ 8k2M

2
g + 3

)
ê2(0, t)

1 + φ2(0, t)
φ2(0, t)

being bounded and integrable on [1, +∞). Then, by Lemma 5.2 in Appendix A.3, we obtain
that V5(t) is bounded and integrable on [1, +∞). Thus, (31) gives that V̇5(t) is bounded on
[1, +∞). By Lemma 5.3 in Appendix A.3, it follows that

lim
t→+∞V5(t) = 0,

which gives

lim
t→+∞ ‖ζ(·, t)‖ = lim

t→+∞ ‖φ(·, t)‖ = 0, lim
t→+∞ X(t) = 0. (32)

Then, (22) gives that limt→+∞ ‖ŵ(·, t)‖ = 0, and hence (23) indicates that limt→+∞ U(t) = 0
by noting the boundedness of ρ̂(t) and g(x). Thus, by the first and third equations of (6), we
obtain

lim
t→+∞ sup

x∈[0,1]

|φ(x, t)| = 0 and lim
t→+∞ sup

x∈[0,1]

|N(x, t)| = 0. (33)

By (7), (32), (33) and the boundedness of θ(x), we have limt→+∞ supx∈[0,1] |w(x, t)| = 0, and
hence limt→+∞ supx∈[0,1] |w(x, t)| = 0. Thus, by (3), (32) and the boundedness of μ(x), it
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follows that

lim
t→+∞ sup

x∈[0,1]

|v(x, t)| = 0.

This completes the proof.

4 Simulation Example

In this section, we illustrate the effectiveness of the proposed method by the following
system:

⎧
⎪⎪⎨

⎪⎪⎩

Ẋ(t) = 0.1X(t) + v(0, t),

vt(x, t) = vx(x, t) + λ(x)v(x, t),

v(1, t) = kU(t),

where X(t) ∈ R; the initial values are X(0) = 1 and v(x, 0) = 3 sin(2πx); the actual values of
system parameters are assumed as k = 0.9 and λ(x) = 2.3 + 1

10+x . Choose k = 0.8, k = 1,
λ = 2 and λ = 2.5. Then, we have ρ = 0.8 e2 and ρ = e2.5.

Let K = −1, γ1 = 0.1 and ρ̂(0) = 8 in the controller consisting of (6), (10), (14) and (23).
We implement the simulation by the explicit forward Euler method (see Page 406 of [22])
by dividing the spatial domain [0, 1] and the time domain [0, 15] into 30 sections and 15000
sections, respectively, and then obtain three simulation figures. Specifically, Figures 1 and 2
show that the ODE subsystem state X(t) and the PDE subsystem state v(x, t) all converge
to zero ultimately. Figure 3 shows that the dynamic compensation ρ̂(t) of parameter ρ always
belongs to [0.8 e2, e2.5].
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Figure 1 The trajectory of X(t)
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Figure 2 The trajectory of v(x, t)
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Figure 3 The trajectory of ρ̂(t)

5 Concluding Remarks

In this paper, the adaptive output-feedback stabilization has been investigated for a class
of first-order hyperbolic PDE-ODE cascaded systems with unknown control coefficient and
spatially varying parameter. The presence of unknown parameters makes the considered sys-
tem more general and practical than those in the related literature. By combining infinite-
dimensional backstepping method with adaptive dynamic compensation technique and the con-
structive methods of filters, an adaptive controller is constructed which guarantees the desirable
performance of the resulting closed-loop system. It is necessary to point out that, the system
investigated in this paper only has parametric uncertainties. However, the physical systems
are often suffered from external disturbances. Therefore, it is meaningful to investigate the
output-feedback stabilization for first-order hyperbolic PDE-ODE cascaded systems with both
disturbances and unknown parameters in the future.
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Appendix

This section collects some useful criteria and the proofs of Proposition 2.2 and Inequalities
(26)–(29) in this paper.

A.1 Proof of Proposition 2.2

First, setting x = 1 in (16) and using (11), we directly obtain the first equation of (21).
Moreover, calculating the first order partial derivatives of ζ(x, t) with respect to t and x,
respectively, we get

ζt(x, t) = ŵt(x, t) −
∫ x

0

g(x − ξ)ŵt(ξ, t)dξ,

= ŵx(x, t) + ˙̂ρ(t)φ(x, t) + θ(x)(v(0, t) − KX(t)) −
∫ x

0

g(x − ξ)ŵξ(ξ, t)dξ

− ˙̂ρ(t)
∫ x

0

g(x − ξ)φ(ξ, t)dξ −
∫ x

0

g(x − ξ)θ(ξ)dξ(v(0, t) − KX(t)), (A.1)

ζx(x, t) = ŵx(x, t) −
∫ x

0

g′(x − ξ)ŵ(ξ, t)dξ − g(0)ŵ(x, t)

= ŵx(x, t) −
∫ x

0

g(x − ξ)ŵξ(ξ, t)dξ − g(x)ŵ(0, t). (A.2)

Then, noting w(0, t) = v(0, t)−KX(t) and by (19), (A.1) and (A.2), the following equality is
obtained:

ζt(x, t) = ζx(x, t) − g(x)ê(0, t) + ˙̂ρ(t)φ(x, t) − ˙̂ρ(t)
∫ x

0

g(x − ξ)φ(ξ, t)dξ.

By (16), (20) and the boundedness of θ(x) and g(x) on [0, 1], we know that there exist
positive constants M1 and M2 such that ‖ζ(·, t)‖ ≤ M1‖ŵ(·, t)‖ and ‖ŵ(·, t)‖ ≤ M2‖ζ(·, t)‖.
A.2 Proofs of (26)–(29)

To prove (26), taking the time derivative of V1(t) and using Young’s inequality, we get

V̇1(t) = XT(t)
(
(A + BK)TP + P (A+BK)

)
X(t) + 2XT(t)PBw(0, t)

= −XT(t)QX(t) + 2XT(t)PBζ(0, t) + 2XT(t)PBê(0, t)

≤ −λmin(Q)‖X(t)‖2 + ρ1‖X(t)‖2‖PB‖2 +
2
ρ1

ζ2(0, t) +
2
ρ1

ê2(0, t),

by which and choosing ρ1 = λmin(Q)
2‖PB‖2 , we obtain

V̇1(t) ≤ −λmin(Q)‖X(t)‖2 +
λmin(Q)

2
‖X(t)‖2 +

4‖PB‖2

λmin(Q)
ζ2(0, t) +

4‖PB‖2

λmin(Q)
ê2(0, t)
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≤ −λmin(Q)
2

‖X(t)‖2 +
4‖PB‖2

λmin(Q)
ζ2(0, t) +

4‖PB‖2

λmin(Q)
ê2(0, t)

1 + φ2(0, t)
(1 + φ2(0, t))

≤ −λmin(Q)
2

‖X(t)‖2 +
4‖PB‖2

λmin(Q)
ζ2(0, t) +

4‖PB‖2

λmin(Q)
ê2(0, t)

1 + φ2(0, t)
φ2(0, t) + l1(t),

with l1(t) = 4‖PB‖2

λmin(Q)
ê2(0,t)

1+φ2(0,t) being bounded and integrable on [1, +∞) by claim (i) of Proposi-
tion 3.1.

To prove (27), computing the time derivative of V2(t) and noting ζ(1, t) = 0, we have

V̇2(t) = −1
2
ζ2(0, t) − 1

2

∫ 1

0

ζ2(x, t)dx − ê(0, t)
∫ 1

0

(1 + x)ζ(x, t)g(x)dx

+˙̂ρ(t)
∫ 1

0

(1 + x)ζ(x, t)φ(x, t)dx − ˙̂ρ(t)
∫ 1

0

(1 + x)ζ(x, t)
∫ x

0

g(x − ξ)φ(ξ, t)dξdx,

which, together with Young’s inequality, gives

V̇2(t) ≤ −1
2
ζ2(0, t) − 1

2

∫ 1

0

ζ2(x, t)dx + (ρ2 + 3ρ3)
∫ 1

0

(1 + x)ζ2(x, t)dx

+
1

4ρ2
ê2(0, t)

∫ 1

0

(1 + x)g2(x)dx +
1

4ρ3
| ˙̂ρ(t)|2

∫ 1

0

(1 + x)φ2(x, t)dx

+
1

4ρ3
M2

g | ˙̂ρ(t)|2
∫ 1

0

(1 + x)φ2(x, t)dx

≤ −1
2
ζ2(0, t) +

1
2ρ2

M2
g ê2(0, t) +

1
2ρ3

(1 + M2
g )| ˙̂ρ(t)|2

∫ 1

0

φ2(x, t)dx

−
(

1
2
− 2ρ2 − 6ρ3

)

V2(t).

Then, by choosing ρ2 = 1
16 and ρ3 = 1

48 , we get

V̇2(t) ≤ 8M2
g

ê2(0, t)
1 + φ2(0, t)

(1 + φ2(0, t)) − 1
2
ζ2(0, t) + 48(1 + M2

g )| ˙̂ρ(t)|2V3(t) − 1
4
V2(t)

≤ 8M2
g

ê2(0, t)
1 + φ2(0, t)

φ2(0, t) − 1
2
ζ2(0, t) − 1

4
V2(t) + l2(t)V3(t) + l3(t),

with l2(t) = 48(1 + M2
g )| ˙̂ρ(t)|2, l3(t) = 8M2

g
ê2(0,t)

1+φ2(0,t) being bounded and integrable on [1, +∞)
by Proposition 3.1.

Similar to the derivation of (27), for V3(t) and V4(t), there hold

V̇3(t) ≤ h1V2(t)+h2‖X(t)‖2 − 1
2
φ2(0, t) − 1

2
V3(t),

V̇4(t) ≤ 3
ê2(0, t)

1 + φ2(0, t)
φ2(0, t) + 3ζ2(0, t) − 1

2
V4(t) + 3‖K‖2‖X(t)‖2 − 1

2
ϕ2(0, t) + l4(t),

where h1 = 4M2
2 M2

g M2
3 , h2 = 2M2

3‖KeA+BK‖2 with M3 = max
{

1
|ρ| ,

1
|ρ|

}
and l4(t) = 3 ê2(0,t)

1+φ2(0,t)

is bounded and integrable on [1, +∞).
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A.3 Some Useful Criteria

Proposition 5.1 (see [23]) For the projection operator defined by (15), the following
properties are guaranteed:

(i) For ρ̂(0) ∈ [ρ, ρ] and any ε, the solution of ˙̂ρ(t) = Proj[ρ,ρ]{ε, ρ̂} remains in [ρ, ρ], and

moreover,
∣
∣
∣Proj[ρ,ρ]{ε, ρ̂}

∣
∣
∣ ≤ |ε|.

(ii) If ρ ≤ ρ̂(t) ≤ ρ and ρ ≤ ρ ≤ ρ, then −ρ̃(t)Proj[ρ,ρ]{ε, ρ̂} ≤ −ρ̃(t)ε, where ρ̃(t) = ρ− ρ̂(t).

Lemma 5.2 (see [24]) Let f(t), l1(t) and l2(t) be real-valued functions defined on R+ and
let c be a positive constant. If l1(t) and l2(t) are nonnegative and integrable on R+, and satisfy

ḟ(t) ≤ − cf(t) + l1(t)f(t) + l2(t), f(0) ≥ 0,

then f(t) is bounded and integrable on [0, +∞).

Lemma 5.3 (see [25]) If f : R+ → R is uniformly continuous and limt→+∞
∫ t

0
f(τ)dτ

exists and is bounded, then there holds limt→+∞ f(t) = 0.


