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Abstract Linear regression models for interval-valued data have been widely studied. Most litera-

tures are to split an interval into two real numbers, i.e., the left- and right-endpoints or the center

and radius of this interval, and fit two separate real-valued or two dimension linear regression models.

This paper is focused on the bias-corrected and heteroscedasticity-adjusted modeling by imposing order

constraint to the endpoints of the response interval and weighted linear least squares with estimated

covariance matrix, based on a generalized linear model for interval-valued data. A three step estima-

tion method is proposed. Theoretical conclusions and numerical evaluations show that the proposed

estimator has higher efficiency than previous estimators.

Keywords Conditional maximum likelihood estimation, interval-valued data, order constraint, trun-

cated normal distribution, weighted least squares estimation.

1 Introduction

The classical linear regression model is a widely used statistical model, which is usually used
to quantify the interdependent relationship between two or more real-valued variables. With
the development of technology, data become so complicated that the classical linear model
cannot be employed directly. There are growing literatures on modeling complicated data. In
this paper, we consider a constrained linear regression model for interval-valued data.

The presence of interval-valued variables is quite common in practice. For instance, a
weather forecast provides the lowest and highest temperature of the following day, which is an
interval giving the range of temperatures varies during the whole day (Wang, et al.[1]). The
blood pressures of people are consisted of systolic blood pressures and diastolic blood pressures,
which form interval-valued observations naturally. Many authors analyzed this kind of data,
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see Gil, et al.[2, 3] and Fagundes, et al.[4]. Besides, the range of interval reflects the variation.
Some econometric researches have already noticed that modeling the range indeed can improve
the estimation of volatility, e.g., Engle and Gallo[5] and its references. González-Rivera and
Lin[6], and Wang, et al.[7] analyzed the interval-valued stock index data where interval-valued
data not only includes the closing index, but also reflects the daily variation.

On the other hand, as a special case of set-valued data, the study of set-valued random
variables has a long history, cf. e.g., [8–16]. As is well known, the space of set-value random
variables is not linear with respect to its addition and scalar multiplication, thus various different
approaches from the classical modeling of real-valued data have been developed. Among them
are linear regression models for interval-valued data.

There are a lot of literatures on linear regression models for interval-valued data. Generally
speaking, there are three kinds of modeling methods. The first is to split an interval into two real
numbers, i.e., the left- and right-endpoints, or the center and radius of this interval. Through
establishing a two-dimensional linear regression model with two endpoints, or centers and radii,
the linear relationships between interval-valued random variables can be studied. There are
many works using such kind of methods, including MinMax method[17], center method (CM)[18],
center and range method (CRM)[19], constrained center and range method (CCRM)[20−23]. The
second is to divide an interval into grid points, then establish statistical models through those
grid points, e.g., [24–26]. The third is to view the interval-valued data as data units, then use
the theory of set-valued random variables to study the statistical inference problem, e.g., [1, 7]
and [27].

In this paper, we combine the idea of the third kind methods into the first, and consider
a constrained model, in which the left- and right-endpoints of response variable are modeled
simultaneously. However, noticing the interval-valued data is a whole, and the whole interval is
decided by two endpoints, in the models, we will relate the end points of the response variable
not only to the left-endpoints but also to the right-endpoints of explanatory variables. Thus,
our model is more general than the cases of [17–23].

Notice that the constrained conditions make the CCRM is not universally suitable, it may
be weakly fitted when the response variable and explanatory variables are negatively correlated,
because of the constraint condition to the regression coefficients of the interval range. To solve
this problem, González-Rivera and Lin[6] combined the ideas of classical truncated regression
model (cf. [28, 29]) and Heckman two step estimation (cf. [30–32]), and proposed a new
constrained model and estimation method. In [33], Li, et al. built a constrained interval-valued
linear regression, in which a two step estimation was given and the second step was the interval-
valued least squares estimation. However, heteroscedasticity problems exist in the estimation
procedures of [6], [33], and it reduces the asymptotic efficiency of estimators, even though the
estimators are consistent.

We will propose a three step estimation procedure in this paper, which is adjusted to the
heteroscedasticity based on the two step estimation in [6]. The proposed method is shown having
higher efficiency than the two step estimators. The rest of the paper is arranged as follows.
Section 2 will list some preliminaries. Section 3 will give the three step estimation procedure
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in detail. The covariance of errors is also calculated in order to show the heteroscedasticity. At
last, we will illustrate that our proposed method is effective through simulation studies and a
real data analysis in Section 4.

2 Preliminaries

We will first briefly introduce the formulation. Next, we will present some existing interval-
valued linear regression models for easy reference, namely MinMax method, CM, CRM, and
CCRM.

2.1 The Space of Closed Intervals

Let R be the 1-dimensional Euclidean space, and Kkc(R) be the family of all non-empty
bounded closed intervals in R, i.e., Kkc(R) = {A = [a, a] : −∞ < a ≤ a < ∞, a, a ∈ R}. We
also write the interval A = [a, a] = (ac; ar), where

ac = (a + a)/2, ar = (a − a)/2

are the center and radius of interval A respectively.
The addition and scalar multiplication for intervals A = [a, a], B = [b, b] are defined as

A + B = [a + b, a + b], kA =

⎧
⎨

⎩

[ka, ka], k ≥ 0,

[ka, ka], k < 0.

Notice that if A does not degenerate to a single point, then A − A = A + (−A) �= {0}. Thus,
Kkc(R) is not a linear space with respect to the addition and scalar multiplication.

Vitale[10] defined the dp metric for sets, where p is an arbitrary positive integer. The dp

metric between A = [a, a] and B = [b, b] is

dp(A, B) = [|b − a|p + |b − a|p] 1
p .

Then (Kkc(R), dp) is a complete separable metric space (see [15]). We will use the averaged d2
2

to evaluate the goodness of fit of the models in Section 4.

2.2 Interval-Valued Random Variables

Let (Ω ,A, P) be a complete probability space. Interval-valued mapping X(ω) : Ω → Kkc(R)
is called an interval-valued random variable, if for every closed interval C ∈ Kkc(R), X−1(C) =
{ω ∈ Ω : X(ω) ∩ C �= ∅} ∈ A. Using the equivalent definitions of set-valued random variables
(e.g., Theorem 1.2.2 in [15]), we can infer that X = [x, x] = (xc; xr) is an interval-valued random
variable if x and x, or xc and xr are real-valued random variables.

From the definition of Aumann integral in [8], the expectation of interval-valued random
variable X = [x, x] can be written as E[X ] = [Ex, Ex], see also [15].

Furthermore, call X = [x, x] a constrained interval-valued Gaussian random variable, if
random vector (x, x)τ follows the conditional distribution f(x, x)/P(x ≤ x), where f(·, ·) is a
bivariate normal probability density function.
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2.3 Previous Researches on Interval-Valued Linear Regression

Denote the interval-valued explanatory variables X1 = [x1, x1] = (xc
1; xr

1), · · · , Xp =
[xp, xp] = (xc

p; x
r
p), the interval-valued response variable Y = [y, y] = (yc; yr), and corre-

sponding observations {Xi,1, Xi,2, · · · , Xi,p, Yi}i=1,2,··· ,n. Let yc = (yc
1, y

c
2, · · · , yc

n)τ , yr =
(yr

1 , y
r
2 , · · · , yr

n)τ , Xc =
(
xc

i,j

)

i=1,2,··· ,n,j=1,2,··· ,p, Xr =
(
xr

i,j

)

i=1,2,··· ,n,j=1,2,··· ,p. Assume Xc

and Xr are of full rank, i.e., rank(Xc) = rank(Xr) = p.
1) Billard and Diday[17] proposed the MinMax method. They considered the model

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

y = β0,1 +
p∑

j=1

βj,1xj + ε1,

y = β0,2 +
p∑

j=1

βj,2xj + ε2,

where β0,1, β1,1, · · · , βp,1, β0,2, β1,2 · · · , βp,2 ∈ R are the coefficients, ε1, ε2 are real-valued model
errors. Minimizing the criterion function

n∑

i=1

[(

y
i
− β0,1 −

p∑

j=1

βj,1xi,j

)2

+
(

yi − β0,2 −
p∑

j=1

βj,2xi,j

)2]

leads to the estimators β̂0,1, β̂1,1, · · · , β̂p,1, β̂0,2, β̂1,2 · · · , β̂p,2. Furthermore, for any given interval-
valued observations Xi,1, Xi,2, · · · , Xi,p, the prediction is Ŷi = [ŷ

i
, ŷi], where

ŷ
i
= β̂0,1 +

p∑

j=1

β̂j,1xi,j , ŷi = β̂0,2 +
p∑

j=1

β̂j,2xi,j , i = 1, 2, · · · , n.

In above model, the minimum of the response interval is assumed to depend only the min-
imums of the explanatory variables, and similar to the maximums. These assumptions might
be too restrictive in applications. Thus, we consider a more general model in next section, in
which the minimum (the maximum) of the response may depend not only the minimums but
also the maximums of the explanatory variables.

2) Billard and Diday[18] proposed the CM method. They modeled the center as

yc = βc
0 +

p∑

j=1

βc
jx

c
j + εc,

where βc
0, β

c
1, · · · , βc

p ∈ R are the coefficients, εc ∈ R is the model error. The least squares
estimator of the coefficients is

β̂c = (β̂c
0, β̂

c
1, · · · , β̂c

p)
τ = ((Xc)τXc)−1(Xc)τyc.

For any observations Xi,1, Xi,2, · · · , Xi,p of the explanatory variables, the prediction Ŷi = [ŷ
i
, ŷi]

is given by

ŷ
i
= β̂c

0 +
p∑

j=1

β̂c
jxi,j , ŷi = β̂c

0 +
p∑

j=1

β̂c
jxi,j , i = 1, 2, · · · , n.
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3) Lima and Carvalho[19] proposed the CRM method, by which they assumed that
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

yc = βc
0 +

p∑

j=1

βc
jx

c
j + εc,

yr = βr
0 +

p∑

j=1

βr
j xr

j + εr,

where βc
0, β

c
1, · · · , βc

p, β
r
0 , βr

1 , · · · , βr
p ∈ R are the coefficients, εc, εr ∈ R are the model errors.

The estimators are obtained as

β̂c = (β̂c
0, β̂

c
1, · · · , β̂c

p)
τ = ((Xc)τXc)−1(Xc)τyc,

β̂r = (β̂r
0 , β̂r

1 , · · · , β̂r
p)τ = ((Xr)τXr)−1(Xr)τyr.

For given Xi,1, Xi,2, · · · , Xi,p, the prediction Ŷi = [ŷ
i
, ŷi] is obtained from

ŷ
i
= ŷc

i − ŷr
i , ŷi = ŷc

i + ŷr
i ,

where ŷc
i = β̂c

0 +
∑p

j=1 β̂c
jx

c
i,j , ŷr

i = β̂c
0 +
∑p

j=1 β̂r
j xr

i,j , i = 1, 2, · · · , n.
4) Lima and Carvalho[20] further proposed the CCRM method by employing the same model

as the CRM, and putting the constrain βr
j ≥ 0, j = 0, 1, · · · , p. They used the Lawson-Hanson

algorithm[34] to solve the constrained least squares and get coefficient estimates.
Besides, Blanco-Fernández, et al.[21] extended this CCRM method by assuming

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

yc = βc
0 +

p∑

j=1

βc
jx

c
j + εc,

yr = |βr
0 | +

p∑

j=1

|βr
j |xr

j + εr.

Sun[22] proposed the following constrained model
⎧
⎨

⎩

yc = αxc + γxr + η + εc,

yr = βxr + θ + εr,

where coefficients α, γ, η ∈ R, and β ≥ 0, θ ≥ 0.
Note that all the constraint conditions of [20–22] operate on the coefficients of radii regres-

sion. On the other hand, Guo and Hao[23] considered the constraint condition βrxr ≥ 0, and
optimization method was used in estimation procedure.

3 Constrained Interval-Valued Linear Regression Model

In this section, we discuss the following constrained interval-valued linear regression model
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

y = β0,1 +
p∑

j=1

(βj,11xj + βj,12xj) + ε1,

y = β0,2 +
p∑

j=1

(βj,21xj + βj,22xj) + ε2,

(1)
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where β0,i, βj,kl ∈ R, i, k, l = 1, 2, j = 1, 2, · · · , p are coefficients, (ε1, ε2)τ is the model error
vector which is independent of xj , xj , j = 1, 2, · · · , p, and Eε1 = Eε2 = 0, Eε2

1 < ∞, Eε2
2 < ∞.

Note that when y > y, interval Y does not exist. Thus, we impose the order constraint condition
of y ≤ y in the regression. This is related to the classical truncated model discussed in [28]
and [29].

For the convenience, we always take {Xi,1, Xi,2, · · · , Xi,p}i=1,2,··· ,n as given when the distri-
butions of model errors and the response endpoints are used hereinafter, except other declaration
is stated.

To simplify notation, denote

g1 � g1(x1, x2, · · · , xp, x1, x2, · · · , xp) = β0,1 +
p∑

j=1

(βj,11xj + βj,12xj), (2)

g2 � g2(x1, x2, · · · , xp, x1, x2, · · · , xp) = β0,2 +
p∑

j=1

(βj,21xj + βj,22xj). (3)

Without loss of generality, we further assume error vector ε = (ε1, ε2)τ follows N((0, 0)τ , Σ),
where

Σ =

⎛

⎝
σ2

1 ρσ1σ2

ρσ1σ2 σ2
2

⎞

⎠ ,

i.e.,

f(ε1, ε2) =
1

2π|Σ| 12 exp
{

− 1
2
ετΣ−1ε

}

. (4)

Notice that condition y ≤ y is equivalent to ε2 − ε1 ≥ g1 − g2, thus leads to a truncated
normal distribution. Then from Nath[35] we have the following conditional expectations.

E(ε1|y ≤ y) = C1λ

(
g2 − g1

σ

)

, E(ε2|y ≤ y) = C2λ

(
g2 − g1

σ

)

, (5)

where σ2 = σ2
1 + σ2

2 − 2ρσ1σ2, C1 = −σ2
1+ρσ1σ2

σ , C2 = σ2
2−ρσ1σ2

σ , and

λ(t) = ϕ(t)/Φ(t), (6)

where ϕ(t) = (2π)−
1
2 exp{− t2

2 } is the probability density function of the standard normal
distribution, and Φ(t) =

∫ t

−∞ ϕ(x)dx is its cumulative distribution function. Furthermore, we
have

E(y|y ≤ y) = g1 + E(ε1|y ≤ y) = g1 + C1λ

(
g2 − g1

σ

)

, (7)

E(y|y ≤ y) = g2 + E(ε2|y ≤ y) = g2 + C2λ

(
g2 − g1

σ

)

. (8)
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Var(y|y ≤ y) = E(y2|y ≤ y) − E(y|y ≤ y)2

= σ2
1 + C2

1λ

(
g2 − g1

σ

)[
g2 − g1

σ
− λ

(
g2 − g1

σ

)]

, (9)

Var(y|y ≤ y) = E(y2|y ≤ y) − E(y|y ≤ y)2

= σ2
2 + C2

2λ

(
g2 − g1

σ

)[
g2 − g1

σ
− λ

(
g2 − g1

σ

)]

. (10)

From (7)–(8), it is easy to see that if we ignore the constraint condition and use the least squares
estimation method directly, the coefficient estimators would be biased. Furthermore, (9)–(10)
shows that under the constraint condition, the conditional variances of both y and y have an
increment depending on the explanatory variables through g1 and g2, and thus the heteroscedas-
ticity occurs. As is well known in the linear regression, neglecting the heteroscedasticity makes
the ordinary least squares estimator inefficient.

González-Rivera and Lin[6] proposed a two step estimation procedure, in which the con-
straint condition is used to solve the biased problem. To improve the efficiency of the two step
estimation, we further propose a three step estimation procedure based on the two step estima-
tion. Let {Xi,1, Xi,2, · · · , Xi,p, Yi}i=1,2,··· ,n be i.i.d. interval-valued observations of Model (1).

3.1 The First Step Estimation

From Model (1), it holds that

1
σ

yR = α0 +
p∑

j=1

(αj,1xj + αj,2xj) +
1
σ

ε =
1
σ

(g2 − g1) +
1
σ

ε, yR ≥ 0, (11)

where yR = y − y is the range of interval Y , coefficients α0 = (β0,2 − β0,1)/σ, αj,1 = (βj,21 −
βj,11)/σ, αj,2 = (βj,22 − βj,12)/σ, j = 1, 2, · · · , p, model error ε = ε2 − ε1 ∼ N(0, σ2), σ2 =
σ2

1 + σ2
2 − 2ρσ1σ2.

Then we can estimate the coefficients of Model (11) through conditional maximum likelihood
method. Denote the parameter vector as

υ0 = (α0, α1,1, α1,2, · · · , αp,1, αp,2, σ)τ .

For interval-valued observations {Xi,1, Xi,2, · · · , Xi,p, Yi}i=1,2,··· ,n, the conditional log likelihood
function is written as

L(υ0|yR
i ≥ 0, i = 1, 2, · · · , n) =

n∑

i=1

log
[

ϕ

(
1
σ

εi

)/

Φ
(

α0 +
p∑

j=1

(αj,1xj + αj,2xj)
)]

= −n

2
log 2π − 1

2

n∑

i=1

[
1
σ

yR
i − α0 −

p∑

j=1

(αj,1xj + αj,2xj)
]2

−
n∑

i=1

log Φ
(

α0 +
p∑

j=1

(αj,1xj + αj,2xj)
)

. (12)

Through maximizing (12), we can get the estimator υ̂0. Amemiya[28] discussed the asymptotic
properties of the conditional maximum likelihood estimator of truncated linear regression model.
The asymptotic properties of υ̂0 are given in the following theorem.
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Theorem 3.1 (see [28]) If further assume matrix plimn→∞
1
n

∑n
i=1 xix

τ
i exists and is

nonsingular, where xi = (1, xi,1, xi,1, · · · , xi,p, xi,p)τ , then the estimator υ̂0 has the following
properties.

(i) υ̂0 converges to υ0 in probability, i.e., υ̂0
p→υ0.

(ii) υ̂0 is asymptotically normal, i.e.,
√

n(υ̂0 − υ0) → N(0, Υ ),

where Υ = − plimn→∞
[

1
nE
(

∂2L
∂υ0∂υτ

0

)]−1 , plim stands for the limit converged to in probability.

Orme[36] proved that the unique maximum likelihood estimator can be obtained, even though
(12) is not global convex. González-Rivera and Lin[6] further studied the asymptotic properties
of the conditional maximum likelihood estimator when data are autocorrelated.

Denote υ∗
0 = (α0, α1,1, α1,2, · · · , αp,1, αp,2)τ , which is a part of υ0. Let υ̂∗

0 be the corre-
sponding part of υ̂0. Substituting xτ υ̂∗

0 = α̂0 +
∑p

j=1(α̂j,1xj + α̂j,2xj) into (6) can calculate
the estimator λ̂ � λ(xτ υ̂∗

0). Since λ(·) is a continuously differentiable function of υ∗
0 , we can

deduce the asymptotic properties of λ(xτ υ̂∗
0) through Theorem 3.1.

Corollary 3.2 Under the assumptions of Theorem 3.1, estimator λ(xτ υ̂∗
0) has the fol-

lowing properties.
(i) λ(xτ υ̂∗

0) converges to λ(xτυ∗
0) in probability, i.e., λ(xτ υ̂∗

0)
p→λ(xτυ∗

0).
(ii) λ(xτ υ̂∗

0) is asymptotically normal, i.e.,

√
n(λ(xτ υ̂∗

0) − λ(xτυ∗
0)) → N

(

0,
∂λ(xτυ∗

0)
∂(υ∗

0)τ
Υ ∗ ∂λ(xτυ∗

0)
∂(υ∗

0)

)

,

where Υ ∗ is the asymptotic covariance matrix of
√

n(υ̂∗
0 −υ∗

0), which is also a part of matrix Υ ,
∂λ(xτυ∗

0)/∂υ∗
0 = [λ(xτυ∗

0) − xτυ∗
0 ]λ(xτυ∗

0)x is the first order partial derivatives of λ(xτυ∗
0).

Using continuous mapping theorem, we can prove (i) in Corollary 3.2. Next, using the
Taylor expansion we have λ(xτ υ̂∗

0) − λ(xτ υ̂∗
0) ≈ ∂λ(xτ υ∗

0 )
∂(υ∗

0 )τ (υ̂∗
0 − υ∗

0). Combining Delta method
(e.g., Theorem 3.1 in the book [37]) and Theorem 3.1 we can prove (ii) in Corollary 3.2.

3.2 The Second Step Estimation

Denote

u1,i = y
i
− E(y

i
|y

i
≤ yi), u2,i = yi − E(yi|yi

≤ yi),

λi = λ(xτ
i υ∗

0), λ̂i = λ(xτ
i υ̂∗

0), i = 1, 2, · · · , n,

and
v1,i = C1(λi − λ̂i), v2,i = C2(λi − λ̂i),

then E(u1,i|yi
≤ yi) = E(u2,i|yi

≤ yi) = 0, Ev1,i = Ev2,i ≈ 0. Combining (7) and (8), Model (1)
can be written as

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

y
i
= β0,1 +

p∑

j=1

(βj,11xi,j + βj,12xi,j) + C1λ̂i + u1,i + v1,i,

yi = β0,2 +
p∑

j=1

(βj,21xi,j + βj,22xi,j) + C2λ̂i + u2,i + v2,i,

i = 1, 2, · · · , n. (13)
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Introduce the matrix notations:

Yn×2 = (y, y) =

⎛

⎝
y
1

y
2
· · · y

n

y1 y2 · · · yn

⎞

⎠

τ

,

Xn×(2p+1) =

⎛

⎜
⎜
⎜
⎝

x1

...

xn

⎞

⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎝

1 x1,1 x1,1 x1,2 x1,2 · · · x1,p x1,p

...
...

...
...

...
...

...
...

1 xn,1 xn,1 xn,2 xn,2 · · · xn,p xn,p

⎞

⎟
⎟
⎟
⎠

,

Λ = (λ1, λ2, · · · , λn)τ , Λ̂ = (λ̂1, λ̂2, · · · , λ̂n)τ ,

Ẑn×2(p+1) = (X, Λ̂) � (ẑ1, ẑ2, · · · , ẑn)τ , Zn×2(p+1) = (X, Λ) � (z1, z2, · · · , zn)τ ,

B2(p+1)×2 = (b1, b2) =

⎛

⎝
β0,1 β1,11 β1,12 · · · βp,11 βp,12 C1

β0,2 β1,21 β1,22 · · · βp,21 βp,22 C2

⎞

⎠

τ

,

Un×2 = (u1, u2) =

⎛

⎝
u1,1 u1,2 · · · u1,n

u2,1 u2,2 · · · u2,n

⎞

⎠

τ

, Vn×2 = (v1, v2) =

⎛

⎝
v1,1 v1,2 · · · v1,n

v2,1 v2,2 · · · v2,n

⎞

⎠

τ

,

the matrix form of Model (13) can be written as

Vec(Y ) = (I2 ⊗ Ẑ)Vec(B) + Vec(U) + Vec(V ), (14)

where Vec(·) is the vectorization of matrix, I2 is the 2 × 2 identity matrix, ⊗ is the Kronecker
product.

The least squares estimator of Model (14) is

Vec(B̂) = [(I2 ⊗ Ẑτ )(I2 ⊗ Ẑ)]−1(I2 ⊗ Ẑτ )Vec(Y ), (15)

Estimator (15) also can be written as

B̂ = (Ẑτ Ẑ)−1ẐτY , (16)

or b̂1 = (Ẑτ Ẑ)−1Ẑτy, b̂2 = (Ẑτ Ẑ)−1Ẑτy.
González-Rivera and Lin[6] proved the asymptotic properties of estimators b̂1, b̂2 for different

models. We will present the asymptotic properties of the estimator Vec(B̂) through the theory
of multivariate statistics.

Theorem 3.3 Assume plimn→∞
1
nI2⊗(ZτZ) = Q−1 is nonsingular, and plimn→∞

1
n

(
(I2⊗

Zτ )Cov(Vec(U + V ))(I2 ⊗ Z)
)

= Ξ . Then the estimator Vec(B̂) has the following properties.
(i) Vec(B̂) converges to Vec(B) in probability, i.e., Vec(B̂)

p→Vec(B).
(ii) Vec(B̂) is asymptotically normal, i.e.,

√
n(Vec(B̂) − Vec(B)) → N

(
0, QΞQτ

)
.

From Corollary 3.2 it is easy to see that 1
n Ẑτ Ẑ − 1

nZτZ
p→ 0. Then using

√
n(Vec(B̂) − Vec(B)) =

[
1
n

(I2 ⊗ Ẑτ )(I2 ⊗ Ẑ)
]−1[ 1√

n
(I2 ⊗ Ẑτ )(Vec(U) + Vec(V ))

]

,

Theorem 3.3 can be proved.
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3.3 The Third Step Estimation

From last subsection, we see that the second step estimator utilizes the restriction-imposed
model (13) or (14) and thus is consistent. As is shown by Equations (9) and (10), the restriction-
imposed model is of heteroscedasticity. To improve the second step estimator, we first find a
reasonable estimate of Σ1 = Cov(Vec(U) + Vec(V )).

According to Corollary 3.2, we have

Cov(Vec(V )) =

⎛

⎝
C2

1 C1C2

C1C2 C2
2

⎞

⎠⊗ Cov(Λ̂ − Λ),

where the (i, j)-th element of Cov(Λ̂ − Λ) is approximately

1
n

λiλj · (λi − xτ
i υ∗

0)(λj − xτ
j υ∗

0)xτ
i Υ ∗xj ,

which would vanish as n goes to infinity. On the other hand, from Nath[35] it holds that

E(ε2
1,i|yi

≤ yi) = σ2
1 + C2

1xτ
i υ∗

0λi,

E(ε2
2,i|yi

≤ yi) = σ2
2 + C2

2xτ
i υ∗

0λi,

E(ε1,iε2,i|yi
≤ yi) = ρσ1σ2 + C1C2x

τ
i υ∗

0λi,

which leads to that, given y
i
≤ yi,

Var(u1,i) = σ2
1 + C2

1λi · (xτ
i υ∗

0 − λi),

Var(u2,i) = σ2
2 + C2

2λi · (xτ
i υ∗

0 − λi),

Cov(u1,i, u2,i) = ρσ1σ2 + C1C2λi · (xτ
i υ∗

0 − λi).

Therefore,

Σ1 =

⎛

⎝
Cov(u1 + v1) Cov(u1 + v1, u2 + v2)

Cov(u1 + v1, u2 + v2) Cov(u2 + v2)

⎞

⎠

≈
⎛

⎝
Cov(u1) Cov(u1, u2)

Cov(u1, u2) Cov(u2)

⎞

⎠ , (17)

where

Cov(uj) = diag
(
Var(uj,i)

)
, j = 1, 2; Cov(u1, u2) = diag

(
Cov(u1,i, u2,i)

)

are diagonal matrices.
Denote the residual matrix by

Ŵn×2 =

⎛

⎝
ŵ1,1 ŵ1,2 · · · ŵ1,n

ŵ2,1 ŵ2,2 · · · ŵ2,n

⎞

⎠

τ

= Y − ẐB̂.
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Intuitive estimates of σ1, σ2 and ρ are given by

σ̂2
1 =

1
n

n∑

i=1

[
ŵ2

1,i − Ĉ2
1 λ̂i · (xτ

i υ̂∗
0 − λ̂i)

]
,

σ̂2
2 =

1
n

n∑

i=1

[
ŵ2

2,i − Ĉ2
2 λ̂i · (xτ

i υ̂∗
0 − λ̂i)

]
,

ρ̂ =
1
n

n∑

i=1

[
ŵ1,iŵ2,i − Ĉ1Ĉ2λ̂i · (xτ

i υ̂∗
0 − λ̂i)

]
/(σ̂1 · σ̂2),

(18)

where Ĉ1 and Ĉ2 are the estimates included in estimator (16). Substituting estimates (18)
into (17) results in an estimate of Σ1, denoted by Σ̂1.

The weighted least squares estimator of Model (14) is

Vec(B̃) = [(I2 ⊗ Ẑτ )Σ̂−1
1 (I2 ⊗ Ẑ)]−1(I2 ⊗ Ẑτ )Σ̂−1

1 Vec(Y ). (19)

It has the following properties.

Theorem 3.4 Under the assumptions of Theorem 3.3, estimator Vec(B̃) has the following
properties.

(i) Vec(B̃) converges to Vec(B) in probability, i.e., Vec(B̃)
p→Vec(B).

(ii) Vec(B̃) is asymptotically normal, i.e.,

√
n(Vec(B̃) − Vec(B)) → N(0,Ξ−1).

Theorem 3.4 can be proved employing the equation

√
n(Vec(B̃)−Vec(B)) =

[
1
n

(I2⊗Ẑτ)Σ̂−1
1 (I2⊗Ẑ)

]−1[ 1√
n

(I2⊗Ẑτ)Σ̂−1
1 ·(Vec(U)+Vec(V ))

]

,

Theorems 3.1 and 3.3. Furthermore, we have the following corollary.

Corollary 3.5 The estimator B̃ is more efficient than B̂, that is, the difference of the
asymptotic covariance matrix of Vec(B̂) from that of Vec(B̃) is a positive semi-definite matrix.

The conclusion is from the following calculations

Cov(Vec(B̂)) − Cov(Vec(B̃))

≈(I2 ⊗ (ZτZ)−1)(I2 ⊗ Zτ ) · [Σ1 − (I2 ⊗ Z)
(
(I2 ⊗ Zτ )Σ−1

1 (I2 ⊗ Z)
)−1(I2 ⊗ Zτ )

]

· (I2 ⊗ Z)(I2 ⊗ (ZτZ)−1)

=(I2 ⊗ (ZτZ)−1)(I2 ⊗ Zτ )Σ
1
2
1 [I2n − Z̃(Z̃τ Z̃)−1Z̃τ ] · Σ 1

2
1 (I2 ⊗ Z)(I2 ⊗ (ZτZ)−1),

in which the right hand side is positive semi-definite, and so is the left hand side when n is
large enough, where Z̃ � Σ

1
2
1 (I2 ⊗ Z).

Remark Although B̃ is an efficient estimator theoretically, there might be a numerical
problem for small and moderate sample sizes. Note that λ(t) is a decreasing function, and as
(g2 − g1)/σ is increasing, λ(g2−g1

σ ) → 0. Small λ̂s will lead to the design matrix Ẑn×2(p+1) =
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(X, Λ̂) being not approximately full rank, and hence make the estimates of both βs and Cis
unstable numerically.

To overcome above problem, we consider to substitute the estimate σ̂ obtained from the
first step, σ̂1, σ̂2 and ρ̂ in (18) into expressions C1 = −σ2

1+ρσ1σ2
σ , C2 = σ2

2−ρσ1σ2
σ to obtain new

estimates of C1 and C2. Denote

C̃1 =
−σ̂2

1 + ρ̂σ̂1σ̂2

σ̂
, C̃2 =

σ̂2
2 − ρ̂σ̂1σ̂2

σ̂
, (20)

C̃n×2 = (C̃1Λ̂, C̃2Λ̂) =

⎛

⎝
C̃1λ̂1 C̃1λ̂2 · · · C̃1λ̂n

C̃2λ̂1 C̃2λ̂2 · · · C̃2λ̂n

⎞

⎠

τ

,

β(2p+1)×2 =

⎛

⎝
β0,1 β1,11 β1,12 · · · βp,11 βp,12

β0,2 β1,21 β1,22 · · · βp,21 βp,22

⎞

⎠

τ

.

Then we adjust the bias by subtracting C̃ from Y , and define an adjusted third step estimator
of the regression coefficients by

Vec(β̃) = [(I2 ⊗ Xτ )Σ̂−1
1 (I2 ⊗ X)]−1(I2 ⊗ Xτ )Σ̂−1

1 Vec(Y − C̃). (21)

Theoretically, the adjusted third step estimator shares same asymptotic properties of the
corresponding part of B̃, but it performs much better according to our computing experience.
In simulation study we will show the efficiency of estimators (20), (21).

4 Numerical Studies

4.1 Simulation

In this subsection, we verify the effectiveness of the proposed estimation method through
simulation studies.

Data are generated as follows. Explanatory variable observation Xi = (xc
i ; x

r
i ), xc

i ∼
N(1, 22), xr

i ∼ Ga(0.8, 1), i = 1, 2, · · · , n, where Ga stands for Gamma distribution. Model
error vector (ε1,i, ε2,i)τ ∼ N((0, 0)τ ,Σ), Σ =

(
σ2
1 ρσ1σ2

ρσ1σ2 σ2
2

)
. Response variable observation

Yi = [y
i
, yi] follows

⎧
⎨

⎩

y
i
= β10 + β11xi + β12xi + ε1,i,

yi = β20 + β21xi + β22xi + ε2,i.

In the process of generating Yi, i = 1, 2, · · · , n, we can borrow the idea of truncation model.
We generate Xi = (xc

i ; x
r
i ) and (ε1,i, ε2,i)τ as above. If the obtained y∗

i
, y∗i satisfies y∗

i
> y∗

i , we
abandon this group of sample. Otherwise, the observation is reserved and write Yi = [y∗

i
, y∗i ].

Repeat this process until n observations are collected.
Consider the following cases:
Case 1 β10 = −2, β11 = 0.9, β12 = 2, β20 = 0.5, β21 = 0.5, β2,2 = 0.9, σ1 = 1.5, σ2 = 1.5,

ρ = 0.5;
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Case 2 β10 = 0, β11 = 0.9, β12 = 0.5, β20 = 0, β21 = 0.5, β2,2 = 0.9, σ1 = 1.5, σ2 = 1.5,
ρ = 0.5;

Case 3 β10 = 0, β11 = 0.9, β12 = 0.5, β20 = 0, β21 = 0.5, β2,2 = 0.9, σ1 = 2, σ2 = 1.5,
ρ = 0.5;

Case 4 β10 = 0, β11 = 0.9, β12 = 0.5, β20 = 0, β21 = 0.5, β2,2 = 0.9, σ1 = 2.5, σ2 = 1.5,
ρ = 0.5.

Realizations of above four cases are shown in Figure 1. Note that the shapes become more
dynamic from Case 1 to Case 4. We introduce the criterion (see Cribari-Neto and Lima[38])

� =
maxi{Var(u1,i)}
mini{Var(u1,i)} =

maxi{σ2
1 + C2

1λi[(g2,i − g1,i)/σ − λi]}
mini{σ2

1 + C2
1λi[(g2,i − g1,i)/σ − λi]} ,

to measure the heteroscedasticity. Under homoscedasticity � = 1, and under heteroscedasticity
� > 1. Table 1 displays the means of λ and �, in above cases n = 200, 1000 with 1000
repetitions. The values of � show that the strength of heteroscedasticity is increasing from
Case 1 to Case 4.
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Figure 1 Realizations of Cases 1–4, n = 200



A CONSTRAINED INTERVAL-VALUED LINEAR REGRESSION MODEL 2061

Table 1 The mean values of λ and �

Case 1 Case 2 Case 3 Case 4

n = 200 λ 0.0055 0.5388 0.5744 0.6078

� 2.2578 2.7076 4.6471 6.9289

n = 1000 λ 0.0054 0.5385 0.5744 0.6082

� 2.2587 2.8504 4.8891 7.1604

Table 2 Variances and MSEs of coefficients in Case 1 and Case 2

n = 200 n = 1000

coef
Two Step Three Step Two Step Three Step

Var MSE Var MSE Var MSE Var MSE

Case 1

β10 0.2113 0.2114 0.0238 0.0238 0.0385 0.0385 0.0043 0.0043

β11 0.0128 0.0128 0.0045 0.0045 0.0024 0.0024 0.0008 0.0008

β12 0.0131 0.0131 0.0044 0.0044 0.0024 0.0024 0.0008 0.0008

C1 4910.664 4912.055 0.0095 0.0096 560.3382 560.4934 0.0020 0.0020

β20 0.2058 0.2063 0.0231 0.0232 0.0381 0.0381 0.0048 0.0048

β21 0.0123 0.0123 0.0041 0.0041 0.0024 0.0024 0.0008 0.0008

β22 0.0126 0.0126 0.0042 0.0042 0.0023 0.0023 0.0008 0.0008

C2 4432.905 4437.006 0.0106 0.0106 574.5513 574.6673 0.0019 0.0020

σ2
1 0.0507 0.0536 0.0510 0.0523 0.0099 0.0104 0.0100 0.0102

σ2
2 0.0487 0.0532 0.0492 0.0505 0.0102 0.0116 0.0104 0.0106

ρ 0.0033 0.0034 0.0031 0.0031 0.0006 0.0007 0.0006 0.0006

Case 2

β10 2.5095 2.5108 0.0990 0.1003 0.3044 0.3045 0.0160 0.0162

β11 0.0494 0.0494 0.0057 0.0058 0.0065 0.0065 0.0010 0.0010

β12 0.0483 0.0483 0.0062 0.0062 0.0064 0.0064 0.0009 0.0009

C1 4.7392 4.7435 0.0222 0.0225 0.5532 0.5533 0.0041 0.0044

β20 2.4467 2.4470 0.0456 0.0469 0.3311 0.3323 0.0094 0.0096

β21 0.0494 0.0495 0.0040 0.0041 0.0071 0.0071 0.0009 0.0009

β22 0.0490 0.0490 0.0043 0.0043 0.0069 0.0070 0.0008 0.0008

C2 4.6187 4.6188 0.0088 0.0102 0.5964 0.5983 0.0013 0.0017

σ2
1 0.0586 0.1387 0.0402 0.1332 0.0088 0.0807 0.0074 0.0805

σ2
2 0.1641 0.1994 0.0388 0.1339 0.0206 0.0651 0.0076 0.0699

ρ 0.0082 0.0106 0.0075 0.0101 0.0017 0.0051 0.0016 0.0052

For each case with sample sizes n = 200, 1000, repeat 1000 times. The obtained empirical
variances and mean squared errors of the estimators are listed in Tables 2 and 3, where “Two
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Step” represents the two step estimation method, and “Three Step” represents the three step
estimation method. In the third step, we use the adjusted estimators (20) and (21).

Table 3 Variances and MSEs of coefficients in Case 3 and Case 4

n = 200 n = 1000

coef
Two Step Three Step Two Step Three Step

Var MSE Var MSE Var MSE Var MSE

Case 3

β10 10.1431 10.1474 0.1294 0.4013 0.9127 0.9144 0.0215 0.2917

β11 0.1123 0.1124 0.0086 0.0127 0.0149 0.0150 0.0013 0.0055

β12 0.1096 0.1096 0.0094 0.0139 0.0150 0.0150 0.0015 0.0056

C1 28.9029 28.9234 0.0316 0.5330 1.5511 1.5529 0.0058 0.4986

β20 7.7357 7.7430 0.0937 0.3552 0.6223 0.6241 0.0171 0.2995

β21 0.0771 0.0772 0.0079 0.0126 0.0098 0.0098 0.0011 0.0052

β22 0.0759 0.0759 0.0077 0.0118 0.0098 0.0098 0.0011 0.0053

C2 21.3443 21.3664 0.0134 0.4732 1.1284 1.1312 0.0019 0.4901

σ2
1 0.1856 1.2077 0.0884 1.1648 0.0226 1.0271 0.0191 1.0587

σ2
2 0.2857 0.2862 0.0495 0.0591 0.0288 0.0293 0.0088 0.0183

ρ 0.0109 0.0211 0.0093 0.0205 0.0021 0.0156 0.0019 0.0151

Case 4

β10 41.2569 41.3446 0.1721 1.1583 2.8529 2.8530 0.0296 1.0548

β11 0.2993 0.2995 0.0124 0.0252 0.0355 0.0355 0.0020 0.0140

β12 0.2793 0.2798 0.0125 0.0244 0.0350 0.0350 0.0022 0.0140

C1 82.9252 82.9982 0.0514 1.8212 4.8394 4.8397 0.0083 1.7613

β20 20.6290 20.6914 0.2416 1.3097 1.3366 1.3372 0.0312 1.0788

β21 0.1362 0.1367 0.0178 0.0322 0.0160 0.0160 0.0021 0.0150

β22 0.1412 0.1419 0.0170 0.0313 0.0156 0.0157 0.0020 0.0152

C2 40.1221 40.1884 0.0383 1.7553 2.3089 2.3103 0.0025 1.7346

σ2
1 1.0952 5.6554 0.1816 5.1745 0.0437 4.9133 0.0349 4.9614

σ2
2 0.5340 0.5532 0.0607 0.0609 0.0418 0.0445 0.0097 0.0098

ρ 0.0237 0.0728 0.0239 0.0788 0.0031 0.0577 0.0028 0.0589

From the values of � in Table 1 we know that the heteroscedasticity happens in all above
cases. Through comparing the results in Table 2 and Table 3, we can find out that three step
estimators have smaller variances and MSEs. This shows the proposed three step estimation
method is more efficient.

Notice that the two step estimators of C1 and C2 are very poor in Case 1. This may due
to g1,i � g2,i, which leads to λi ≈ 0. Table 1 also verify the values of λ in Case 1 are very
small. Besides, the variances and MSEs of other estimators in Case 1 are smaller than those in
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Cases 2–4. This may be because of the lower strength of heteroscedasticity in Case 1.

4.2 An Application: Air Quality Index Data

In this subsection, we study the linear relationship between the concentration of fine partic-
ulate matter (PM2.5) and nitrogen dioxide (NO2) in the air through the constrained interval-
valued linear regression model. Data are collected from 1586 air monitoring stations in China,
2017.10.1, and downloaded from beijingair.sinaapp.com. Take the minimums and maximums of
PM2.5 and NO2 which are collected by each air monitoring station in this day as interval-valued
observations. After deleting the stations with missing values we have 1481 interval-valued ob-
servations. Let PM2.5 be the response variable, NO2 be the explanatory variable, and plot them
in Figure 2. For the convenience of calculation, we divide the observations of PM2.5 and NO2

by 10. Furthermore, assume the distances among these air monitoring stations are far enough
so that they can be considered as independent.

0 5 10 15
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NO2

PM
 2.
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Figure 2 The air quality index data

Divide the data into two groups randomly, one is the training group and the other is the
testing group. The training group is applied to estimate the parameters of models, which
contains 1331 samples (about 90%). The testing group is used to predict, and the sample size
is 150 (about 10%). We use CM, CRM, CCRM methods and constrained interval-valued linear
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regression model to fit the training data respectively. Then we calculate the predictions with
the testing data.

In order to make a comparison, some evaluation criteria are introduced below. Denote
Ŷi = [ŷ

i
, ŷi] as the prediction of Yi = [y

i
, yi], i = 1, 2, · · · , 150. The square root of mean

square error of lower bound (RMSEL) and the square root of mean square error of upper bound
(RMSEU) are

RMSEL =

√
√
√
√ 1

n

n∑

i=1

(ŷ
i
− y

i
)2, RMSEU =

√
√
√
√ 1

n

n∑

i=1

(ŷi − yi)2.

The mean square error for interval-valued data (IMSE) is

IMSE =
1
n

n∑

i=1

d2
2(Ŷi, Yi) =

1
n

n∑

i=1

[
(ŷ

i
− y

i
)2 + (ŷi − yi)

2
]
.

The mean relative error of interval-valued data (IMRE) is

IMRE =
1
n

n∑

i=1

|yc
i − ŷc

i |
yr

i + ŷr
i

=
1
n

n∑

i=1

|yi − ŷi + y
i
− ŷ

i
|

yi + ŷi − y
i
− ŷ

i

.

The effective coverage rate (ECR) is

ECR =
1
n

n∑

i=1

wid(Ŷi ∩ Yi)

wid(Ŷi)
,

where ∩ is the intersection of two intervals, wid is the length of interval. Notice that the
denominators of criteria ECR and IMRE may be equal to 0. Therefore, in this paper, 0.001 is
added to the denominators of these two criteria. If the values of RMSEL, RMSEU, IMSE and
IMRE are close to 0, and the value of ECR is close to 1, the predicted values are more accurate.

The criteria are calculated and listed in Table 4. We find out that three step predictions
have the smallest RMSEL, RMSEU, IMSE, IMRE and the largest ECR. This shows the effi-
ciency of three step estimation method for constrained interval-valued linear regression model
in prediction.

Table 4 Results of different methods

RMSEL RMSEU IMSE IMRE ECR

CRM 0.9104 2.9410 9.4786 0.3404 0.5958

CCRM 0.9104 2.9410 9.4786 0.3404 0.5958

Two Step 0.8743 2.9534 9.4870 0.3438 0.6053

Three Step 0.8523 2.9405 9.3729 0.3403 0.6180

5 Conclusion

This paper basically solved the problem of heteroscedasticity in [6] by proposing a three step
estimation procedure. Simulations and an application show the proposed three step estimation
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can reduce the variances and MSEs of parameter estimators effectively, which means the pro-
posed method has certain advancement. Besides, several problems such as the significance tests
of the constrained regression equation and coefficients, variable selection method, regression
diagnostics etc deserve to study.
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model for interval data based on set arithmetic, Computational Statistics and Data Analysis,

2011, 55(9): 2568–2578.

[22] Sun Y, Linear regression with interval-valued data, Wiley Interdisciplinary Reviews: Computa-

tional Statistics, 2016, 8(1): 54–60.

[23] Guo J and Hao P, Constrained center and range joint model for interval-valued symbolic data

regression, Computational Statistics and Data Analysis, 2017, 116: 106–138.

[24] Wang H, Guan R, and Wu J, CIPCA: Complete-information-based principal component analysis

for interval-valued data, Neurocomputing, 2012, 86: 158–169.

[25] Wang H, Guan R, and Wu J, Linear regression of interval-valued data based on complete in-

formation in hypercubes, Journal of Systems Science and Systems Engineering, 2012, 21(4):

422–442.

[26] Souza L, Souza R, Amaral G, et al., A parametrized approach for linear regression of interval

data, Knowledge-Based Systems, 2017, 131: 149–159.

[27] Hsu H and Wu B, Evaluating forecasting performance for interval data, Computers and Mathe-

matics with Applications, 2008, 56(9): 2155–2163.

[28] Amemiya T, Regression analysis when the dependent variable is truncated normal, Econometrica,

1973, 41(6): 997–1016.

[29] Amemiya T, Advanced Econometrics, Harvard University Press, Cambridge, 1985.

[30] Heckman J, The common structure of statistical models of truncation, sample selection and

limited dependent variables and a simple estimator for such models, Annals of Economic and

Social Measurement, 1976, 5(4): 475–492.

[31] Heckman J, Dummy endogenous variables in a simultaneous equation system, Econometrica,

1978, 46(4): 931–959.

[32] Heckman J, Sample selection bias as a specification error, Econometrica, 1979, 47(1): 153–161.

[33] Li F, Li S, Tang N, et al., Constrained interval-valued linear regression model, Proceedings of

the 20th International Conference on Information Fusion, 2017, No. 8009676, DOI: 10.23919/

ICIF.2017.8009676.

[34] Lawson C and Hanson R, Solving Least Squares Problems, Prentice-Hall, Upper Saddle River,

1974.

[35] Nath G, Moments of a linearly truncated bivariate normal distribution, Australian Journal of

Statistics, 1972, 14: 97–102.

[36] Orme C, On the uniqueness of the maximum likelihood estimator in truncated regression models,

Econometric Reviews, 1989, 8(2): 217–222.

[37] van der Vaart A, Asymptotic Statistics, Cambridge University Press, Cambridge, 1998.

[38] Cribari-Neto F and Lima M, Sequence of improved standard errors under heteroskedasticity of

unknown form, Journal of Statistical Planning and Inference, 2011, 141(11): 3617–3627.


