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Abstract This paper considers the fully coupled forward-backward stochastic functional differential

equations (FBSFDEs) with stochastic functional differential equations as the forward equations and

the generalized anticipated backward stochastic differential equations as the backward equations. The

authors will prove the existence and uniqueness theorem for FBSFDEs. As an application, we deal

with a quadratic optimal control problem for functional stochastic systems, and get the explicit form

of the optimal control by virtue of FBSFDEs.
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1 Introduction

The general form of backward stochastic differential equation (BSDE) was considered the
first time by Pardoux and Peng[1] in 1990. From then on, the theory of BSDEs has been studied
with great interest (see, e.g., [2–4]). One hot topic is the forward-backward stochastic differential
equation (FBSDE) (see, e.g., [5–7]), due to its wide applications in the pricing/hedging problem,
in the stochastic control and game theory (see, e.g., [3, 8–11]).

Especially the fully coupled FBSDE of the form
⎧
⎪⎪⎨

⎪⎪⎩

dXt = b(t,Xt, Yt, Zt)dt+ σ(t,Xt, Yt, Zt)dBt;

−dYt = f(t,Xt, Yt, Zt)dt− ZtdBt;

X0 = a, YT = Φ(XT ),
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with the forward SDE as the state equation and the BSDE as the dual equation, plays an
important role in the linear-quadratic (LQ) optimal control problem (see e.g. [3, 10, 12]), which
is one of the most important class of optimal control and game problems. Next some efforts has
been made to generalize this model. For example, motivated by the work of Mohammed[13] and
the work of Peng and Yang[4] together, Chen and Wu[8] studied the following general FBSDE:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

dXt = b(t,Xt, Yt, Zt, Xt−δ)dt+ σ(t,Xt, Yt, Zt, Xt−δ)dBt, t ∈ [0, T ];

−dYt = f(t,Xt, Yt, Zt, Yt+δ, Zt+δ)dt− ZtdBt, t ∈ [0, T ];

Xt = ρt, t ∈ [−δ, 0];

YT = Φ(XT ), Yt = ξt t ∈ (T, T + δ];

Zt = ηt, t ∈ [T, T + δ],

where δ ≥ 0. Easily we can find that here the value of the state (or the dual process) at time t
depends not only on its value at t but also on the value at t − δ (or t + δ), that is to say, the
influence brought by the other time intervals is ignored.

However, many natural and social phenomena shows that the state process at time t depends
not only on its present state but also its whole history of the past. Similarly, for the dual process,
its value at time t depends not only on its present value but also its full information of the
future. Thus in this paper we will study the following general case:
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

dXt = b(t, {Xr}r∈[−M,t], Yt, Zt)dt+ σ(t, {Xr}r∈[−M,t], Yt, Zt)dBt, t ∈ [0, T ];

−dYt = f(t,Xt, {Yr}r∈[t,T+K], {Zr}r∈[t,T+K])dt− ZtdBt, t ∈ [0, T ];

Xt = ρt, t ∈ [−M, 0];

Yt = ξt, Zt = ηt, t ∈ [T, T +K],

where M ≥ 0 and K ≥ 0. It is clearly that here the state process is given in the form of
stochastic functional differential equations (see, e.g., Mohammed[13]), and the dual process in
the form of generalized anticipated BSDEs, which is just the new type of BSDEs studied by
Yang[14] (see also Yang and Elliott[15]).

We prove that under proper assumptions, the solution of the above equation exists uniquely
(see Section 3). Then in Section 4, as an application, we deal with an optimal control problem
for the following functional stochastic system:

⎧
⎪⎨

⎪⎩

dXt =
(

At

∫ t

−M

Xsds+ Ctvt

)

dt+
(

Dt

∫ t

−M

Xsds+ Ftvt

)

dBt, t ∈ [0, T ];

Xt = ρt, t ∈ [−M, 0],

where v· is a control process. Our aim is to minimize the classical quadratic optimal control
cost function. For this problem, we can get the explicit unique optimal control by virtue of
the results obtained in the previous section. Finally conclusions and future works are given in
Section 5.

Next we first make some preliminaries.
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2 Preliminaries

Let {Bt; t ≥ 0} be a d-dimensional standard Brownian motion on a probability space
(Ω ,F , P ) and {Ft; t ≥ 0} be its natural filtration. Denote by | · | the norm in R

n, and 〈·, ·〉
denotes the inner product. Given T > 0, we will use the following notations:

• C(−M, 0; Rn) := {ϕ· : [−M, 0] → R
n | ϕ· satisfies sup−M≤t≤0 |ϕt| < +∞};

• L2(FT ; Rn) := {ξ ∈ R
n | ξ is an FT -measurable random variable such that E|ξ|2 < +∞};

• L2
F(0, T ; Rn) := {ϕ· : Ω × [0, T ] → R

n | ϕ· is an Ft-progressively measurable process such
that E

∫ T

0
|ϕt|2dt < +∞}.

2.1 Generalized Anticipated Backward Stochastic Differential Equations

Consider the following generalized anticipated backward stochastic differential equation
(GABSDE):

⎧
⎪⎪⎨

⎪⎪⎩

−dYt = f(t, {Yr}r∈[t,T+K], {Zr}r∈[t,T+K])dt− ZtdBt, t ∈ [0, T ];

Yt = ξt, t ∈ [T, T +K];

Zt = ηt, t ∈ [T, T +K].

(1)

For the generator f(ω, t, {yr}r∈[t,T+K], {zr}r∈[t,T+K]) : Ω × [0, T ] × L2
F (t, T + K; Rm) ×

L2
F (t, T +K; Rm×d) → L2(Ft; Rm), we use several hypotheses (see Yang[14]):

(A1) There exists a constant L > 0 such that for each t ∈ [0, T ], y·, y′· ∈ L2
F(0, T +K; Rm),

z·, z′· ∈ L2
F(0, T +K; Rm×d), the following holds:

E

[ ∫ T

t

|f(s, {yr}r∈[s,T+K], {zr}r∈[s,T+K]) − f(s, {y′r}r∈[s,T+K], {z′r}r∈[s,T+K])|2ds
]

≤LE
[ ∫ T+K

t

(|ys − y′s|2 + |zs − z′s|2)ds
]

;

(A1′) There exists a constant L′ > 0 such that for each t ∈ [0, T ], y·, y′· ∈ L2
F(0, T +K; Rm),

z·, z′· ∈ L2
F(0, T +K; Rm×d), the following holds:

E

[∫ T

t

eθs|f(s, {yr}r∈[s,T+K], {zr}r∈[s,T+K]) − f(s, {y′r}r∈[s,T+K], {z′r}r∈[s,T+K])|2ds
]

≤L′E
[ ∫ T+K

t

eθs(|ys − y′s|2 + |zs − z′s|2)ds
]

,

where θ ≥ 0 is an arbitrary constant;
(A2) E[

∫ T

0
|f(s, 0, 0)|2ds] < +∞.

Remark 2.1 In fact, (A1) ⇔ (A1′), see Remark 2.2.1 of Yang[14].

By using the fixed point theorem, Yang[14] (see also Yang and Elliott[15]) proved the following
existence and uniqueness theorem for GABSDEs:
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Theorem 2.2 Assume that f satisfies (A1) and (A2), then for arbitrary given terminal
conditions (ξ·, η·) ∈ L2

F(T, T +K; Rm) × L2
F(T, T +K; Rm×d), the GABSDE (1) has a unique

solution, i.e., there exists a unique pair of Ft-adapted processes (Y·, Z·) ∈ L2
F(0, T +K; Rm) ×

L2
F (0, T +K; Rm×d) satisfying (1).

Remark 2.3 It should be mentioned here that, in fact condition (A1) can be weaken to
(A1′′), which says

(A1′′) There exists a constant L′′ > 0 such that for each y·, y′· ∈ L2
F(0, T +K; Rm), z·, z′· ∈

L2
F (0, T +K; Rm×d), the following holds:

E

[ ∫ T

0

|f(s, {yr}r∈[s,T+K], {zr}r∈[s,T+K]) − f(s, {y′r}r∈[s,T+K], {z′r}r∈[s,T+K])|2ds
]

≤L′′E
[ ∫ T+K

0

(|ys − y′s|2 + |zs − z′s|2)ds
]

.

This can be easily checked from the detailed proofs of the theorem.

Remark 2.4 Let us give some examples of generator functions satisfying (A1). Assume
that h(ω, t, y, z) : Ω × [0, T ] × R

m × R
m×d → R

m is Ft-adapted and Lipschitz in (y, z), i.e.,
there exists a constant Lh > 0 such that |h(t, y, z)− h(t, y′, z′)| ≤ Lh(|y− y′|+ |z − z′|) for any
(y, z), (y′, z′) ∈ R

m × R
m×d. Then we can easily check that fi (i = 1, 2, 3, 4) defined below will

satisfy (A1):

f1(t, {yr}r∈[t,T+K], {zr}r∈[t,T+K]) := h

(

t, EFt

[ ∫ T+K

t

yrdr

]

, EFt

[ ∫ T+K

t

zrdr

])

,

f2(t, {yr}r∈[t,T+K], {zr}r∈[t,T+K]) := EFt

[

h

(

t,

∫ T+K

t

yrdr,

∫ T+K

t

zrdr

)]

;

f3(t, {yr}r∈[t,T+K], {zr}r∈[t,T+K]) := h

(

t, EFt
g

[ ∫ T+K

t

yrdr

]

, EFt
g

[ ∫ T+K

t

zrdr

])

,

f4(t, {yr}r∈[t,T+K], {zr}r∈[t,T+K]) := EFt
g

[

h

(

t,

∫ T+K

t

yrdr,

∫ T+K

t

zrdr

)]

,

where EFt
g is the conditional g-expection, a nonlinear expectation, introduced by a BSDE (see

Peng[16] for details).

2.2 Stochastic Functional Differential Equations

For each t ∈ [0, T ], let

b(t, {xr}r∈[−M,t]) : Ω × [0, T ]× L2
F (−M, t; Rn) → L2(Ft; Rn),

σ(t, {xr}r∈[−M,t]) : Ω × [0, T ]× L2
F(−M, t; Rn) → L2(Ft; Rn×d).

Consider the following stochastic functional differential equation (SFDE):
⎧
⎨

⎩

dXt = b(t, {Xr}r∈[−M,t])dt+ σ(t, {Xr}r∈[−M,t])dBt, t ∈ [0, T ];

Xt = ρt, t ∈ [−M, 0],
(2)

where ρ· ∈ C(−M, 0; Rn).
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Definition 2.5 A process X· : Ω × [−M,T ] → R
n is called an adapted solution of

SFDE (2) if X· ∈ L2
F(−M,T ; Rn) and it satisfies (2).

It should be mentioned that, Mohammed[13] has considered several types of SFDEs, and
got the existence and uniqueness result by using Picard iterations. Here in order to make the
paper self-contained, we will provide a proof by applying the fixed point theorem rather than
Picard iterations.

We impose the following assumption:
(A3) There exists a constant L > 0 such that for each x·, x′· ∈ L2

F(−M,T ; Rn), the following
hold:

E

[ ∫ T

0

e−θs|b(s, {xr}r∈[−M,s]) − b(s, {x′r}r∈[−M,s])|2ds
]

≤ LE

∫ T

−M

e−θs|xs − x′s|2ds,

E

[ ∫ T

0

e−θs|σ(s, {xr}r∈[−M,s]) − σ(s, {x′r}r∈[−M,s])|2ds
]

≤ LE

∫ T

−M

e−θs|xs − x′s|2ds,

where θ ≥ 0 is an arbitrary constant;
(A4) b(t, 0) ∈ L2

F(0, T ; Rn) and σ(t, 0) ∈ L2
F(0, T ; Rn).

Remark 2.6 Let us give some examples of coefficients satisfying (A3). Assume that
p(ω, t, x) : Ω × [0, T ] × R

n → R
n and q(ω, t, x) : Ω × [0, T ] × R

n → R
n×d are Ft-adapted and

Lipschitz w.r.t. x, i.e., there exist constants Lp > 0, Lq > 0 such that |p(t, x) − p(t, x′)| ≤
Lp|x− x′|, |q(t, x) − q(t, x′)| ≤ Lq|x− x′| for any x, x′ ∈ R

n. Then we can easily check that b1,
b2, σ1 and σ2 defined below will satisfy (A3):

b1(t, {xr}r∈[−M,t]) := p

(

t,

∫ t

−M

xrdr

)

, b2(t, {xr}r∈[−M,t]) :=
∫ t

−M

p(r, xr)dr,

σ1(t, {xr}r∈[−M,t]) := q

(

t,

∫ t

−M

xrdr

)

, σ2(t, {xr}r∈[−M,t]) :=
∫ t

−M

q(r, xr)dr.

We now give the existence and uniqueness result for SFDE (2).

Theorem 2.7 Assume that (A3) and (A4) hold. Then SFDE (2) has a unique adapted
solution.

Proof Let θ be a nonnegative constant. Now we use the following norm in L2
F(−M,T ; Rn):

‖v(·)‖−θ :=
(

E

∫ T

−M

e−θs|v(s)|2ds
) 1

2

,

which is equivalent to the original norm of L2
F(−M,T ; Rn). Henceforth we will find that this

new norm is more convenient for us to construct a contraction mapping.
Let X· be the unique solution of

⎧
⎨

⎩

dXt = b(t, {xr}r∈[−M,t])dt+ σ(t, {xr}r∈[−M,t])dBt, t ∈ [0, T ];

Xt = ρt, t ∈ [−M, 0],
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where x· ∈ L2
F(−M,T ; Rn). Now introduce a mapping I from L2

F(−M,T ; Rn) into itself by
X· = I(x·).

Let x′· be another element of L2
F (−M,T ; Rn), and define X ′

· = I(x′·). We make the following
notations:

x̂· = x· − x′·, X̂· = X· −X ′
· ,

b̂t = b(t, {xr}r∈[−M,t]) − b(t, {x′r}r∈[−M,t]),

σ̂t = σ(t, {xr}r∈[−M,t]) − σ(t, {x′r}r∈[−M,t]).

Then for any θ ≥ 0, applying Itô’s formula to e−θt|X̂t|2, and taking expectation, we have

Ee−θt|X̂t|2 = E

∫ t

0

(−θ)e−θs|X̂s|2ds+ E

∫ t

0

e−θs|σ̂s|2ds+ 2E
∫ t

0

e−θsX̂sb̂sds.

This, together with (A3), yields

E

∫ T

0

θe−θs|X̂s|2ds ≤ E

∫ T

−M

e−θs

(

L2 +
2L2

θ

)

|x̂s|2ds+ E

∫ T

0

e−θs θ

2
|X̂s|2ds.

Thus if we choose θ = 2L2 +2L
√
L2 + 2, and note that X̂s ≡ 0 for s ∈ [−M, 0], then we deduce

E

∫ T

−M

e−θs|X̂s|2ds ≤ 1
2
E

∫ T

−M

e−θs|x̂s|2ds,

so that I is a strict contraction on L2
F(−M,T ; Rn). It follows by the fixed point theorem that

SFDE (2) has a unique solution X· ∈ L2
F(−M,T ; Rn).

At the end of this part, for the following SFDE, with the same form as in Chapter II of [13]:
⎧
⎨

⎩

dX ′
t = b′(t, {X ′

r}r∈[t−M,t])dt+ σ′(t, {X ′
r}r∈[t−M,t])dBt, t ∈ [0, T ];

X ′
t = ρt, t ∈ [−M, 0],

(3)

we also give an existence and uniqueness theorem. Since the method to prove it is similar to
Theorem 2.7, we omit here. For

b′(t, {xr}r∈[t−M,t]) : Ω × [0, T ]× L2
F(t−M, t; Rn) → L2(Ft; Rn),

σ′(t, {xr}r∈[t−M,t]) : Ω × [0, T ]× L2
F(t−M, t; Rn) → L2(Ft; Rn×d),

we assume that
(A3′) There exists a constant L′ > 0 such that for each x·, x′· ∈ L2

F(−M,T ; Rn), the following
hold:

E

[ ∫ T

0

e−θs|b′(s, {xr}r∈[s−M,s]) − b′(s, {x′r}r∈[s−M,s])|2ds
]

≤ L′E
∫ T

−M

e−θs|xs − x′s|2ds,

E

[ ∫ T

0

e−θs|σ′(s, {xr}r∈[s−M,s]) − σ′(s, {x′r}r∈[s−M,s])|2ds
]

≤ L′E
∫ T

−M

e−θs|xs − x′s|2ds,

where θ ≥ 0 is an arbitrary constant;
(A4′) b′(t, 0) ∈ L2

F(0, T ; Rn) and σ′(t, 0) ∈ L2
F(0, T ; Rn).

Theorem 2.8 Assume that (A3′) and (A4′) hold. Then SFDE (3) has a unique adapted
solution.



1892 XU XIAOMING

3 Fully Coupled Forward-Backward Stochastic Functional Differen-

tial Equations

In this section, we consider the following fully coupled forward-backward stochastic func-
tional differential equation (FBSFDE):
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

dXt = b(t, {Xr}r∈[−M,t], Yt, Zt)dt+ σ(t, {Xr}r∈[−M,t], Yt, Zt)dBt, t ∈ [0, T ];

−dYt = f(t,Xt, {Yr}r∈[t,T+K], {Zr}r∈[t,T+K])dt− ZtdBt, t ∈ [0, T ];

Xt = ρt, t ∈ [−M, 0];

YT =Φ(XT ), Yt = ξt, t ∈ (T, T +K];

Zt = ηt, t ∈ [T, T +K],

(4)

where

b(t, ·, ·, ·) : Ω × [0, T ]× L2
F(−M, t; Rn) × R

m × R
m×d → L2(Ft; Rn),

σ(t, ·, ·, ·) : Ω × [0, T ]× L2
F(−M, t; Rn) × R

m × R
m×d → L2(Ft; Rn×d),

f(t, ·, ·, ·) : Ω × [0, T ]× R
n × L2

F(t, T +K; Rm) × L2
F(t, T +K; Rm×d) → L2(Ft,R

m),

Φ : Ω × R
n → R

m, ρ· ∈ C(−M, 0; Rn), ξ· ∈ L2
F (T, T +K; Rm), η· ∈ L2

F (T, T +K; Rm×d).

Definition 3.1 A triple of processes (X·, Y·, Z·) : Ω × [−M,T ]× [0, T +K]× [0, T +K] →
R

n×R
m×R

m×d is called an adapted solution of FBSFDE (4) if (X·, Y·, Z·) ∈ L2
F (−M,T ; Rn)×

L2
F (0, T +K; Rm) × L2

F(0, T +K; Rm×d) and it satisfies FBSFDE (4).

Given an m× n full-rank matrix G, we use the following notations:

u =

⎛

⎜
⎜
⎝

x

y

z

⎞

⎟
⎟
⎠ ,

⎛

⎜
⎜
⎝

α

β

γ

⎞

⎟
⎟
⎠ =

⎛

⎜
⎜
⎝

{xr}r∈[−M, ·]

{yr}r∈[·, T+K]

{zr}r∈[·, T+K]

⎞

⎟
⎟
⎠ , A(t, u, α, β, γ) =

⎛

⎜
⎜
⎝

−GTf(t, x, β, γ)

Gb(t, α, y, z)

Gσ(t, α, y, z)

⎞

⎟
⎟
⎠ ,

where GT denotes the transpose of G and Gσ = (Gσ1, Gσ2, · · · , Gσd).
Now we introduce the following assumptions:
(H1) E

∫ T

0
|A(s, u, α, β, γ)|2ds < +∞ for each (u, α, β, γ);

(H2) There exists a constant L > 0 such that for each x·, x′· ∈ L2
F(−M,T ; Rn), y·, y′· ∈

L2
F (0, T +K; Rm), z·, z′· ∈ L2

F(0, T +K; Rm×d), the following hold:

E

∫ T

0

e−θs|b(s, {xr}r∈[−M,s], ys, zs) − b(s, {x′r}r∈[−M,s], y
′
s, z

′
s)|2ds

+ E

∫ T

0

e−θs|σ(s, {xr}r∈[−M,s], ys, zs) − σ(s, {x′r}r∈[−M,s], y
′
s, z

′
s)|2ds

≤LE
∫ T

−M

e−θs|xs − x′s|2ds+ LE

∫ T

0

e−θs(|ys − y′s|2 + |zs − z′s|2)ds,

E

∫ T

0

eθs|f(s, xs, {yr}r∈[s,T+K], {zr}r∈[s,T+K]) − f(s, x′s, {y′r}r∈[s,T+K], {z′r}r∈[s,T+K])|2ds

≤LE
∫ T

0

eθs|xs − x′s|2ds+ LE

∫ T+K

0

eθs(|ys − y′s|2 + |zs − z′s|2)ds,
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where θ ≥ 0 is an arbitrary constant;
(H3) Φ(x) ∈ L2(FT ; Rm) and it is uniformly Lipschitz w.r.t. x ∈ R

n;
(H4) A(·, ·, ·, ·, ·) and Φ(·) satisfy

E

∫ T

0

〈A(s, us, αs, βs, γs) −A(s, u′s, α
′
s, β

′
s, γ

′
s), us − u′s〉ds

≤− λ1E

∫ T

−M

|Gx̂s|2ds− λ2E

∫ T+K

0

(|GTŷs|2 + |GTẑs|2)ds,

〈Φ(x) − Φ(x′), G(x − x′)〉 ≥ μ|Gx̂|2,

for all (u, α, β, γ), (u′, α′, β′, γ′), x and x′, x̂ = x − x′, ŷ = y − y′, ẑ = z − z′, where λ1,
λ2 and μ are given nonnegative constants with λ1 + λ2 > 0, λ2 + μ > 0. Moreover, we have
λ1 > 0, μ > 0 (resp. λ2 > 0) when m > n (resp. n > m).

We first give the uniqueness theorem.

Theorem 3.2 Assume that (H1)–(H4) hold. Then FBSFDE (4) has at most one adapted
solution.

Proof Suppose that U· = (X·, Y·, Z·) and U ′
· = (X ′

· , Y
′
· , Z

′
·) are two solutions of FBSFDE

(4). We denote Û· = (X̂·, Ŷ·, Ẑ)· = (X· − X ′· , Y· − Y ′· , Z· − Z ′·). Applying Itô’s formula to
〈GX̂t, Ŷt〉 and noting (H4), we have

E〈Φ(XT ) − Φ(X ′
T ), GX̂T 〉

=E
∫ T

0

〈A(s, Us, αs, βs, γs) −A(s, U ′
s, α

′
s, β

′
s, γ

′
s), Ûs〉ds

≤− λ1E

∫ T

−M

|GX̂s|2ds− λ2E

∫ T+K

0

(|GTŶs|2 + |GTẐs|2)ds

= − λ1E

∫ T

0

|GX̂s|2ds− λ2E

∫ T

0

(|GTŶs|2 + |GTẐs|2)ds,

where the last equality is due to Xs = X ′
s = ρs for s ∈ [−M, 0] and (Ys, Zs) = (Y ′

s , Z
′
s) = (ξs, ηs)

for s ∈ (T, T +K].
Together with (H4) again, we obtain

λ1E

∫ T

0

|GX̂s|2ds+ λ2E

∫ T

0

(|GTŶs|2 + |GTẐs|2)ds+ μ|GX̂T |2 ≤ 0.

For the case when m > n, we note that λ1 > 0 and μ > 0. Then it is easy to get that for
s ∈ [0, T ], |GX̂s|2 ≡ 0, which implies X̂s ≡ 0. Thus Xs ≡ X ′

s, for s ∈ [0, T ]. Then according to
Theorem 2.2 together with Remark 2.3, we know (Ys, Zs) = (Y ′

s , Z
′
s) for s ∈ [0, T ].

For the case when n > m, we note that λ2 > 0. Then for s ∈ [0, T ], |GTŶs|2 ≡ 0 and
|GTẐs|2 ≡ 0, which implies (Ys, Zs) ≡ (Y ′

s , Z
′
s). Finally, from the uniqueness of SFDEs (see

Theorem 2.7), it follows that Xs ≡ X ′
s for s ∈ [0, T ].

Similar to the above, for the case when m = n, the result can be easily obtained.
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From now on, we will mainly study the existence of the solution to FBSFDE (4). For this,
we first consider the following family of FBSFDEs parameterized by ε ∈ [0, 1]:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dXε
t = [(1 − ε)λ2(−GTY ε

t ) + εb(t, {Xε
r}r∈[−M,t], Y

ε
t , Z

ε
t ) + ϕt]dt

+[(1 − ε)λ2(−GTZε
t ) + εσ(t, {Xε

r}r∈[−M,t], Y
ε
t , Z

ε
t ) + φt]dBt, t ∈ [0, T ];

−dY ε
t = [(1 − ε)λ1GX

ε
t + εf(t,Xε

t , {Y ε
r }r∈[t,T+K], {Zε

r}r∈[t,T+K]) + ψt]dt− Zε
t dBt,

Xε
t = ρt, t ∈ [−M, 0];

Y ε
T = εΦ(Xε

T ) + (1 − ε)GXε
T + ζ, Y ε

t = ξt, t ∈ (T, T +K];

Zε
t = ηt, t ∈ [T, T +K],

(5)
where ζ ∈ L2(FT ; Rm), ϕ· ∈ L2

F(0, T ; Rn), φ· ∈ L2
F(0, T ; Rn×d) and ψ· ∈ L2

F(0, T ; Rm). It is
obvious that the existence of (4) just follows from that of (5) when ε = 1.

Lemma 3.3 Assume that (H1)–(H4) hold. If for an ε0 ∈ [0, 1), there exists a solution
(Xε0· , Y ε0· , Zε0· ) of FBSFDE (5), then there exists a positive constant δ0, such that for each
δ ∈ [0, δ0] there exists a solution (Xε0+δ

· , Y ε0+δ
· , Zε0+δ

· ) of FBSFDE (5) for ε = ε0 + δ.

Proof Let u· = (x·, y·, z·) ∈ L2
F(−M,T ; Rn) × L2

F (0, T + K; Rm) × L2
F(0, T + K; Rm×d).

Then it follows that there exists a unique triple U· = (X·, Y·, Z·) ∈ L2
F(−M,T ; Rn)×L2

F(0, T +
K; Rm) × L2

F(0, T +K; Rm×d) satisfying the following FBSFDE:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dXt = [(1 − ε0)λ2(−GTYt) + ε0b(t, {Xr}r∈[−M,t], Yt, Zt) + ϕt]dt

+δ(λ2G
Tyt + b(t, {xr}r∈[−M,t], yt, xt))dt

+[(1 − ε0)λ2(−GTZt) + ε0σ(t, {Xr}r∈[−M,t], Yt, Zt) + φt]dBt

+δλ2(GTzt + σ(t, {xr}r∈[−M,t], yt, zt))dBt, t ∈ [0, T ];

−dYt = [(1 − ε0)λ1GXt + ε0f(t,Xt, {Yr}r∈[t,T+K], {Zr}r∈[t,T+K]) + ψt]dt

+δ(−λ1Gxt + f(t, xt, {yr}r∈[t,T+K], {zr}r∈[t,T+K]))dt − ZtdBt, t ∈ [0, T ];

Xt = ρt, t ∈ [−M, 0];

YT = ε0Φ(XT ) + (1 − ε0)GXT + δ(Φ(xT ) −GxT ) + ζ, Yt = ξt, t ∈ (T, T +K];

Zt = ηt, t ∈ [T, T +K].

Our objective is to prove that for sufficiently small δ, the mapping Iε0+δ, defined by
U· = Iε0+δ(u·) from L2

F(−M,T ; Rn) × L2
F(0, T + K; Rm) × L2

F(0, T + K; Rm×d) into itself,
is a contraction mapping.

Let u′· = (x′·, y
′
·, z

′
·) be another element of L2

F(−M,T ; Rn) ×L2
F(0, T +K; Rm)× L2

F(0, T +
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K; Rm×d) and define U ′
· = Iε0+δ(u′·). We make the following notations:

û· = (x̂·, ŷ·, ẑ·) = (x· − x′·, y· − y′·, z· − z′·),

Û· = (X̂·, Ŷ·, Ẑ·) = (X· −X ′
· , Y· − Y ′

· , Z· − Z ′
·),

b̂t = b(t, {xr}r∈[−M,t], yt, zt) − b(t, {x′r}r∈[−M,t], yt, zt),

σ̂t = σ(t, {xr}r∈[−M,t], yt, zt) − σ(t, {x′r}r∈[−M,t], yt, zt),

f̂t = f(t, xt, {yr}r∈[t,T+K], {zr}r∈[t,T+K]) − f(t, x′t, {y′r}r∈[t,T+K], {z′r}r∈[t,T+K]).

Apply Itô’s formula to 〈GX̂t, Ŷt〉, and take expectation,

ε0E〈Φ(XT ) − Φ(X ′
T ), GX̂T 〉 + (1 − ε0)E|GX̂T |2 + δE〈Φ(xT ) − Φ(x′T ) −Gx̂T , GX̂T 〉ds

=E
∫ T

0

ε0〈A(s, Us, αs, βs, γs) −A(s, U ′
s, α

′
s, β

′
s, γ

′
s), Ûs〉ds

− (1 − ε0)E
∫ T

0

(λ1〈GX̂s, GX̂s〉 + λ2〈GTŶs, G
TŶs〉 + λ2〈GTẐs, G

TẐs〉)ds

+ δE

∫ T

0

(λ1〈GX̂s, Gx̂s〉 + λ2〈GTŶs, G
Tŷs〉 + λ2〈GTẐs, G

Tẑs〉

+ 〈X̂s,−GTf̂s〉 + 〈GTŶs, b̂s〉 + 〈Ẑs, Gσ̂s〉)ds.

From (H1)–(H4), we have

(ε0μ+ (1 − ε0))E|GX̂T |2 + λ1E

∫ T

−M

|GX̂s|2ds+ λ2E

∫ T+K

0

(|GTŶs|2 + |GTẐs|2)ds

≤ C1δE

∫ T

−M

(|X̂s|2 + |x̂s|2)ds+ C1δE

∫ T+K

0

(|Ŷs|2 + |ŷs|2 + |Ẑs|2 + |ẑs|2)ds

+C1δE|X̂T |2 + C1δE|x̂T |2. (6)

Here the constant C1 depends on G, L, λ1, λ2.
Next we will give two other estimates. On the one hand, similarly to the proof of Theorem

2.7, for any θ ≥ 0, by applying Itô’s formula to e−θt|X̂t|2, we have

Ee−θT |X̂T |2 =E
∫ T

0

(−θ)e−θs|X̂s|2ds+ E

∫ T

0

e−θs|σ̂s|2ds+ 2E
∫ T

0

e−θsX̂sb̂sds

≤E
∫ T

0

(

− θ

2

)

e−θs|X̂s|2ds+ E

∫ T

0

e−θs|σ̂s|2ds+
2
θ
E

∫ T

0

e−θs |̂bs|2ds,

where

b̂s =(1 − ε0)λ2(−GTŶs) + ε0(b(s, {Xr}r∈[−M,s], Ys, Zs) − b(s, {X ′
r}r∈[−M,s], Y

′
s , Z

′
s))

+ δ(λ2G
Tŷs + b(s, {xr}r∈[−M,s], ys, zs) − b(s, {x′r}r∈[−M,s], y

′
s, z

′
s)),

σ̂s =(1 − ε0)λ2(−GTẐs) + ε0(σ(s, {Xr}r∈[−M,s], Ys, Zs) − σ(s, {X ′
r}r∈[−M,s], Y

′
s , Z

′
s))

+ δ(λ2G
Tẑs + σ(s, {xr}r∈[−M,s], ys, zs) − σ(s, {x′r}r∈[−M,s], y

′
s, z

′
s)).
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According to (H2),

E

∫ T

0

e−θs|̂bs|2ds ≤4(1 − ε0)2λ2
2E

∫ T

0

e−θs|GTŶs|2ds

+ 4ε20L
(

E

∫ T

−M

e−θs|X̂s|2ds+ E

∫ T

0

e−θs|Ŷs|2ds+ E

∫ T

0

e−θs|Ẑs|2ds
)

+ 4δ2λ2
2E

∫ T

0

e−θs|GTŷs|2ds

≤4λ2
2E

∫ T

0

e−θs|GTŶs|2ds

+ 4L
(

E

∫ T

−M

e−θs|X̂s|2ds+ E

∫ T

0

e−θs|Ŷs|2ds+ E

∫ T

0

e−θs|Ẑs|2ds
)

+ 4δ2λ2
2E

∫ T

0

e−θs|GTŷs|2ds

+ 4δ2L
(

E

∫ T

−M

e−θs|x̂s|2ds+ E

∫ T

0

e−θs|ŷs|2ds+ E

∫ T

0

e−θs|ẑs|2ds
)

,

and similarly,

E

∫ T

0

e−θs|σ̂s|2ds ≤4λ2
2E

∫ T

0

e−θs|GTẐs|2ds

+ 4L
(

E

∫ T

−M

e−θs|X̂s|2ds+ E

∫ T

0

e−θs|Ŷs|2ds+ E

∫ T

0

e−θs|Ẑs|2ds
)

+ 4δ2λ2
2E

∫ T

0

e−θs|GTẑs|2ds

+ 4δ2L
(

E

∫ T

−M

e−θs|x̂s|2ds+ E

∫ T

0

e−θs|ŷs|2ds+ E

∫ T

0

e−θs|ẑs|2ds
)

.

Thus,

θ

2
E

∫ T

0

e−θs|X̂s|2ds ≤E
∫ T

0

e−θs|σ̂s|2ds+
2
θ
E

∫ T

0

e−θs |̂bs|2ds

≤4L
(

1 +
2
θ

)

E

∫ T

−M

e−θs|X̂s|2ds

+ C2E

∫ T+K

0

(e−θs|Ŷs|2 + e−θs|Ẑs|2)ds

+ C2δ
2E

∫ T

−M

e−θs|x̂s|2ds+ C2δ
2E

∫ T+K

0

e−θs(|ŷs|2 + |ẑs|2)ds.

Choosing θ sufficiently large, we can easily get the following estimate:

E

∫ T

−M

|X̂s|2ds

≤ C2δ
2E

∫ T

−M

|x̂s|2ds+ C2δ
2E

∫ T+K

0

(|ŷs|2 + |ẑs|2)ds+ C2E

∫ T+K

0

(|Ŷs|2 + |Ẑs|2)ds. (7)
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Here the constant C2 depends on G, L, λ2.
On the other hand, for (Ŷ·, Ẑ·), thanks to the estimate of BSDEs, together with (H2), we

can easily derive

E

∫ T+K

0

(|Ŷs|2 + |Ẑs|2)ds

≤ C3δ
2E

∫ T

−M

|x̂s|2ds+ C3δ
2E

∫ T+K

0

(|ŷs|2 + |ẑs|2)ds+ C3δ
2E|x̂T |2

+C3E

∫ T

−M

|X̂s|2ds+ C3E|X̂T |2. (8)

Here the constant C3 depends on G, L, λ1.
Now combining the above three estimates (6)–(8), and noting the fact that μ > 0 implies

ε0μ+ (1 − ε0) > 0, we can easily check that, whenever λ1 > 0, μ > 0, λ2 ≥ 0 or λ1 ≥ 0, μ ≥ 0,
λ2 > 0, the following always holds:

E

∫ T

−M

|X̂s|2ds+ E

∫ T+K

0

(|Ŷs|2 + |Ẑs|2)ds+ E|X̂T |2

≤C(δ + δ2)

(

E

∫ T

−M

|x̂s|2ds+ E

∫ T+K

0

(|ŷs|2 + |ẑs|2)ds+ E|x̂T |2
)

,

where the constant C depends on C1, C2, C3, λ1, λ2, μ.
Thus if we choose δ0 = min{1, 1

4C }, we can clearly see that, for each δ ∈ [0, δ0], the mapping
Iε0+δ is a strict contraction on L2

F (−M,T ; Rn) × L2
F(0, T + K; Rm) × L2

F(0, T + K; Rm×d) in
the sense that

E

∫ T

−M

|X̂s|2ds+ E

∫ T+K

0

(|Ŷ |2 + |Ẑs|2)ds+ E|X̂T |2

≤1
2

(

E

∫ T

−M

|x̂s|2ds+ E

∫ T+K

0

(|ŷ|2 + |ẑs|2)ds+ E|x̂T |2
)

.

Then it follows by the fixed point theorem that the mapping Iε0+δ has a unique fixed point
Uε0+δ
· = (Xε0+δ

· , Y ε0+δ
· , Zε0+δ

· ), which is the unique solution of (5) for ε = ε0 + δ.
Now we give the main result of this part.

Theorem 3.4 Assume that (H1)–(H4) hold. Then there exists a unique adapted solution
(X·, Y·, Z·) of FBSFDE (4).

Proof The uniqueness is an immediate result from Theorem 3.2. Next we prove the exis-
tence.

Note that FBSFDE (5) for ε = 0 admits a unique solution (see Theorem 2.6 in [3]). Thus
from Lemma 3.3, there exists a positive constant δ0 such that, for each δ ∈ [0, δ0], (5) for
ε = ε0 + δ admits a unique solution. Repeat this process for N times with 1 ≤ Nδ0 < 1 + δ0,
then we can obtain that particularly for ε = 1 with φ· = 0, ϕ· = 0, ψ0 = 0 and ζ = 0, (5) has a
unique solution, i.e., FBSFDE (4) has a unique solution.
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4 Quadratic Optimal Control Problem for Functional Stochastic Sys-

tems

Let ρ· ∈ C(−M, 0; Rn), and let v· be an admissible control process, i.e., an Ft-adapted
square integrable process taking values in a given subset of R

k. Then we consider the following
control system:

⎧
⎪⎪⎨

⎪⎪⎩

dXt =
(

At

∫ t

−M

Xsds+ Ctvt

)

dt+
(

Dt

∫ t

−M

Xsds+ Ftvt

)

dBt, t ∈ [0, T ];

Xt = ρt, t ∈ [−M, 0],

(9)

where A·, C·, D· and F· are bounded progressively measurable matrix-valued processes with
appropriate dimensions. Then according to Theorem 2.7 and Remark 2.6, SFDE (9) admits a
unique solution.

The classical quadratic optimal control problem is to minimize the cost function

J(v·) =
1
2
E

[ ∫ T

0

(〈RtXt, Xt〉 + 〈Ntvt, vt〉)dt+ 〈QXT , XT 〉
]

,

whereQ is an FT -measurable nonnegative symmetric bounded matrix,R· is an n×n nonnegative
symmetric bounded progressively measurable matrix-valued process, N· is an k × k positive
symmetric bounded progressively measurable matrix-valued process and its inverse N−1

· is also
bounded.

The following theorem tells us that, for the above optimal control problem, we can find the
explicit form of the optimal control u· satisfying

J(u·) = inf
v·
J(v·),

by means of the fully coupled forward-backward stochastic functional differential equations.

Theorem 4.1 The process

ut = −N−1
t (CT

t Yt + FT
t Zt), t ∈ [0, T ]

is the unique optimal control which satisfies

J(u·) = inf
v·
J(v·),
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where (X·, Y·, Z·) is the unique solution of the following FBSFDE:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dXt =
[

At

∫ t

−M

Xsds− CtN
−1
t (CT

t Yt + FT
t Zt)

]

dt

+
[

Dt

∫ t

−M

Xsds− FtN
−1
t (CT

t Yt + FT
t Zt)

]

dBt, t ∈ [0, T ];

−dYt =
[

EFt

(∫ T+K

t

AT
s Ysds

)

+ EFt

(∫ T+K

t

CT
s Zsds

)

+RtXt

]

dt

−ZtdBt, t ∈ [0, T ];

Xt = ρt, t ∈ [−M, 0];

YT = QXT , Yt = 0, t ∈ (T, T +K];

Zt = 0, t ∈ [T, T +K].

(10)

Proof From Theorem 3.4, we know that FBSFDE (10) admits a unique solution (X·, Y·, Z·).
Denote the unique solution of SFDE (9) by Xv

· for the control v·.
Applying Itô’s formula to 〈Xv

t −Xt, Yt〉, and taking expectation, we have

E〈Xv
T −XT , YT 〉

= − E

∫ T

0

[〈

EFt

(∫ T+K

t

AT
s Ysds

)

+ EFt

(∫ T+K

t

DT
s Zsds

)

+RtXt, X
v
t −Xt

〉]

dt

+ E

∫ T

0

(〈

At

∫ t

−M

(Xv
s −Xs)ds, Yt

〉

+ 〈Ct(vt − ut), Yt〉
)

dt

+ E

∫ T

0

(〈

Dt

∫ t

−M

(Xv
s −Xs)ds, Zt〉 + 〈Ft(vt − ut, Zt)

〉)

dt.

Note that

E

∫ T

0

(〈

At

∫ t

−M

(Xv
s −Xs)ds, Yt

〉

−
〈

EFt

(∫ T+K

t

AT
s Ysds

)

, Xv
t −Xt

〉)

dt

=E
∫ T

0

〈

At

∫ t

−M

(Xv
s −Xs)ds, Yt

〉

dt− E

∫ T

0

〈∫ T+K

t

AT
s Ysds,X

v
t −Xt

〉

dt

=E
∫ T

0

〈

At

∫ t

−M

(Xv
s −Xs)ds, Yt

〉

dt

− E

∫ T

0

〈

At

∫ t

0

(Xv
s −Xs)ds, Yt

〉

dt− E

∫ T+K

T

〈

At

∫ T

0

(Xv
s −Xs)ds, Yt

〉

dt

=E
∫ T

0

〈

At

∫ 0

−M

(Xv
s −Xs)ds, Yt

〉

dt− E

∫ T+K

T

〈

At

∫ T

0

(Xv
s −Xs)ds, Yt

〉

dt

=0,

and similarly,

E

∫ T

0

(〈

Dt

∫ t

−M

(Xv
s −Xs)ds, Zt

〉

−
〈

EFt

(∫ T+K

t

DT
s Zsds

)

, Xv
t −Xt

〉)

dt = 0.
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Combining the above three equalities, we have

E〈Xv
T −XT , YT 〉 = E

∫ T

0

(〈−RtXt, X
v
t −Xt〉 + 〈Ct(vt − ut), Yt〉 + 〈Ft(vt − ut), Zt〉)dt,

which implies

E〈Xv
T −XT , YT 〉+E

∫ T

0

〈RtXt, X
v
t −Xt〉 = E

∫ T

0

(〈Ct(vt −ut), Yt〉+ 〈Ft(vt−ut), Zt〉)dt. (11)

On the other hand,

J(v·) − J(u·)

=
1
2
E

[ ∫ T

0

(〈RtX
v
t , X

v
t 〉 − 〈RtXt, Xt〉 + 〈Ntvt, vt〉 − 〈Ntut, ut〉)dt

+ 〈QXv
T , X

v
T 〉 − 〈QXT , XT 〉

]

=
1
2
E

[ ∫ T

0

(〈Rt(Xv
t −Xt), Xv

t −Xt〉 + 2〈RtXt, X
v
t −Xt〉

+ 〈Nt(vt − ut, vt − ut〉 + 2〈Ntut, vt − ut〉)dt

+ 〈Q(Xv
T −XT ), Xv

T −XT 〉 + 2〈QXT , X
v
T −XT 〉

]

≥E
∫ T

0

(〈RtXt, X
v
t −Xt〉 + 〈Ntut, vt − ut〉)dt+ 〈QXT , X

v
T −XT 〉,

where the last inequality is due to the positivity of N·, and the nonnegativity of R· and Q.
Then together with (11), and noting that YT = QXT , we obtain

J(v·) − J(u·)

≥E
∫ T

0

(〈RtXt, X
v
t −Xt〉 + 〈Ntut, vt − ut〉)dt+ 〈QXT , X

v
T −XT 〉]

=E
∫ T

0

(〈Ct(vt − ut), Yt〉 + 〈Ft(vt − ut), Zt〉 + 〈Ntut, vt − ut〉)dt

=0.

Hence, ut = −N−1
t (CT

t Yt + FT
t Zt) is an optimal control.

Moreover, the optimal control is unique. In fact, assume that u· and u′· are both optimal
controls, and denote J(u·) = J(u′·) � J ≥ 0. The corresponding trajectories are X· and X ′

· . It
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is easy to check that for the control u·+u′
·

2 , the trajectory is X·+X′
·

2 . Then,

2J = J(u·) + J(u′·)

=
1
2
E

[∫ T

0

(〈RtXt, Xt〉 + 〈Ntut, ut〉)dt+ 〈QXT , XT 〉
]

+
1
2
E

[ ∫ T

0

(〈RtX
′
t, X

′
t〉 + 〈Ntu

′
t, u

′
t〉)dt+ 〈QX ′

T , X
′
T 〉
]

= 2J
(
u· + u′·

2

)

+ E

[∫ T

0

(〈

Rt
Xt −X ′

t

2
,
Xt −X ′

t

2

〉

+
〈

Nt
ut − u′t

2
,
ut − u′t

2

〉)

dt

]

+ E

〈

Q
XT −X ′

T

2
,
XT −X ′

T

2

〉

≥ 2J + E

∫ T

0

〈

Nt
ut − u′t

2
,
ut − u′t

2

〉

dt,

where the last inequality is due to the nonnegativity of R· and Q.
Therefore u· = u′·, thanks to the positivity of N·.

Remark 4.2 It should be mentioned here that, the method we applied to prove the
uniqueness above is in fact a classical method, readers are referred to [8] or [10].

5 Conclusions and Future Works

In this paper, we proved the existence and uniqueness theorem for fully coupled forward-
backward stochastic functional differential equations (FBSFDEs). Moreover, as an application,
we studied a quadratic optimal control problem for functional stochastic systems, and got the
optimal control by virtue of FBSFDEs. Motivated by the work of [10], [12], [17], [18], etc., in
the future we could further study FBSFDEs with Lévy noise, or study the other applications of
these equations (such as the application to optimal control problems, the stochastic differential
games, and so on). Besides, it is known that observer design, as well as controller design, is
the core problem of control theory. It has been widely used in many aspects. Compared with
classical linear systems, the design of observers for the general systems is more complex and
difficult. Observer design for the system in this current work will also be discussed in our future
research.
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