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Abstract Necessary and sufficient conditions for the exact controllability and approximate control-

lability of a singular distributed parameter system are obtained. These general results are used to

examine the exact controllability and approximate controllability of the Dzektser equation in the the-

ory of seepage.
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1 Introduction

A large number of works deal with control systems described by abstract Sobolev type
evolution equations (e.g., [1–8]). Below we shall consider the problems of exact controllability
and approximate controllability for control systems described by abstract singular distributed
parameter systems.

Let X, Y, U be Hilbert spaces. Also let L(X, Y ) be the space of all bounded linear operators
from X into Y, L(X) = L(X, Y ). The singular distributed parameter system

Eẋ(t) = Ax(t) + Bu(t), 0 ≤ t ≤ T, x(0) = x0, (1)

where E ∈ L(X, Y ), A is a closed linear operator from X into Y whose domain is dense in X

and B ∈ L(U, Y ), is an abstract form of various partial differential equations and systems of
equations which occur in many applications (see, e.g., [5–8]).

For the sake of convenience, we introduce the following definition.
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Definition 1.1 System (1) is called a regular system with order n (positive integer or
infinite) if there exist Hilbert spaces X1, X2 and P ∈ L(Y, X1×X2), Q ∈ L(X1×X2, X), where
P is injective and Q is bijective, such that

PEQ =

⎡
⎣ I1 0

0 N

⎤
⎦ ∈ L(X1 ×X2), PAQ =

⎡
⎣ K 0

0 I2

⎤
⎦ , PB =

⎡
⎣ B1

B2

⎤
⎦ ∈ L(U, X1 ×X2),

where N is a nilpotent operator with order n (see [9]), K is the generator of the strongly
continuous semigroup eKt (see e.g., [10]), PAQ is a closed linear operator on X1 × X2 whose
domain is dense in X1 × X2, Ik ∈ L(Xk) is the identical operator (k = 1, 2).

In this case, the operators P and Q transfer (1) into the following decoupled system on
Hilbert space X1 × X2

ẋ1(t) = Kx1(t) + B1u(t), 0 ≤ t ≤ T, x1(0) = x10, (2)

Nẋ2(t) = x2(t) + B2u(t), 0 ≤ t ≤ T, x2(0) = x20, (3)

where ⎡
⎣ x1

x2

⎤
⎦ = Q−1x,

⎡
⎣ x1(0)

x2(0)

⎤
⎦ = Q−1x(0).

The system represented by (2)–(3) is called the standard form of regular system (1).
It was proved that many systems are regular system for example, Navier-Stokes systems,

robotic system, the system modelling the free surface evolution of filtered fluid, the system
modelling the moisture transfer in soil, the modeling of multi-body mechanisms, finance system,
input-output economics system, the problem of protein folding and so on (see, e.g., [9, 11–15]).
Subsystem (2) is a classical system in control theory. The properties of (3) determine the
peculiarities of (1). For example, it is known that controls from the class Cn−1([0, +∞), U)
must be used to solve (3) in the weak sense; the system may fail to have solution for controls
with less smoothness (see, e.g., [9, 13]). The exact null controllability of the system (2)–(3)
with scalar control has been studied in [11].

This paper investigate the exact controllability and approximate controllability of the sin-
gular system (1) under some additional hypotheses, or, equivalently, of (2)–(3). The general
results obtained are used to examine the exact controllability and approximate controllability
of the Dzektser equation in the theory of seepage.

Throughout the paper, R denotes the set of real numbers; C denotes the set of complex
numbers; Cn(J, X) denotes the set of n times continuously differentiable X-valued functions on
interval J ; kerA denotes the kernel of A; ranA denotes the range of A; ranA denotes the closure
of ranA; domA denotes the domain of A; A∗ denotes the dual operator of A; 〈·, ·〉X denotes the
inner product on the space X ; ‖ · ‖X denotes the norm induced by the inner product on the
space X ; L2([0, T ], X) denotes the class of Lebesgue measurable function from [0, T ] to X with∫ T

0 ‖f(t)‖2
Xdt < ∞.
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Here we give several auxiliary results. In the following, we assume that n is a positive
integer, i.e., N is a nilpotent operator with order n (see, e.g., [13]), and the system (1) is of the
form (2)–(3).

Theorem 1.2 (see [9]) Suppose u ∈ Cn([0, T ], U). Then, for each initial value
⎡
⎣ x1(0)

x2(0)

⎤
⎦ ∈

⎧
⎨
⎩

⎡
⎣ η1

η2

⎤
⎦ : η1 ∈ domK, η2 = −

n−1∑
k=0

NkB2u
(k)(0)

⎫
⎬
⎭ ,

there exists a unique solution
⎡
⎣ x1

x2

⎤
⎦ ∈ C1([0, T ], X1 × X2) ∩ C

⎛
⎝[0, T ], dom

⎡
⎣ K 0

0 I2

⎤
⎦
⎞
⎠

of (2)–(3). Furthermore
⎡
⎣ x1(t)

x2(t)

⎤
⎦ =

⎡
⎣ eKtx10 +

∫ t

0 eK(t−τ)B1u(τ)dτ

−∑n−1
k=0 NkB2u

(k)(0)}

⎤
⎦ . (4)

In view of this result, it seems natural to extend the concept of mild solution to singular
distributed parameter system of the form (2)–(3).

Definition 1.3 For [ x10
x20 ] ∈ X1 ×X2, a function [ x1

x2 ] ∈ C([0, T ], X1 ×X2) is called a mild
solution of (2)–(3) if it has the form (4) and satisfies

[
x1(0)
x2(0)

]
= [ x10

x20 ] .

Theorem 1.4 (see [11]) Assume u ∈ Cn−1([0, T ], U). Then, for any initial value
⎡
⎣ x10

x20

⎤
⎦ ∈

{⎡
⎣ η1

η2

⎤
⎦ : η1 ∈ X1, η2 = −

n−1∑
k=0

NkB2u
(k)(0)

}
,

there exists a unique mild solution [ x1
x2 ] ∈ C([0, T ], X1 × X2) of (2)–(3).

It is well known that a mild solution x1(t) of (2) is expressible for x10 ∈ X1, u ∈ L2([0, T ], U)
by the formula

x1(t) = eKtx10 +
∫ t

0

eK(t−τ)B1u(τ)dτ,

where the integral is understood in the sense of Bochner (see, e.g., [10]).
Note that the first line of the matrix in (4), which gives a solution of (2)–(3), is a mild

solution of (2), while the second line, which is a sum over k, is a solution of (3). Hence, in
accordance with Definition 1.3, it is natural, for x20 ∈ X2, u ∈ Cn−1([0, T ], U), to regard the
function

x2(t) = −
n−1∑
k=0

NkB2u
(k)(t) (5)

as a mild solution of (3). It follows from (5) that (3) is solvable if and only if the compatibility
condition between the right-hand side and the initial data

x20 = −
n−1∑
k=0

NkB2u
(k)(0) (6)
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is satisfied.
In the following definitions we shall assume by default that the solutions are mild.

Definition 1.5 System (2)–(3) is called exactly controllable on [0, T ] if, for any x1T ∈
X1, x2T ∈ X2, any x10 ∈ X1, x20 ∈ X2, there exists a control u ∈ Cn−1([0, T ], U) such that (6)
is satisfied and x1(T ) = x1T , x2(T ) = x2T .

Definition 1.6 System (2)–(3) is called approximately controllable on [0, T ] if, for any
x1T ∈ X1, x2T ∈ X2, any x10 ∈ X1, x20 ∈ X2, and any ε > 0, there exists a control u ∈
Cn−1([0, T ], U) such that (6) is satisfied and

‖x1(T ) − x1T ‖X1 < ε, ‖x2(T ) − x2T ‖X2 < ε.

Our purpose here is to establish necessary and sufficient conditions for the exact controlla-
bility and approximate controllability of (2)–(3) with bounded operators B1 and B2.

The next definition will be used in the next section.

Definition 1.7 A number λ ∈ C is called the E-eigenvalue of the operator A if there
exists a vector x 
= 0 such that λEx = Ax. Such a vector x is called the E-eigenvector of the
operator A corresponding to the E-eigenvalue λ.

It is easily verified that the E-eigenvectors corresponding to the same E-eigenvalue form a
subspace of X .

2 Controllability of (2)

As for the exact controllability of (2), we have the following results.

Theorem 2.1 (see [10]) Subsystem (2) is exactly controllable on [0, T ] if and only if the
following condition holds for some γ > 0 and for all z ∈ X1:

〈∫ T

0

eKτB1B
∗
1eK∗τzdτ, z

〉

X1

≥ γ‖z‖2
X1

. (7)

According to Theorem 2.1, we obtain the following Theorem.

Theorem 2.2 Subsystem (2) is exactly controllable on [0, T ] if and only if for some γ > 0
and all z ∈ X1: 〈∫ T

0

f2(τ)eKτ B1B
∗
1eK∗τzdτ, z

〉

X1

≥ γ‖z‖2
X1

, (8)

where f(τ) = τn(τ − T )n. In this case
∫ T

0
f2(τ)eKτB1B

∗
1eK∗τdτ has bounded inverse.

Proof Sufficiency. Since maxτ∈[0,T ] f
2(τ) = (T/2)4n, by (8), we have that

(T/2)4n

〈∫ T

0

eKτB1B
∗
1eK∗τzdτ, z

〉

X1

≥
〈∫ T

0

f2(τ)eKτB1B
∗
1eK∗τzdτ, z

〉

X1

≥ γ‖z‖2
X1

.

Therefore, (7) is true. By Theorem 2.1, the subsystem (2) is exactly controllable on [0, T ].
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Necessity. Assume (7). If (8) is false, then for any positive integer m, there exists xm ∈ X1

and ‖xm‖X1 = 1, such that
〈∫ T

0

f2(τ)eKτB1B
∗
1eK∗τxmdτ, xm

〉

X1

<
1
m

. (9)

Since f2(τ) is an increasing function, when τ ∈ [0, T/2] and f2(τ) is a decreasing function,
when τ ∈ [T/2, T ], we have that

f2(τ) ≥ (1/m)1/2[(1/m)1/(4n) − T ]2n, τ ∈ [(1/m)1/(4n), T − (1/m)1/(4n)].

By (9), we get that

1
m

>

(
1
m

)1/2

[(1/m)1/(4n) − T ]2n

∫ T−(1/m)1/(4n)

(1/m)1/(4n)

〈
eKτB1B

∗
1eK∗τxm, xm

〉
X1

dτ

=
(

1
m

)1/2

[(1/m)1/(4n) − T ]2n

[ ∫ T

0

〈
eKτB1B

∗
1eK∗τxm, xm

〉
X1

dτ

−
∫ (1/m)1/(4n)

0

〈
eKτB1B

∗
1eK∗τxm, xm

〉
X1

dτ

−
∫ T

T−(1/m)1/(4n)

〈
eKτB1B

∗
1eK∗τxm, xm

〉
X1

dτ

]
.

By (7), we obtain that

(
1
m

)1/2 > [(1/m)1/(4n) − T ]2n

[
γ −

∫ (1/m)1/(4n)

0

〈
eKτB1B

∗
1eK∗τxm, xm

〉
X1

dτ

−
∫ T

T−(1/m)1/(4n)

〈
eKτB1B

∗
1eK∗τxm, xm

〉
X1

dτ

]
.

As m → +∞, we have that 0 ≥ T 2nγ > 0. This contradiction indicates that (8) is true. By [10],
we have that

∫ T

0
f2(τ)eKτ B1B

∗
1eK∗τdτ has bounded inverse.

As for the approximate controllability of (2), we have the following results.

Theorem 2.3 (see [10]) Subsystem (2) is approximately controllable on [0, T ] if and only
if any one of the following conditions hold:

(i)
∫ T

0
eKτB1B

∗
1eK∗τdτ > 0,

(ii) B∗
1eK∗τz = 0 on [0, T ] ⇒ z = 0.

According to Theorem 2.3, we can obtain the following theorem.

Theorem 2.4 Subsystem (2) is approximately controllable on [0, T ] if and only if

G(f, T ) =
∫ T

0

f2(τ)eKτ B1B
∗
1eK∗τdτ > 0

for any polynomial f(τ) ∈ R not identically zero and ranG(f, T ) = X1.



1490 GE ZHAOQIANG · GE XIAOCHI

Proof The sufficiency is obvious. We only need to prove the necessity. If z ∈ kerG(f, T ),
then

0 = 〈G(f, T )z, z〉X1 =
∫ T

0

‖f(τ)B∗
1eK∗τz‖2

X1
dτ

and thus, 0 = f(τ)B∗
1eK∗τz for 0 ≤ τ ≤ T. Since f(τ) can have only finitely many zeros in the

interval 0 ≤ τ ≤ T, it follows that B∗
1eK∗τz = 0 on [0, T ]. By Theorem 2.3, we have z = 0.

Therefore

G(f, T ) =
∫ T

0

f2(τ)eKτ B1B
∗
1eK∗τdτ > 0

and kerG(f, T ) = {0}. By [10], we obtain ranG(f, T ) = X1.

3 Controllability of (3)

As for the exact controllability of (3), we have the following results.

Theorem 3.1 Subsystem (3) is exactly controllable on [0, T ] if and only if

ran[B2 NB2 · · · Nn−1B2] = X2. (10)

Proof The exact controllability of (3) on [0, T ] implies, in particular, that it has a solu-
tion satisfying the initial condition x2(0) = x20 for any x20 ∈ X2. By (6), we have x20 ∈
ran[B2 NB2 · · · Nn−1B2]. This proves that (10) is necessity. Now we prove the suffi-
ciency. Since (10) holds, for any x20 ∈ X2, there exist vectors αk ∈ U, k = 0, 1, · · · , n − 1, such
that x20 = −∑n−1

k=0 NkB2αk. Hence, the condition (6) is satisfied, proved that

u(k)(0) = αk, k = 0, 1, · · · , n − 1. (11)

By (5), it follows that, for any t ≥ 0, the corresponding solution is determined only by the value
u(k)(t), k = 0, 1, · · · , n − 1. Therefore if a control u(t) satisfies (11) and if

u(k)(T ) = βk, k = 0, 1, · · · , n − 1, (12)

then (5) yields that x2(T ) = −∑n−1
k=0 NkB2βk. In order to build a control u ∈ Cn−1([0, T ], U)

satisfying (11) and (12) we can proceed as follows. Let

u1(t) =
n−1∑
k=0

tk

k!
αk + tn

n−1∑
k=0

tk

k!
ck, ck ∈ U, k = 0, 1, · · · , n − 1, u2(t) =

n−1∑
k=0

(t − T )k

k!
βk.

We have
u

(k)
1 (0) = αk, u

(k)
2 (T ) = βk, k = 0, 1, · · · , n − 1. (13)

We choose a number t0 ∈ (0, T ) and set

u(t) = u1(t), 0 ≤ t ≤ t0; u(t) = u2(t), t0 ≤ t ≤ T. (14)

We shall find coefficients ck, k = 0, 1, · · · , n − 1, so as to have

u
(k)
1 (t0) = u

(k)
2 (t0), k = 0, 1, · · · , n − 1. (15)
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Differentiating, this gives, for j = 0, 1, · · · , n − 1,

u
(j)
1 (t0) =

n−1∑
k=j

tk−j
0

(k − j)!
αk +

n−1∑
k=0

(n + k)!tk+n−j
0

(k + n − j)!k!
ck.

Therefore, in order that (15) be valid for j = 0, 1, · · · , n − 1, the following equations must be
satisfied

n−1∑
k=j

tk−j
0

(k − j)!
αk +

n−1∑
k=0

(n + k)!tk+n−j
0

(k + n − j)!k!
ck = u

(j)
2 (t0).

Consequently, the required coefficients ck, k = 0, 1, · · · , n − 1, constitute a solution of the
nonhomogeneous n × n-system of linear algebraic equations. The determinant of the ma-
trix of this system is the Wronskian of the following system of linearly independent func-
tions tn, tn+1, tn+2

2! , · · · , t2n−1

(n+1)! , at t = t0. Therefore, the determinant does not vanish, and
so the above nonhomogeneous system of linear algebraic equations has a unique solution
ck ∈ U, k = 0, 1, · · · , n − 1. Consequently, the control u, as defined by (14) with the coef-
ficients c0, c1, · · · , cn−1 just obtained, lies in Cn−1([0, T ], U) and satisfies the condition (13).
Hence, this proves Theorem 3.1.

As for the approximate controllability of (3), we have the following theorem.

Theorem 3.2 Let N ∈ L(X2) be a nilpotent operator of order n, B2 ∈ L(U, X2). Then
the following statements are equivalent:

(i) subsystem (3) is approximately controllable on [0, T ];
(ii)

ran[B2 NB2 · · · Nn−1B2] = X2; (16)

(iii) subsystem (3) is exactly controllable on [0, T ] .

Proof (i) ⇒ (ii): The approximate controllability of (3) on [0, T ] implies, in particular,
that it has a solution satisfying the initial condition x2(0) = x20 for any x20 ∈ X2. By (6), we
have x20 ∈ ran[B2 NB2 · · · Nn−1B2]. This proves that (ii) is true.

(ii) ⇒ (iii): By Theorem 3.1, (iii) is true.
(iii) ⇒ (i), obviously.

Remark 3.3 Note that approximate controllability and exact controllability are equiva-
lent for (3).

4 Controllability of (2)–(3)

As for the exact controllability of (2)–(3), we have the following theorem.

Theorem 4.1 System (2)–(3) is exactly controllable on [0, T ] if and only if both (2) and (3)
are exactly controllable on [0, T ].

Proof The necessity is obvious. We only need to prove the sufficiency. Assume x10, x1T ∈



1492 GE ZHAOQIANG · GE XIAOCHI

X1 and x20, x2T ∈ X2. We have to find u ∈ Cn−1([0, T ], U) such that

x1(t) = eKtx10 +
∫ t

0

eK(t−τ)B1u(τ)dτ, x2(t) = −
n−1∑
k=0

NkB2u
(k)(t),

x1(T ) = x1T , x2(T ) = x2T . (17)

We choose u(t) = u1(t) + u2(t). Thus,

x1(t) = eKtx10 +
∫ t

0

eK(t−τ)B1u1(τ)dτ +
∫ t

0

eK(t−τ)B1u2(τ)dτ,

x2(t) = −
n−1∑
k=0

NkB2u
(k)
1 (t) −

n−1∑
k=0

NkB2u
(k)
2 (t).

We choose u1(t) to be of the form

u1(t) = tn(t − T )nv(t) (18)

for some v ∈ Cn([0, T ], U). Thus, u
(k)
1 (0) = u

(k)
1 (T ) = 0, if k < n.By the proof of Theorem 3.1,

there exists u2 ∈ Cn−1([0, T ], U) such that −∑n−1
k=0 NkB2u

(k)
2 (T ) = x2(T ). From Theorem 2.2,

for polynomial f(τ) = τn(τ − T )n, there exists y ∈ X1, such that
∫ T

0

f2(τ)eKτ B1B
∗
1eK∗τydτ −

[
x1T − eKT x10 −

∫ T

0

eK(T−τ)B1u2(τ)dτ

]
= 0. (19)

Let v(τ) = f(τ)B∗
1eK∗(T−τ)y. Then, by (18) and (19), u1(τ) = f2(τ)B∗

1eK∗(T−τ)y and
∫ T

0

eK(T−τ)B1u1(τ)dτ −
[
x1T − eKT x10 −

∫ T

0

eK(T−τ)B1u2(τ)dτ

]
= 0.

Thus (17) is true. Therefore (2)–(3) is exactly controllable on [0, T ].
As for the approximate controllability of (2)–(3), we have the following theorem.

Theorem 4.2 System (2)–(3) is approximately controllable on [0, T ] if and only if both (2)
and (3) are approximately controllable on [0, T ].

Proof The necessity is obvious. We only need to prove the sufficiency. Assume

x10, x1T ∈ X1, α0, α1, · · · , αn−1, β0, β1, · · · , βn−1 ∈ U

and ε > 0. We have to find u ∈ Cn−1([0, T ], U) such that

x1(t) = eKtx10 +
∫ t

0

eK(t−τ)B1u(τ)dτ, x2(t) = −
n−1∑
k=0

NkB2u
(k)(t)

and
u(k)(0) = αk, u(k)(T ) = βk, k = 0, 1, · · · , n − 1, ‖x1(T ) − x1T ‖ < ε. (20)

We choose u(t) = u1(t) + u2(t). Thus

x1(t) = eKtx10 +
∫ t

0

eK(t−τ)B1u1(τ)dτ +
∫ t

0

eK(t−τ)B1u2(τ)dτ,
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x2(t) = −
n−1∑
k=0

NkB2u
(k)
1 (t) −

n−1∑
k=0

NkB2u
(k)
2 (t).

We choose u1(t) to be of the form

u1(t) = tn(t − T )nv(t) (21)

for some v ∈ Cn([0, T ], U). Thus u
(k)
1 (0) = u

(k)
1 (T ) = 0,if k < n.By the proof of Theorem 3.1,

there exists u2 ∈ Cn−1([0, T ], U) such that u
(k)
2 (0) = αk, u

(k)
2 (T ) = βk, k = 0, 1, · · · , n−1. From

Theorem 2.4, for any polynomial f ∈ R not identically zero, there exists y ∈ X1, such that
∥∥∥∥
∫ T

0

f2(τ)eKτB1B
∗
1eK∗τydτ −

[
x1T − eKT x10 −

∫ T

0

eK(T−τ)B1u2(τ)dτ

]∥∥∥∥ < ε. (22)

Let f(τ) = τn(τ − T )n, v(τ) = f(τ)B∗
1eK∗(T−τ)y. Then, by (21) and (22),

u1(τ) = f2(τ)B∗
1eK∗(T−τ)y

and ∥∥∥∥
∫ T

0

eK(T−τ)B1u1(τ)dτ −
[
x1T − eKT x10 −

∫ T

0

eK(T−τ)B1u2(τ)dτ

]∥∥∥∥ < ε.

Thus, x1(t) = eKtx10 +
∫ t

0
eK(t−τ)B1u(τ)dτ, x2(t) = −∑n−1

k=0 NkB2u
(k)(t) satisfy (20). There-

fore (2)–(3) is approximately controllable on [0, T ].

5 Controllability of Dzektser Equation

Consider the Dzektser equation, which describes the evolution of the free surface of seepage
liquid (see, e.g., [6]),

(
1 +

∂2

∂ξ2

)
∂

∂t
x(ξ, t) =

(
∂2

∂ξ2
+ 2

∂4

∂ξ4

)
x(ξ, t) + u(t), (ξ, t) ∈ (0, π) × [0, +∞), (23)

⎧
⎪⎨
⎪⎩

x(0, t) =
∂2x(0, t)

∂ξ2
= x(π, t) =

∂2x(π, t)
∂ξ2

= 0,

t ∈ [0, +∞), x(ξ, 0) = x0(ξ), ξ ∈ (0, π),
(24)

Let

X = {x ∈ H2(0, π) : x(0) = x(π) = 0}, Y = L2([0, π], R),

E = 1 +
∂2

∂ξ2
, A =

∂2

∂ξ2
+ 2

∂4

∂ξ4
,

domA = {x ∈ H4(0, π) : x(0) = x′′(0) = x(π) = x′′(π) = 0},
(x(t))(ξ) = x(ξ, t), (Bu(t))(ξ) = bu(t), ξ ∈ (0, π), u ∈ U = R, b = 1 ∈ L2([0, π], R),

where the meanings of H2(0, π) and H4(0, π) are the same as in [11]. Then Dzektser equation
(23)–(24) can be reduced to the following system

Eẋ(t) = Ax(t) + Bu(t), x(0) = x0, (25)
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It is easily checked that sinkξ is the E-eigenvector of the operator A corresponding to E-
eigenvalue −k2(1 + k2

k2−1 ) of the operator A (k = 2, 3, · · · ), Esinξ = 0, Asinξ = sinξ,

Esinkξ = (1 − k2)sinkξ (k = 2, 3, · · · ), Asinkξ = (2k4 − k2) sin kξ (k = 2, 3, · · · )

and

1 =
+∞∑
k=1

〈1, sinkξ〉Y
〈sinkξ, sinkξ〉Y sinkξ =

4
π

sinξ +
+∞∑
k=2

4sin(2k − 1)ξ
(2k − 1)π

.

Let X1 be the closure of the subspace span{sinkξ : k = 2, 3, · · · } in the norm of the space X ;
X2 = span{sinξ}. Then X2 is one dimensional. Let E1 and A2 denote the restrictions of E and
A on X1 and X2, respectively. Then

Ksinkξ = E−1
1 Asinkξ = −k2

(
1 +

k2

k2 − 1

)
sinkξ, k = 2, 3, · · · ,

domK = span{sinkξ : k = 2, 3, · · · },

b1 = E−1
1

(
1 − 4

π
sinξ

)
=

+∞∑
k=2

4sin(2k − 1)ξ
[1 − (2k − 1)2](2k − 1)π

,

b2 = A−1
2

〈1, sinξ〉Y
〈sinξ, sinξ〉Y sinξ =

4
π

sinξ.

The regular standard form of (25) is

ẋ1(t) = Kx1(t) + B1u(t), x1(0) = x10, (26)

0 = x2(t) + B2u(t), x2(0) = x20, (27)

where
[

x1(t)
x2(t)

]
∈ X1 × X2, K is the generator of the strongly continuous semigroup eKt on X1,

N = 0 in (27), B1u = b1u and B2u = b2u.
First of all we discuss the exact controllability of (23)–(24).
Since X2 = ran[B2], by Theorem 3.1, subsystem (27) is exactly controllable on [0, T ] for any

T > 0. It is obviously that the semigroup associated with (26) is given by

eKty =
+∞∑
k=2

e−k2
(
1+ k2

k2−1

)
t 〈y, sinkξ〉X
‖ sinkξ‖2

X

sinkξ. (28)

Since eKt = eK∗t, the condition for exact controllability of (26) is the existence of a γ > 0 such
that

γ

+∞∑
k=2

|〈y, sinkξ〉X |2
‖ sin kξ‖2

X

= γ‖y‖2
X ≤

∫ T

0

‖B∗
1eK∗τy‖2

Udτ ≤ ‖B1‖2
L(U,X1)

×
+∞∑
k=2

1 − e−2k2(1+ k2

k2−1
)T

2k2(1 + k2

k2−1 )
|〈y, sinkξ〉X |2
‖ sinkξ‖2

X

,

i.e.,
+∞∑
k=2

[
‖B1‖2

L(U,X1)

1 − e−2k2(1+ k2

k2−1
)T

2k2(1 + k2

k2−1 )
− γ

] |〈y, sinkξ〉X |2
‖ sinkξ‖2

X

≥ 0. (29)
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It is obviously that no γ satisfying (29) will ever exist. Consequently, subsystem (26) is never
exactly controllable on [0, T ] for any T > 0. By Theorem 4.1, Dzektser equation (23)-(24) is
not exactly controllable on [0, T ] for any T > 0.

Now we discuss the approximate controllability of (23)–(24). As N = 0 in (27), it follows
from (ii) of Theorem 3.2 that X2 = span{sinξ}. In this case condition of Theorem 4.2 guaran-
tee that (23)–(24) is approximately controllable on [0, T ] for some T > 0 if and only if (26) is
approximately controllable. It is obviously that the strongly continuous semigroup associated
with (26) is given by (28). Since eKt = eK∗t, by (ii) of Theorem 2.3, the condition for approx-
imate controllability is that there exists T > 0 such that B∗

1eK∗ty = 0 on [0, T ] ⇒ y = 0. In
fact, for any T > 0, if 0 = B∗

1eK∗ty on [0, T ], then

eK∗ty =
+∞∑
k=2

e−k2(1+ k2

k2−1
)t 〈y, sinkξ〉X
〈sinkξ, sinkξ〉X sinkξ = 0.

Since sine series
∑+∞

k=2 e−k2(1+ k2

k2−1
)t 〈y,sinkξ〉X

〈sinkξ,sinkξ〉X
sinkξ is uniformly convergent on [0, π] for every

t ∈ (0, T ], we have

+∞∑
k=2

e−k2(1+ k2

k2−1
)t 〈y, sinkξ〉X
〈sinkξ, sinkξ〉X 〈sinkξ, sinmξ〉X = 0.

By the orthogonality of the sine function system, we can get 〈y, sinmξ〉X = 0, m = 2, 3, · · · , i.e.,
y = 0. Hence, by Theorem 4.2, the Dzektser equation (23)–(24) is approximately controllable
on [0, T ] for any T > 0.

6 Conclusions

We have defined exact controllability and approximate controllability, and proved corre-
sponding necessary and sufficient conditions for regular singular distributed parameter systems.
An illustrative example was given. For a specific singular distributed parameter system, the
exact controllability and approximate controllability can be tested according to the results of
this paper.
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