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Abstract In this paper, the event-triggered consensus for linear discrete-time multi-agent systems

with parameter uncertainties is investigated. The parameter uncertainty is assumed to be norm-

bounded. An event-triggered consensus protocol based on the predictive control method is proposed

to make the multi-agent system achieve consensus. And for the design of the consensus protocol, the

problem of estimating the control input is transformed into the problem of estimating state differences

between agents. Furthermore, the event-triggered consensus protocol proposed in this paper only

demands each agent to mornitor its state to determine its event-triggered instants. A sufficient existence

condition for the consensus protocol is proposed based on the linear matrix inequality. And a sufficient

condition for the nonexistence of the Zeno-like behaviour is also derived. Finally, a numerical example

is given to illustrate that the event-triggered consensus protocol proposed in this paper can make the

multi-agent system with parameter uncertainties achieve consensus effectively.

Keywords Consensus, event-triggered strategy, multi-agent systems, predictive scheme.

1 Introduction

In the 1970s, the agent was proposed in the field of intelligence firstly[1]. Then more and more
researchers began to pay their attention to the multi-agent systems. Olfati-Saber and Murray
investigated the consensus for multi-agent systems with directed topologies and one-order inte-
grator dynamics. The effects of switching communication topologies and communication delays
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were also taken into account[2]. Ren, et al. proposed necessary and sufficient consensus con-
ditions for multi-agent systems based on the eigenvalues of Laplacian matrix[3–5]. He and Cao
considered the consensus problem of high-order multi-agent systems and provided a sufficient
and necessary condition for the consensus[6]. It was worth noting that there was a common
assumption in the aforementioned works, i.e., all the dynamics of agents were assumed to be
certain. But in some practical situations, such an assumption was too restrictive[7–10]. So the
consensus problem of multi-agent systems with uncertainties received increasing attention in re-
cent years. Zhang, et al. investigated the distributed robust consensus for multi-agent systems
with uncertain double-order integrators and directed communication topologies[11]. Song, et al.
studied the second-order leader-following consensus problem of nonlinear multi-agent systems
without assuming that the interaction diagraph was strongly connected or contained a directed
spanning tree[12]. Li, et al. considered the distributed robust consensus for linear multi-agent
systems with parameter uncertainties. And the distributed consensus protocols were designed
for both continuous-time and discrete-time multi-agent systems[13]. Su and Huang studied
the cooperative global output regulation problem of the heterogeneous second order nonlin-
ear uncertain multi-agent systems[14]. Hu, et al. considered the consensus for heterogeneous
multi-agent systems which are governed by the Euler-Lagrange system and the double-order
integrator system respectively. And the parameters of the Euler-Lagrange system are assumed
to be uncertain[15]. Hu and Cao investigated the consensus problem of nonlinear multi-agent
systems by introducing the event-triggered mechanism into intermittent control[16].

It should be noted that in all the above results agents should broadcast its information
to their neighbors periodically (discrete-time) or continuously (continuous-time). It is clear
that periodic or continuous communication in multi-agent systems would leads to inefficient
implementations with respect to energy consumption, communication resources, and processor
usage[17–21]. Therefore, more and more researchers began to investigate the consensus for multi-
agent systems without periodic or continuous communication. Much attention had been paid
to the event-triggered strategy in order to save the communication resources. Johansson and
Dimarogonas investigated the consensus for linear continuous-time multi-agent systems based
on the event-triggered strategy[22]. Then Seyboth, et al. designed the consensus protocols based
on the event-triggered strategy for multi-agent systems with one-order/second-order integrator
dynamics respectively[23]. For the multi-agent systems with the general linear dynamics, Zhang,
et al. proposed a consensus protocol based on the event-triggered strategy to make them achieve
consensus at last[24]. But it had been assumed that the communication topology among agents
was undirected in [24]. Motivated by this point, Yang, et al. investigated the consensus for
multi-agent systems with the general linear dynamics and the directed communication topology,
and the continuous-time and discrete-time cases were considered in [25] and [26] where the Zeno
behaviour and Zeno-like behaviour were also proved nonexistent for the continuous-time and
discrete-time cases, respectively.

But to the best of my knowledge, there are few works which consider the event-triggered
consensus problem of discrete-time multi-agent systems with parameter uncertainties, which
motivates this study. In this paper, an event-triggered consensus protocol is proposed for
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discrete-time multi-agent systems with parameter uncertainties based on a predictive control
scheme. The main challenge of designing the event-triggered consensus protocol is to estimate
the control input. The problem of estimating the control input is transformed into the problem
of estimating the state differences between agents. Furthermore, the event-triggered consensus
protocol proposed in this paper only requires each agent to monitor its state to determine
its event-triggered instants. When the event is triggered, the agent will update its consensus
protocol. At the same time, its state and state difference information will be sent to its out-
neighbor agents. And the agent will update its consensus protocol and estimation of state
difference when it receives the state and state difference information from its in-neighbor agents.
In addition, a sufficient existence condition for the feedback gain matrix K is proposed in terms
of the linear matrix inequality. And a sufficient condition for the nonexistence of the Zeno-like
behaviour is also derived. From the simulation, it can be seen that the method in this paper
can make the discrete-time multi-agent systems with parameter uncertainties achieve consensus
and save much communication resources.

The rest of this paper is organized as follow. Some useful notations and the graph theory
are introduced in Section 2. The design of the event-triggered consensus protocol based on
the predictive scheme is given in Section 3. In Sections 4 and 5, the analysis of consensus and
Zeno-like behaviour are presented. A numerical example is given in Section 6 to illustrate the
efficiency of the event-triggered consensus protocol presented in this paper. At last, Section 7
concludes the paper.

2 Design of the Event-Triggered Consensus Protocol

2.1 Notation and Graph Theory

The notations and the graph theory used in this paper are introduced in this section. Let
Rm×n denote the set of m×n real matrices. 0m×n denotes the m×n matrix with all zeros. In

denotes the n × n identity matrix. 1n denotes the n × 1 column vector of all ones. A diagonal
matrix with xi (i = 1, 2, · · · , n) is denoted by diag(x1, x2, · · · , xn). A⊗B denotes the Kronecker
product of matrices A and B. Let ‖ ∗ ‖ denote the Euclidean norm for vectors and the induced
2-norm for matrices respectively. Re(∗) denotes the real part of a complex number and λi(∗)
denotes the ith eigenvalue of a matrix.

The communication topology among the N agents can be represented with a weighted
graph G = (V , ε,A). The N agents in a multi-agent system can be regarded as the nodes
V = 1, 2, · · · , N of the graph G. A directed graph contains a directed spanning tree if there
are directed paths from one node to other ones. The adjacency matrix can be defined as
A = [aij ] ∈ RN×N associated with the directed graph G. Assume that for all i ∈ V , aii = 0,
aij > 0 if eij ∈ ε and aij = 0 otherwise. The directed edge eij ∈ ε denotes that agent j can
receive information from agent i. So agent i can be called as agent j’s in-neighbor agent and
agent j can be called as agent i’s out-neighbor agent. L = [lij ] ∈ RN×N denotes the Laplacian
matrix of the directed graph G, where lii =

∑N
j=1 aij and lij = −aij (i �= j).
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2.2 Preliminaries

A discrete-time multi-agent system with the parameter uncertainty is consisted of N agents,
where the dynamics of agent i is characterized as follow:

xi(k + 1) = (A + ΔA)xi(k) + Bui(k), (1)

where xi(k) ∈ Rn×1 and ui(k) ∈ Rm×1 are the state and the control input respectively.
A ∈ Rn×n, B ∈ Rn×m are constant matrices. i = 1, 2, · · · , N . ΔA ∈ Rn×n is an unknown
matrix which represents the uncertainty and assumed to be in the form of ΔA = DFE, where
F is the uncertainty with the compatible dimension satisfying FTF ≤ σ2I. F is Lebesgue
measurable and σ > 0 is a constant. D and E are known constant matrices which characterise
the structure of the uncertainty. The communication topology among the N agents can be
described as a directed weighted graph G. And the following assumption is necessary to obtain
the main result.

Assumption 1 The matrix pair (A, B) in (1) is stabilizable and the graph G contains a
directed spanning tree.

2.3 Design of the Protocol

The well-known consensus protocol for general linear discrete-time multi-agent systems is

ui(k) = K

N∑

j=1

aij

[
xi(k) − xj(k)

]
. (2)

In consensus protocol (2), it can be seen that the periodic communication is necessary
because each agent should monitor the states of its neighbor agents at each sampling instant.
In this paper, an event-triggered strategy is designed. An agent will send its current state
information to its out-neighbor agents only when its event is triggered. The basic idea is that
an agent predicts its future states on the basis of its normal model and its state on the last
triggered instant, and an event will be triggered when the estimation error is large than than a
prescribed threshold function.

Let ki
si

denote the most recent triggering instant of agent i, si = 1, 2, · · · represent the
sequence number of the triggering instants of the agent i, and ûi represent the control input
estimation of agent i, and an estimation of xi(k) can be obtained as

x̂i(k) = A(k−ki
si

)xi(ki
si

) +
k−1∑

h=ki
si

A(k−h−1)Bûi(h). (3)

Define the estimation error as

ei(k) = x̂i(k) − xi(k). (4)

Then the triggering function is defined as

fi(k) =
∥
∥ei(k)

∥
∥ − cαk, (5)



710 LIU XIAOYU, et al.

where c > 0, max |Re{λ(A + λi(L)BK)}| < α < 1, λi(L) �= 0, i = 2, 3, · · · , N .
For the triggering function (5), when fi(k) ≥ 0, the event of agent i is triggered. Then agent

i sends its current information (including the state xi and the estimated state difference vector
θ̂i defined below) to its out-neighbor agents and updates its own consensus protocol. At the
same time, the estimation error ei(k) is reset to 0. And if the triggering function fi(k) < 0,
it means that the communication between agent i and its out-neighbor agents is unnecessary
until the next event is triggered. On the other hand, agent i will receive the latest information
from its in-neighbor agents when the events of its in-neighbor agents are triggered.

An event-triggered consensus protocol similar to (2) is proposed as follows

ui(k) = K

N∑

j=1

aij

[
x̂i(k) − x̂j(k)

]
, (6)

where K ∈ Rm×n is the feedback gain matrix to be determined and x̂j(k) is the estimation of
xj(k).

Similar to (3), x̂j(k) can be obtained by

x̂j(k) = A
(k−kj

sj
)
xj(kj

sj
) +

k−1∑

h=kj
sj

A(k−h−1)Bûj(h). (7)

From (3) and (7), it can be seen that the main challenge to implement the protocol (6) is
how to estimate the control input ûi and ûj. A method of estimating ûi and ûj is presented as
follows.

The state difference between agent i and other agents can be defined as θij(k) = xi(k)−xj(k),
and the state difference vector

θi(k) = [θT
i1(k), θT

i2(k), · · · , θT
i(i−1)(k), θT

i(i+1)(k), · · · , θT
iN (k)]T,

so the traditional consensus protocol (2) can be rewritten as

ui(k) = K(a∗
i ⊗ In)θi(k), (8)

where a∗
i = [ai1, ai2, · · · , ai(i−1), ai(i+1), · · · , aiN ].

From (8), we can see that the problem of estimating ui can be transformed into the problem
of estimating θi. Then the following equation can be obtained by substituting (8) into (1) if
ΔA = 0,

θi(k + 1) = [IN−1 ⊗ A + (di + 1N−1a
∗
i −A∗

i ) ⊗ BK]θi(k), (9)
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where

di = diag(l11, l22 · · · , l(i−1)(i−1), l(i+1)(i+1), · · · , lNN),

A∗
i =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

a11 a12 · · · a1(i−1) a1(i+1) · · · a1N

a21 a22 · · · a2(i−1) a2(i+1) · · · a2N

...
...

. . .
...

...
. . .

...

a(i−1)1 a(i−1)2 · · · a(i−1)(i−1) a(i−1)(i+1) · · · a(i−1)N

a(i+1)1 a(i+1)2 · · · a(i+1)(i−1) a(i+1)(i+1) · · · a(i+1)N

...
...

. . .
...

...
. . .

...

aN1 aN2 · · · aN(i−1) aN(i+1) · · · aNN

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

From (9), the following predictor can be designed to estimate θi(k)

θ̂i(k) = Ω
(k−ki

si
)

i θ̂i(ki
si

), (10)

where θ̂i(k) is the estimation of θi(k), ki
si

is the most recent triggering instant of agent i,
Ωi = IN−1 ⊗ A + (di + 1N−1a

∗
i −A∗

i ) ⊗ BK.
Therefore, ûi(k) can be designed as

ûi(k) = K(a∗
i ⊗ In)Ω

(k−ki
si

)

i θ̂i(ki
si

), k ≥ ki
si

. (11)

ûj(k) can be designed as

ûj(k) = K(a∗
j ⊗ In)Ω

(k−kj
sj

)

j θ̂j(kj
sj

), k ≥ kj
sj

, (12)

where kij
sj

is the most recent triggering instant of agent j.

Remark 2.1 It should be noted that (10) utilizes the artificial closed-loop system (9) to
predict the future state. This prediction is not always precise, however, simulation results show
that this method has a good performance.

Remark 2.2 It should be noted that if the event of agent j is triggered, then agent j will
send its current state xj(kj

sj
) and the estimated state difference vector θ̂j(kj

sj
) to its neighbor

agent i at the triggering instant kj
sj

. At the same time, agent i will update the state difference
vector θ̂i using the received information. Then θ̂i(k), k ≥ kj

sj
will be estimated based on the

updated θ̂i.

Remark 2.3 Without loss of generality, all the agents are assumed to be triggered at
k = 0. Therefore, θ̂p(0) = θp(0), p = 1, 2, · · · , N .
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From (11)–(12), the event-triggered consensus protocol (6) can be rewritten as

ui(k) = K
N∑

j=1

aij

[
x̂i(k) − x̂j(k)

]

= K
N∑

j=1

aij

[
(
A(k−ki

si
)xi(ki

si
) +

k−1∑

h=ki
si

A(k−h−1)BK

×(a∗
i ⊗ In)Ω

(h−ki
si

)

i θ̂i(ki
si

)
) − (

A
(k−kj

sj
)
xj(kj

sj
)

+
k−1∑

h=kj
sj

A(k−h−1)BK(a∗
j ⊗ In)Ω

(h−kj
sj

)

j θ̂j(kj
sj

)
)
]

, (13)

where K ∈ Rm×n is the feedback gain matrix to be determined.

Definition 2.4 For the discrete-time multi-agent system (1), if limk→∞ ‖xi(k)−xj(k)‖ =
0 holds, it can be said that the protocol (13) solves the consensus problem of the multi-agent
system (1) or the multi-agent system (1) achieves consensus under the protocol (13).

Lemma 2.5 (see [27]) If the graph G contains a directed spanning tree, zero is the simple
eigenvalue of the Laplacian matrix L and all the other eigenvalues have positive real parts.
Otherwise, 1N is a right eigenvector associated with the zero eigenvalue.

Lemma 2.6 (see [13]) For the parameter uncertainty ΔA = DFE which satisfies that
FTF ≤ σ2I, the discrete-time system xi(k + 1) = (A + ΔA)xi(k) is quadratically stable if and
only if A is Schur stable and ‖E(zI − A)−1D‖∞ < 1

σ holds, where σ > 0 is a constant.

Lemma 2.7 (see [28]) There exists a positive-definite matrix P such that

P (A + H1F1E1)T + (A + H1F1E1)P < 0

for all admissible uncertainty F1 satisfying FT
1 F1 ≤ �2I if and only if there exists a scalar ε > 0

such that
PAT + AP +

1
ε
PET

1 E1P + ε�2H1H
T
1 < 0.

Lemma 2.8 For the discrete-time multi-agent system (1) with the event-triggered con-
sensus protocol (13) and the triggering function (5), if all the matrices A + λs(L)BK (s =
2, 3, · · · , N) are Schur, then all the matrices Ωi = IN−1 ⊗ A + (di + 1N−1a

∗
i − A∗

i ) ⊗ BK

(i = 1, 2, · · · , N) are also Schur.

Proof See the appendix.

3 Analysis of the Consensus for Multi-agent Systems with Parameter

Uncertainties

Following the aforementioned sections, the following Theorem can be obtained, which gives
a necessary and sufficient condition for the solvability of the consensus problem under the
proposed protocol.
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Theorem 3.1 For the linear discrete-time multi-agent system (1) under the event-triggered
consensus protocol (13) and the triggering function (5), the consensus problem of the multi-agent
system (1) can be solved if and only if all the matrices A+λi(L)BK are Schur, where λi(L) �= 0
and ‖E(zI − A − λi(L)BK)−1D‖∞ < 1

σ (i = 2, 3, · · · , N) holds. Furthermore, if there exist
matrices Q > 0, R and a scalar γ > 0 such that

⎡

⎢
⎢
⎢
⎢
⎢
⎣

−Q QAT QET RT

AQ Q − σ2DDT + γκ2BBT 0 0

EQ 0 −I 0

R 0 0 −γI

⎤

⎥
⎥
⎥
⎥
⎥
⎦

< 0, (14)

where κ = max |λi(L)| (i = 2, 3, · · · , N). The feedback gain matrix is given by K = RQ−1.

Proof From the estimation error ei(k), it is clear that

A(k−ki
si

)xi(ki
si

) +
k−1∑

h=ki
si

A(k−h−1)BK(a∗
i ⊗ In)Ω

(h−ki
si

)

i θ̂i(ki
si

) = ei(k) + xi(k). (15)

Then, substituting (15) into (13) yields

ui(k) = K

N∑

j=1

aij [xi(k) + ei(k) − xj(k) − ej(k)] = K[lix(k) + lie(k)], (16)

where x(k) = [xT
1 (k), xT

2 (k), · · · , xT
N (k)]T, e(k) = [eT

1 (k), eT
2 (k), · · · , eT

N (k)]T, and li = [li1, li2,
· · · , liN ] represents the ith row of the Laplacian matrix L.

Substituting (16) into (1) yields

xi(k + 1) = (A + ΔA)xi(k) + BK[lix(k) + lie(k)]. (17)

Define δi(k) = xi(k)−x1(k), so it can be known that the multi-agent system (1) can achieve
consensus if limk→∞ ‖δi(k)‖ = 0 holds. Then it can be obtained based on (17) that

δi(k + 1) = xi(k + 1) − x1(k + 1) = (A + ΔA)δi(k) + BK(li − l1)[x(k) − e(k)]. (18)

Then (18) can be transformed into the following form.

δ(k + 1) = Π δ(k) + [(A22 + 1N−1a1 + M) ⊗ BK]e(k), (19)

where

Π = IN−1 ⊗ (A + ΔA) + (L22 + 1N−1a
∗
1) ⊗ BK, δ(k) = [δT

2 (k), δT
3 (k), · · · , δT

N(k)]T,

a∗
1 = [a12, a13, · · · , a1N ], ai = [ai1, ai2, · · · , aiN ], αi = ai1 + ai2 + · · · + aiN ,
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M =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

α1 0 · · · 0

α1 0 · · · 0
...

...
. . .

...

α1 0 · · · 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

∈ R(N−1)×N , L22 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

α2 −a23 · · · −a2N

−a32 α3 · · · −a3N

...
...

. . .
...

−aN2 −aN3 · · · αN

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

A22 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

−a21 −a22 · · · −a2N

−a31 −a32 · · · −a3N

...
...

...

−aN1 −aN2 · · · −aNN

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

For agent i, if its event is triggered, i.e., fi(k) ≥ 0, then its estimation error ei(k) will be
reset to 0. Therefore, before the event is triggered, fi(k) will not cross 0 and the estimation
error ei(k) satisfies

∥
∥ei(k)

∥
∥ ≤ cαk. And α satisfies 0 < α < 1, hence,

∥
∥e(k)

∥
∥ ≤ √

Ncαk

and limk→∞
∥
∥e(k)

∥
∥ = 0 holds. Therefore, the stability problem of the system (19) can be

transformed into the stability problem of the following system.

δ(k + 1) = [IN−1 ⊗ (A + ΔA) + (L22 + 1N−1a
∗
1) ⊗ BK]δ(k). (20)

Following Lemma 2.8, the invertible matrix can be taken as

S−1 =

⎡

⎣
1 0

−1N−1 IN−1

⎤

⎦ .

By the definition of the Laplacian matrix L, the following equation can be derived.

S−1LS =

⎡

⎣
0 −a∗

1

0 L22 + 1N−1a
∗
1

⎤

⎦ . (21)

It can be proved similar to Lemma 2.8 that the eigenvalues of the matrix Π are the same as
the ones of (A + ΔA) + λi(L)BK, i = 2, 3, · · · , N . Therefore, the stability of the system (20)
is equivalent to the stability of the following system.

δi(k + 1) = [A + ΔA + λi(L)BK]δi(k), i = 2, 3, · · · , N. (22)

Following Lemma 2.6, it can be seen that the system (22) with the parameter uncer-
tainty ΔA = DFE is quadratically stable for the admissible uncertainty F which satisfies
FTF ≤ σ2I if and only if A + λi(L)BK (i = 2, 3, · · · , N) are Schur stable and ‖E(zI − A −
λi(L)BK)−1D‖∞ < 1

σ holds, where σ > 0 is a constant. Therefore, the multi-agent system
(1) can achieve consensus under the event-triggered consensus protocol (13) and the trigger-
ing function (5) if and only if all the matrices A + λi(L)BK, i = 2, 3, · · · , N are Schur and
‖E(zI − A − λi(L)BK)−1D‖∞ < 1

σ holds.
Next, it will be proved that the method of choosing the feedback gain matrix K in this

paper can guarantee the quadratic stability of the system (22) with the admissible parameter
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uncertainty ΔA. In virtue of the discrete-time bounded real lemma in [29], it can be known
that the matrices A+λi(L)BK are Schur and ‖E(zI −A−λi(L)BK)−1D‖∞ < 1

σ holds if and
only if there exist matrices Pi > 0 (i = 2, 3, · · · , N) such that

ΞT
i PiΞi − Pi + ETE + σ2ΞT

i PiD(I − σ2DPiD
T)−1DPiΞi < 0, (23)

where Ξi = A + λi(L)BK.
Assumed that |λi(L)| ≤ κ, i = 2, 3, · · · , N , if there exists a matrix P > 0 such that the

following inequality holds for all |λ| ≤ κ, then (23) surely holds.

ΞTPΞ − P + ETE + σ2ΞTPD(I − σ2DPDT)−1DPΞ < 0, (24)

where Ξ = A + λBK.
It is clear that (24) can be rewritten as

ΞT(P−1 − σ2DDT)−1Ξ − P + ETE < 0. (25)

Define Q = P−1, then (25) can be rewritten into the following form based on the Schur
Complement Lemma in [30].

⎡

⎢
⎢
⎣

−Q−1 ΞT ET

Ξ Q − σ2DDT 0

E 0 −I

⎤

⎥
⎥
⎦ < 0. (26)

Then (26) can be decomposed into the following form by substituting Ξ = A + λBK.
⎡

⎢
⎢
⎣

−Q−1 AT ET

A Q − σ2DDT 0

E 0 −I

⎤

⎥
⎥
⎦ +

⎡

⎢
⎢
⎣

0

B

0

⎤

⎥
⎥
⎦λ

[
K 0 0

]

+

⎡

⎢
⎢
⎣

KT

0

0

⎤

⎥
⎥
⎦λ

[
0 BT 0

]
< 0. (27)

Following Lemma 2.7, it can be known that (27) holds for all |λ| ≤ κ if and only if there
exists a scalar γ can make the following inequality hold.

⎡

⎢
⎢
⎢
⎢
⎢
⎣

−Q−1 AT ET KT

A Q − σ2DDT + γκ2BBT 0 0

E 0 −I 0

K 0 0 −γI

⎤

⎥
⎥
⎥
⎥
⎥
⎦

< 0. (28)

Define R = KQ and Φ = diag(Q, I, I, I) > 0, then the (14) in Theorem 3.1 can be derived
by multiplying both sides of (28) by Φ. The proof is completed.
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4 Analysis of the Zeno-Like Behaviour

Zeno behaviour is a definition in hybrid systems which means that infinite discrete transitions
occur in a finite time interval. For the event-triggered consensus problem of continuous-time
multi-agent systems, Zeno behaviour means that there is no a positive lower bound on the
inter-event times[23]. However, Zeno-like behaviour is defined for the event-triggered consensus
problem of discrete-time multi-agent systems in the sense of sampling[26]. And Zeno-like be-
haviour is said to be nonexistent when all the inter-event times are ensured to be greater than
at least one sampling interval. Similar to [31], a sufficient condition for the nonexistence of the
Zeno-like behaviour is given in this paper.

Theorem 4.1 For the discrete-time multi-agent system (1) under the event-triggered con-
sensus protocol (13) and the triggering function (5), the Zeno-like behaviour is nonexistent if
the function (29) has a solution τ i

1 > 1 for 0 < aA + β < 1 or the function (30) has a solution
τ i
2 > 1 for aA + β > 1 for all the event-triggered instants ki

si
, where i = 1, 2, · · · , N .

(μi + ϕ1 + φi + ωi‖θ̂i(ki
1)‖)τ i

1 = cαki
1+τ i

1 , (29)

(μi + ϕ1(aA + β)ki
1+τ i

2 + φi + ωi‖θ̂i(ki
1)‖)τ i

2 = cαki
1+τ i

2 . (30)

Proof It is clear that

ei(k + 1) − ei(k) = A(k+1−ki
si

)xi(ki
si

) +
k∑

h=ki
si

A(k−h)Bûi(h) − xi(k + 1)

−A(k−ki
si

)xi(ki
si

) −
k−1∑

h=ki
si

A(k−h−1)Bûi(h) + xi(k)

= (A − In)
[

A(k−ki
si

)xi(ki
si

) +
k−1∑

h=ki
si

A(k−h−1)Bûi(h) − xi(k)
]

+Bûi(k) − Bui(k) − ΔAxi(k)

= (A − In)ei(k) + Bûi(k) − Bui(k) − ΔAxi(k). (31)

Then (16) can be rewritten as

ui(k) = K(l∗i ⊗ In)δ(k) + K(li ⊗ In)e(k), (32)

where l∗i = [li2, li3, · · · , liN ], li = [li1, li2, · · · , liN ].
Substituting (32) into (31) yields

ei(k + 1) − ei(k) =(A − In)ei(k) + Bûi(k)

− BK(l∗i ⊗ In)δ(k) − BK(li ⊗ In)e(k) − ΔAxi(k). (33)
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From (19), it can be derived that

δ(k) = Π δ(k − 1) + We(k − 1)

= Π 2δ(k − 2) + ΠWe(k − 2) + We(k − 1)

= Π kδ(0) +
k−1∑

s=0

Π k−s−1We(s), (34)

where Π = IN−1 ⊗ (A + ΔA) + (L22 + 1N−1a
∗
1) ⊗ BK, W = (A22 + 1N−1a1 + M) ⊗ BK.

Then it has that

‖δ(k)‖ = ‖Π kδ(0) +
k−1∑

s=0

Π k−s−1We(s)‖

≤ ‖Π k‖‖δ(0)‖ +
k−1∑

s=0

‖Π k−s−1‖‖W‖‖e(s)‖

≤ β1‖Π ‖k +
k−1∑

s=0

β2‖Π ‖k−s−1αs

= β1a
k
Π + β2(ak−1

Π + ak−2
Π α + · · · + αk−1)

≤ β1a
k
Π + β2

ak
Π + αk

α − aΠ

=
(

β1 +
β2

α − aΠ

)

ak
Π +

β2

α − aΠ
αk, (35)

where β1 = ‖δ(0)‖, β2 =
√

Nc‖W‖, aΠ = ‖IN−1 ⊗ A + (L22 + 1N−1a
∗
1) ⊗ BK‖ + σ‖D‖‖E‖.

Following (12), the following equation can be obtained.

‖Bûi(k)‖ = ‖BK(a∗
i ⊗ In)Ω

(k−ki
si

)

i θ̂i(ki
si

)‖ ≤ ‖BK‖‖a∗
i ⊗ In‖ak−ki

si

Ωi
‖θ̂i(ki

si
)‖, (36)

where aΩi = ‖Ωi‖.
Then (1) can be rewritten as

xi(k) = (A + ΔA)xi(k − 1) + Bui(k − 1)

= (A + ΔA)kxi(0) +
k−1∑

s=0

(A + ΔA)k−s−1Bui(s). (37)

From ΔA = DFE and FTF ≤ σ2I, it can be known that ‖F‖ ≤ σ, where σ > 0 is a
constant. Then it can be obtained based on (32) and (35).

‖ΔAxi(k)‖
≤‖ΔA‖‖xi(k)‖

≤‖D‖‖F‖‖E‖
(

‖(A + ΔA)kxi(0)‖ +
k−1∑

s=0

‖(A + ΔA)k−s−1Bui(s)‖
)
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≤σ‖D‖‖E‖(‖A‖+ ‖ΔA‖)k‖xi(0)‖ +
k−1∑

s=0

(‖A‖ + ‖ΔA‖)k−s−1‖Bui(s)‖

≤β(aA + β)k‖xi(0)‖ +
k−1∑

s=0

(aA + β)k−s−1‖Bui(s)‖

≤β‖xi(0)‖(aA + β)k +
k−1∑

s=0

(aA + β)k−s−1‖BK‖‖l∗i ⊗ In‖‖δ(s)‖

+
k−1∑

s=0

(aA + β)k−s−1‖BK‖‖li ⊗ In‖‖e(s)‖

≤η1(aA + β)k +
k−1∑

s=0

(aA + β)k−s−1η2a
s
Π

+
k−1∑

s=0

(aA + β)k−s−1η3α
s +

k−1∑

s=0

(aA + β)k−s−1η4α
s

≤η2
(aA + β)k + ak

Π

aΠ − (aA + β)
+ (η3 + η4)

(aA + β)k + αk

α − (aA + β)
+ η1(aA + β)k

=ϕ1(aA + β)k + ϕ2a
k
Π + ϕ3α

k, (38)

where

aA = ‖A‖, β = σ‖D‖‖E‖, η1 = β‖xi(0)‖, η2 = ‖BK‖‖l∗i ⊗ In‖
(

β1 +
β2

α − aΠ

)

,

η3 = ‖BK‖‖l∗i ⊗ In‖ β2

α − aΠ
, η4 = ‖BK‖‖li ⊗ In‖

√
Nc,

ϕ1 = η1 +
η2

aΠ − aA − β
+

η3 + η4

α − aA − β
, ϕ2 =

η2

aΠ − aA − β
, ϕ3 =

η3 + η4

α − aA − β
.

Then substituting (35), (36) and (38) into (33) yields

‖ei(k + 1) − ei(k)‖
= ‖(A − In)ei(k) + Bûi(k) − Bui(k) − ΔAxi(k)‖
≤ ‖A − In‖‖ei(k)‖ + ‖Bûi(k)‖ + ‖Bui(k)‖ + ‖ΔAxi(k)‖
≤ μiα

k + ϕ1(aA + β)k + φia
k
Π + ωia

k−ki
si

Ωi
‖θ̂i(ki

si
)‖. (39)

Define ki
1 and ki

2 as the two consecutive triggering instants of the agent i, and they satisfy
that 0 < ki

1 < ki
2 and ei(ki

1) = ei(ki
2) = 0. Therefore, it can be seen that ei(k) =

∑k−1
s=ki

1
[e(s +

1) − e(s)], then it has that

‖ei(k)‖ ≤
k−1∑

s=ki
1

‖e(s + 1) − e(s)‖. (40)

Then substituting (39) into (40) yields

‖ei(k)‖ ≤
k−1∑

s=ki
1

[
μiα

s + ϕ1(aA + β)s + φia
s
Π + ωia

s−ki
1

Ωi
‖θ̂i(ki

1)‖
]
. (41)
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From the triggering function (5), it can be seen that if the triggering function fi(k) ≥ 0,
i.e., ‖ei(k)‖ ≥ cαk, the event of agent i is triggered. Therefore, the events will not be triggered
before the following equality holds.

k−1∑

s=ki
1

[
μiα

s + ϕ1(aA + β)s + φia
s
Π + ωia

s−ki
1

Ωi
‖θ̂i(ki

1)‖
]

= cαk. (42)

From the previous sections, it can be known that the multi-agent system (1) can achieve
consensus if limk→∞ ‖δ(k)‖ = 0 holds, so the matrix Π is Schur based on (19). Furthermore, it
can be seen that Ωi (i = 1, 2, · · · , N) are also Schur from Lemma 2.8. Hence, 0 < aΠ , aΩi < 1.
And it has been defined that max |Re(λi(Π ))| < α < 1 in the triggering function (5). Define
τ i = ki

2 − ki
1 and consider the different possible values of aA + β, it can be sure that the value

of τ i must be greater than or equal to the solutions of the function, i.e., τ i ≥ τ i
1 or τ i ≥ τ i

2.
Therefore, the Zeno-like behaviour can be proved nonexistent if the function (29) has a solution
τ i
1 > 1 when 0 < aA + β < 1 or the function (29) has a solution τ i

2 > 1 when aA + β > 1 for all
the event-triggered instants ki

si
, where i = 1, 2, · · · , N . The proof is completed.

5 Simulation

In this section, a numerical example is given to illustrate the effectiveness of the method
proposed in this paper. Consider the discrete-time multi-agent system consists of six agents.
The dynamics model of agent i is described as the system (1) with

A =

⎡

⎣
0.6375 0.3625

−0.1813 1.1813

⎤

⎦ , B =

⎡

⎣
0.1625

−0.0187

⎤

⎦ , D =

⎡

⎣
0.2 0.1

−0.2 0.1

⎤

⎦ ,

F = 0.05, E =

⎡

⎣
0.2 −0.1

0 0.4

⎤

⎦ , ΔA = DFE =

⎡

⎣
0.002 0.001

−0.002 0.003

⎤

⎦ .

The communication topology among the six agents is described by a weighted graph as in
Figure 1. And the Laplacian matrix of the graph is

L =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

3 0 0 −1 −1 −1

−1 1 0 0 0 0

−1 −1 2 0 0 0

−1 0 0 1 0 0

0 0 0 −1 1 0

0 0 0 0 −1 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.
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Figure 1 Communication topology

Let the initial state of the system (1) be x1(0) = [1.4 0.3]T, x2(0) = [−0.5 1.2]T, x3(0) =
[0 1]T, x4(0) = [0.7 0]T, x5(0) = [0.8 − 1.5]T, x6(0) = [1.4 − 0.2]T. The feedback gain
matrix K is choosen as [−1 2]. And the other parameters are chosen as c = 0.5 and α = 0.92.
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Iteration k
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Figure 2 The state trajectories of all the agents

Figure 2 shows the state trajectories of six agents. It can be seen that the discrete-time
multi-agent system with the parameter uncertainty can achieve consensus. Therefore, the event-
triggered consensus protocol based on the predictive scheme proposed in this paper can solve
the consensus problem of multi-agent systems effectively. And in Figure 3, the estimation error
of each agent and the threshold of errors are presented. It can be seen that when the estimation
error reaches the threshold, the event is triggered, then the estimation error is reset to zero.
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Figure 3 The measurement errors and the threshold of errors

6 Conclusion

This paper has investigated the event-triggered consensus for discrete-time multi-agent sys-
tems with the parameter uncertainty based on a predictive control scheme. An event-triggered
protocol has been designed for the discrete-time multi-agent systems with the parameter un-
certainty to achieve consensus. The consensus protocol proposed in this paper only requires
each agent to observe its own state to determine the event-triggered instants. And a necessary
and sufficient condition for the solvability of the consensus problem has been proposed and a
method to design the feedback gain matrix has been presented in terms of the linear matrix
inequality. And a sufficient condition for the nonexistence of the Zeno-like behaviour has been
also derived. At last, a numerical example has been given to illustrate that the event-triggered
consensus protocol proposed in this paper can make the multi-agent system with the parameter
uncertainty achieve consensus.
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Appendix

Proof of Lemma 2.8

Proof The invertible matrix can be taken as S−1
i =

[
PT

i QT
i

]T, where Pi = [1, 0, 0, · · · , 0] ∈
R1×N , Qi ∈ R(N−1)×N is the matrice which is derived by inserting −1N−1 before the ith column
of the identity matrix IN−1, i.e.,

Qi =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 · · · −1 · · · 0 0

0 1 · · · −1 · · · 0 0
...

...
. . .

...
. . .

...
...

0 0 · · · −1 · · · 1 0

0 0 · · · −1 · · · 0 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Following the definition of the Laplacian matrix L, it can be derived that

S−1
i LSi =

⎡

⎣
0 li1

0 di + 1N−1a
∗
i −A∗

i

⎤

⎦ , (43)

where li1 = [l11, l12, · · · , l1(i−1), l1(i+1), · · · , l1N ].
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Assumed that λ1(L) = 0, λ2(L), · · · , λN (L) are the eigenvalues of the Laplacian matrix L.
From (42), it can be seen that λs(L), s = 2, 3, · · · , N are the eigenvalues of di + 1N−1a

∗
i −A∗

i .
Therefore, there exists an invertible matrix Ti such that di +1N−1a

∗
i −A∗

i is similar to a Jordan
canonical matrix.

T−1
i (di + 1N−1a

∗
i −A∗

i )Ti = Ji = diag(J i
1, J

i
2, · · · , J i

mi
), (44)

where J i
n, n = 1, 2, · · · , mi are upper triangular Jordan blocks. And the principal diagonal

elements of J i
n are λs(L), s = 2, 3, · · · , N .

Therefore, it has that

(Ti ⊗ In)−1Υ(Ti ⊗ In) = IN−1 ⊗ A + Ji ⊗ BK, (45)

where Υ = IN−1⊗A+(di +1N−1a
∗
i −A∗

i )⊗BK, and IN−1⊗A+Ji⊗BK is an upper triangular
block matrix.

According to the properties of Kronecker product[32], it can be known that the eigenvalues
of IN−1 ⊗A + Ji ⊗BK are given by the eigenvalues of A + λs(L)BK, s = 2, 3, · · · , N , i.e., the
eigenvalues of the matrix Ωi are the same as the ones of A + λs(L)BK, s = 2, 3, · · · , N . As
a result, if all the matrices A + λs(L)BK, s = 2, 3, · · · , N) are Schur, the matrix Ωi is surely
Schur. The proof is completed.


