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Abstract The models of competitive neural network (CNN) was in recent past proposed to describe

the dynamics of cortical cognitive maps with unsupervised synaptic modifications, where there are

two types of memories: Long-term memories (LTM) and short-term memories (STM), LTM presents

unsupervised and slow synaptic modifications and STM characterize the fast neural activity. This

paper is concerned with a class of neutral type CNN’s with mixed delay and D operator. By employing

the appropriate differential inequality theory, some sufficient conditions are given to ensure that all

solutions of the model converge exponentially to zero vector. Finally, an illustrative example is also

given at the end of this paper to show the effectiveness of the proposed results.

Keywords Competitive neural networks, D operator, exponential convergence, neutral type delay.

1 Introduction

During the last few decades, some famous neural networks (NN’s) models, such as Cohen
Grossberg neural networks (CGNN’s), Hopfield neural networks (HNN’s), bidirectional associa-
tive memory neural networks (BAM), shunting inhibitory cellular neural networks (SICNN’s)
and competitive neural networks (CNN’s) have received attention due to their wide range of
applications including static image processing, combinatorial optimization, fault diagnosis, asso-
ciative memory, pattern recognition, signal processing and several other scientific areas[1–12]. Es-
pecially, CNN’s as one of the popular artificial NNs were investigated by many researchers[13–25].
As is well known, in this model, there are two-types of state variables: The short-term memory
variables (STM) and long-term memory (LTM). Thus, there are two time scales in these NNs,
one corresponds to the fast changes of the NN’s states and the other corresponds to the slow
changes of the synapses by external stimuli[13].
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On other hand, time delays can be encountered in the implementations of NNs, and the
existence of time delays occurs in the response and communication time of neurons, and its
existence may lead to instability (or) bad performance of systems. So, it is important to consider
the dynamics of NNs with delay[8]. In particular, a type of time delay, namely neutral type time
delays is one of many delay types and is objectively existent. Up to now, neutral type NNs can
be classified as non-operator-based neutral functional differential equations[8–12, 26, 27, 43] or D-
operator-based neutral functional differential equations[28, 30]. In general, neutral type NNs with
D operator have more realistic significance than non-operator-based ones in most applications
of NNs dynamics. This is to say, it is necessary to consider the effect of neutral type NNs with D

operator when studying the stability of state estimation of NNs. Up to date, a few researchers
have introduced the neutral type NNs with D operator[29–34]. For example, in [29] Aiping Zhang
investigated the almost periodic solutions of SICNNs with neutral type proportional delays
and D operators by using Lyapunov-Krasovskii functional method and differential inequality
techniques. In [30], the authors investigated the existence and global exponential stability of
pseudo almost periodic solutions of a class of neutral type cellular neural networks with D

operator by using Lyapunov functional method and differential inequality techniques. In [31],
the authors studied the global exponential convergence of neutral type SICNNs with D operator
by using differential inequality techniques. Further, in [32] by using the Banach fixed point
theorem and applying inequality techniques, some new sufficient conditions are obtained for
the existence and exponential stability of the unique anti-periodic solution. In [33], the global
exponential convergence of solutions for cellular neural networks with neutral type delays and
D operator had been studied by differential inequality techniques. In [34] Zhang focused on the
existence and global exponential stability of pseudo almost periodic solutions for neutral type
shunting inhibitory cellular neural networks with D operator.

In addition, the global exponential convergence behavior of solutions plays a fundamental
role in characterizing the behavior of NNs since the exponential convergence rate can be esti-
mated (we refer the reader to [35, 36]). Therefore, it is worthwhile to investigate the global
exponential convergence of neutral type CNN’s with mixed delay and D operator. However,
until now, the results on global exponential convergence of addressed system have not been
obtained. The main contributions of this paper can be summarized in the following:

1) It is the first time to focus on global exponential convergence of neutral-type CNN’s with
mixed delay and D operator;

2) the neutral type competitive neural networks with D operator and mixed delay in this
paper are more general than those of numerous previous works[13–25, 37];

3) we establish some new sufficient conditions which guarantee the global exponential con-
vergence of neutral type CNN’s with mixed delay and D operator;

4) the achieved results in this paper are original and complement to the ones obtained
previously in [38].

The approach used in these papers consists of two steps.

♣ Description of the Model and Preliminaries.
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♣ Global exponential convergence results.

The rest of the paper is organized as follows. In Section 2, models and preliminaries are
presented that will be used later. In Section 3 applying the differential inequality theory and
global exponential convergence theory, we will obtain some sufficient conditions which ensure
the global exponential convergence of neutral-type CNNs with mixed delay and D operator.
In Section 4, numerical simulations are given to illustrate the effectiveness of our theoretical
results. In Section 5, we give a brief conclusion.

2 Description of the Model and Preliminaries

Consider the following competitive with neutral type delays and D operator:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

STM : ε
[
xi(t) − pi(t)xi(t − αi(t))

]′ = −ci(t)xi(t) +
n∑

j=1

aij(t)fj(xj(t))

+
n∑

j=1

bij(t)fj(xj(t − τij(t))

+
n∑

j=1

dij(t)
∫ +∞

0

Nij(u)fj(xj(t − u))du

+Bi(t)
n∑

j=1

mij(t)yj + Ii(t),

LTM :
[
mij(t) − qi(t)mij(t − βi(t))

]′
= −ei(t)mij(t) + fi(xi(t)) + Ji(t),

(1)

where n ≥ 2, t ≥ t0 i, j = 1, 2 · · · , n, xi(·) is the neuron currrent activity level; mij(·) is the
synaptic efficiency; ci(·), ei(·) > 0 are the rate of decay; pi(·), qi(·), aij(·) and bij(·) represent
the connection weights; dij(·) is the distributed delayed connection weight of the unit j on the
unit i; Nij(t) is the delay kernel at time t; yj(·) is the constant external stimulus; fj(xj(·))
is the output of neurons; Ii(t), Ji(t) denote the external inputs on the ith neuron at time t;
Bi(·) > 0 is the strength of the external stimulus; τij(·) ≥ 0, αi(·) ≥ 0 and βi(·) ≥ 0 correspond
to the transmission delays; ε is a fast time scale decided by STM and ε > 0.

In this paper, taking ε = 1 for convenience. After setting

Si(t) =
n∑

j=1

yjmij(t) = mi(t)Ty,
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where y = (y1, y2, · · · , yn)T, mi(t) = (mi1(t), mi2(t), · · · , min(t))T, then (1) can be written as
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

STM :
[
xi(t) − pi(t)xi(t − αi(t))

]′ = −ci(t)xi(t) +
n∑

j=1

aij(t)fj(xj(t))

+
n∑

j=1

bij(t)fj(xj(t − τij(t)))

+
n∑

j=1

dij(t)
∫ +∞

0

Nij(u)fj(xj(t − u))du

+Bi(t)Si(t) + Ii(t),

LTM :
[
Si(t) − qi(t)Si(t − βi(t))

]′ = −ei(t)Si(t) + |y|2fi(xi(t)) + Ji(t),

(2)

where i, j = 1, 2 · · · , n, k ∈ Z+, |y|2 = y2
1 + y2

2 + · · ·+ y2
n is a constant without loss of generality,

the input stimulus y is assumed to be a normalized vector of unit magnitude |y|2 = 1, then (2)
are simplified as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

STM :
[
xi(t) − pi(t)xi(t − αi(t))

]′ = −ci(t)xi(t) +
n∑

j=1

aij(t)fj(xj(t))

+
n∑

j=1

bij(t)fj(xj(t − τij(t)))

+
n∑

j=1

dij(t)
∫ +∞

0

Nij(u)fj(xj(t − u))du

+Bi(t)Si(t) + Ii(t),

LTM :
[
Si(t) − qi(t)Si(t − βi(t))

]′ = −ei(t)Si(t) + fi(xi(t)) + Ji(t).

(3)

The initial conditions of the system (3) are given by

xi(s) = ϕi(s), s ∈] −∞, 0],

Si(s) = φi(s), s ∈] −∞, 0], i = 1, 2, · · · , n, (4)

where ϕi(·), φi(·) are the real-valued continuous function defined on ] −∞, 0].
For convenience, we introduce the following notations:

g+ = sup
t∈[0,+∞)

|g(t)|, g− = inf
t∈[0,+∞)

|g(t)|, ‖x‖ = max
1≤i≤n

|xi|,

where g is a bounded and continuous function defined on [0, +∞). We denote R
n the set of all

n-dimensional real vector, R = R
1 the set of real numbers.

Let x = (x1, x2, · · · , xn)T ∈ R
n, S = (S1, S2, · · · , Sn)T ∈ R

n, |x|, |S| are the absolute-value
vector given by |x| = (|x1|, |x2|, · · · , |xn|)T, |S| = (|S1|, |S2|, · · · , |Sn|)T.

Throughout the remainder of this paper, we also assume that the following conditions hold:
(H1) For each i = 1, 2, · · · , n, there exist two bounded and continuous functions:

c∗i , e∗i : R → (0, +∞),



GLOBAL EXPONENTIAL CONVERGENCE 1789

and two positive constants ki, ki, such that

e−
∫

t
s

ci(θ)dθ ≤ kie−
∫

t
s

c∗i (θ)dθ, e−
∫

t
s

ei(θ)dθ ≤ kie−
∫

t
s

e∗i (θ)dθ,

for all t, s ∈ R and t − s ≥ 0.
(H2) For each j = 1, 2, · · · , n, there exists a positive constant Lj such that

|fj(u)| ≤ Lj |u|.

(H3) The delay kernel Nij : [0, +∞) → R is continuous, and |Nij(t)|eωt is integrable on
[0, +∞) for ω > 0, and i, j = 1, 2, · · · , n.

(H4) For i, j = 1, 2, · · · , n, there exist positive constants ξ1, ξ2, · · · , ξn and λ0 such that

• sup
t≥0

{

− c∗i (t) + ki

[
1

1 − p+
i

|ci(t)pi(t)| + ξ−1
i

n∑

j=1

|aij(t)|Ljξj
1

1 − p+
j

+ξ−1
i

n∑

j=1

|bij(t)|Ljξj
1

1 − p+
j

+ ξ−1
i

n∑

j=1

|dij(t)|
∫ +∞

0

|Nij(u)|duLjξj
1

1 − p+
j

+|Bi(s)| 1
1 − q+

i

]}

< 0,

• sup
t≥0

{

− e∗i (t) + ki

[
1

1 − q+
i

|ei(s)qi(s)| + Li
1

1 − p+
i

]}

< 0,

• Ii(t) = O(e−λ0t), as t → +∞,

• Ji(t) = O(e−λ0t) as t → +∞.

Remark 2.1 It is well known that the global exponential convergence plays a key role
in characterizing the dynamical behavior of neutral type CNNs (3) since the exponential con-
vergence rate can be unveiled. In particular, assume that the leakage term coefficient function
ci(·) and ei(·) are not oscillating, i.e.,

⎧
⎪⎨

⎪⎩

inf
t∈R

ci(t) > 0,

inf
t∈R

ei(t) > 0, i = 1, 2, · · · , n,
(5)

some sufficient conditions ensuring the global exponential convergence for all solutions of NNs
have been established in [39, 40].

On the other hand, as pointed out in [41], equations with oscillating coefficients appear in
linearizations of population dynamics models with seasonal fluctuations, where during some
seasons the death or harvesting rates may be greater than the birth rate. Clearly (5) is a
special case of (H1) with inft∈R ci(t) = c∗i and inft∈R ei(t) = e∗i , which means that our results
are essentially new and more meaningful.
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3 Global Exponential Convergence Results

In this section, we will establish a sufficient condition which ensures that all solutions of
system (3) converge exponentially to zero vector.

Theorem 3.1 If Assumptions (H1)–(H4) hold. Then, for each solution x(t), S(t) of the
system (3), there exists a constant λ ∈ (0, λ0) such that

xi(t) = O(e−λt), Si(t) = O(e−λt) as t → +∞,

where i ∈ {1, 2, · · · , n} and xi(t), Si(t) are an arbitrary state vector of (3), (4).

Proof Let (x1(t), x2(t), · · · , xn(t), S1(t), S2(t), · · · , Sn(t))T be an arbitrary solution of the
system (3) associated with the initial condition (4). Set, for all i ∈ {1, 2, · · · , n},

vi(t) = ξ−1
i xi(t), Vi(t) = vi(t) − pi(t)vi(t − αi(t)),

ui(t) = ξ−1
i Si(t), Ui(t) = ui(t) − qi(t)ui(t − βi(t)). (6)

Then the system (3) can be rewritten as the following:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

STM : V ′
i (t) = [vi(t) − pi(t)vi(t − αi(t))]′

= −ci(t)Vi(t) − ci(t)pi(t)vi(t − αi(t)) + ξ−1
i

n∑

j=1

aij(t)fj(xj(t))

+ξ−1
i

n∑

j=1

bij(t)fj(xj(t − τij(t)))

+ξ−1
i

n∑

j=1

dij(t)
∫ +∞

0

Nij(u)fj(xj(t − u))du + ξ−1
i Bi(t)Si(t) + ξ−1

i Ii(t),

LTM : U ′
i(t) = [ui(t) − qi(t)ui(t − βi(t))]′

= −ei(t)Ui(t) − ei(t)qi(t)ui(t − βi(t)) + ξ−1
i fi(xi(t)) + ξ−1

i Ji(t).

(7)

Set

Γ i(σ) = sup
t>0

{

σ − c∗i (t) + ki

[
eσα+

i

1 − p+
i eσα+

i

|ci(s)pi(s)| + ξ−1
i

n∑

j=1

|aij(s)|Ljξj
1

1 − p+
j eσα+

j

+ξ−1
i

n∑

j=1

|bij(s)|Ljξj
eστ+

ij

1 − p+
j eσα+

j

+ ξ−1
i

n∑

j=1

|dij(s)|
∫ +∞

0

|Nij(u)|eσudu
Ljξj

1 − p+
j eσα+

j

+|Bi(s)| 1

1 − q+
i eσβ+

i

+ σ

]}

,

Υi(σ) = sup
t>0

{

σ − e∗i (t) + ki

[
eσβ+

i

1 − q+
i eσβ+

i

|ei(s)qi(s) + Li
1

1 − p+
i eσα+

i

+ σ

]}

.
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Then by (H4), and the continuity of Γi(σ), Υi(σ), we obtain

Γi(0) = sup
t>0

{

− c∗i (t) + ki

[
1

1 − p+
i

|ci(s)pi(s)| + ξ−1
i

n∑

j=1

|aij(s)|Ljξj
1

1 − p+
j

+ξ−1
i

n∑

j=1

|bij(s)|Ljξj
1

1 − p+
j

+ ξ−1
i

n∑

j=1

|dij(s)|
∫ +∞

0

|Nij(u)|duLjξj
1

1 − p+
j

+|Bi(s)| 1
1 − q+

i

]}

< 0,

Υi(0) = sup
t>0

{

− e∗i (t) + ki

[
1

1 − q+
i

|ei(s)qi(s)| + Li
1

1 − p+
i

]}

< 0,

and we can choose a constant

0 < λ ∈ min
{

ω, λ0, min
1≤i≤n

inf
t≥0

c∗i (t), min
1≤i≤n

inf
t≥0

e∗i (t)
}

such that 1 − p+
j eλα+

j > 0, 1 − q+
j eλβ+

j > 0 and

Γi(λ) = sup
t>0

{

λ − c∗i (t) + ki

[
eλα+

i

1 − p+
i eλα+

i

|ci(s)pi(s)| + ξ−1
i

n∑

j=1

|aij(s)|Ljξj
1

1 − p+
j eλα+

j

+ξ−1
i

n∑

j=1

|bij(s)|Ljξj
eλτ+

ij

1 − p+
j eλα+

j

+ |Bi(s)| 1

1 − q+
i eλβ+

i

+ξ−1
i

n∑

j=1

|dij(s)|
∫ +∞

0

|Nij(u)|eλuduLjξj
1

1 − p+
j eλα+

j

+ λ

]}

< 0, (8)

Υi(λ) = sup
t>0

{

λ − e∗i (t) + ki

[
eλβ+

i

1 − q+
i eλβ+

i

|ei(s)qi(s)| + Li
1

1 − p+
i eλα+

i

+ λ

]}

< 0. (9)

Let V (t) = (V1(t), V2(t), · · · , Vn(t)), U(t) = (U1(t), U2(t), · · · , Un(t)),

‖Φ‖1 = max{‖ϕ‖ξ, ‖φ‖ξ},

where

‖ϕ‖ξ = sup
t≤0

max
1≤i≤n

ξ−1
i |ϕi(t) − pi(t)ϕi(t − αi(t))|, (10)

‖φ‖ξ = sup
t≤0

max
1≤i≤n

ξ−1
i |φi(t) − qi(t)φi(t − βi(t))|. (11)

For all ε > 0, we have

‖V (0)‖ < (‖Φ‖1 + ε), (12)

‖U(0)‖ < (‖Φ‖1 + ε), (13)

and

‖V (t)‖ < (‖Φ‖1 + ε)e−λt < K(‖Φ‖1 + ε)e−λt, (14)

‖U(t)‖ < (‖Φ‖1 + ε)e−λt < K(‖Φ‖1 + ε)e−λt, (15)
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with K is a sufficiently great constant such that

|ξ−1
i Ii(t)| < λK(‖Φ‖1 + ε)e−λ(t−t0), (16)

|ξ−1
i Ji(t)| < λK(‖Φ‖1 + ε)e−λ(t−t0), for all t ≥ 0. (17)

In what follows, we will show

‖V (t)‖ < K(‖Φ‖1 + ε)e−λt, (18)

‖U(t)‖ < K(‖Φ‖1 + ε)e−λt, for all t > 0. (19)

If Equations (18) and (19) are not true, without loss of generality, there must exist i ∈
{1, 2, · · · , n} and t1 > 0 such that

|Vi(t1)| = ‖V (t1)‖ = K(‖Φ‖1 + ε)e−λt1 , (20)

|Ui(t1)| = ‖U(t1)‖ = K(‖Φ‖1 + ε)e−λt1 , (21)

and

‖V (t)‖ < K(‖Φ‖1 + ε)e−λt, (22)

‖U(t)‖ < K(‖Φ‖1 + ε)e−λt, (23)

for all t ∈ (−∞, t1].
Notice that

eλθ|yj(θ)| ≤ eλθ|vj(θ) − pj(θ)vj(θ − αj(θ))| + eλθ|pj(θ)vj(θ − αj(θ))|
≤ eλθ|Vj(θ)| + p+

j eλα+
j eλ(θ−αj(θ))|vj(θ − αj(θ))|

≤ K(‖Φ‖1 + ε) + p+
j eλα+

j sup
s∈(−∞,t]

eλs|vj(s)|, (24)

eλθ|uj(θ)| ≤ eλθ|uj(θ) − qj(θ)uj(θ − βj(θ))| + eλθ|qj(θ)uj(θ − βj(θ))|
≤ K(‖Φ‖1 + ε) + q+

j eλβ+
j sup

s∈(−∞,t]

eλs|uj(s)|, (25)

and

eλt|vj(t)| ≤ sup
s∈(−∞,t]

eλs|vj(s)| ≤ K((‖Φ‖1 + ε))

1 − p+
j eλα+

j

, (26)

eλt|uj(t)| ≤ sup
s∈(−∞,t]

eλs|uj(s)| ≤ K((‖Φ‖1 + ε))

1 − q+
j eλβ+

j

, (27)

where θ ∈ (−∞, t), t ∈ (−∞, t1), j = 1, 2, · · · , n.
Furthermore,

V ′
i (s) + ci(s)Vi(s) = −ci(s)pi(s)vi(s − αi(s)) + ξ−1

i

n∑

j=1

aij(s)fj(xj(s))

+ξ−1
i

n∑

j=1

bij(s)fj(xj(s − τij(s))) + ξ−1
i

n∑

j=1

dij(s)
∫ +∞

0

Nij(u)

×fj(xj(s − u))du + ξ−1
i Bi(s)Si(s) + ξ−1

i Ii(s), (28)

U ′
i(s) + ei(s)Ui(s) = −ei(s)qi(s)ui(s − βi(s)) + ξ−1

i fi(xi(s)) + ξ−1
i Ji(s), (29)
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with s ∈ [0, t], t ∈ [0, t1], i ∈ {1, 2, · · · , n}.
Multiplying both sides of (28) (resp (29)) by e

∫
s
0 ci(u)du (resp e

∫
s
0 ei(u)du) and integrating it

on [0, t], we have

Vi(t) = Vi(0)e−
∫ t
0 ci(θ)dv +

∫ t

0

e−
∫ t

s
ci(u)du

[

− ci(s)pi(s)vi(s − αi(s))

+ξ−1
i

n∑

j=1

aij(s)fj(xj(s)) + ξ−1
i

n∑

j=1

bij(s)fj(xj(s − τij(s)))

+ξ−1
i

n∑

j=1

dij(s)
∫ +∞

0

Nij(u)fj(xj(s − u))du + ξ−1
i Bi(s)Si(s) + ξ−1

i Ii(s)
]

ds, (30)

Ui(t) = Ui(0)e−
∫ t
0 ei(u)du

+
∫ t

0

e−
∫ t

s
ei(u)du

[

−ei(s)qi(s)ui(s−βi(s))+ξ−1
i fi(xi(s))+ξ−1

i Ji(s)
]

ds, t ∈ [0, t1]. (31)

Thus, combining (8), (12), (16), (22) and (30), we have

|Vi(t1)| =
∣
∣
∣
∣Vi(0)e−

∫ t1
t0

ci(u)du +
∫ t1

0

e−
∫ t1

s
ci(u)du

[

− ci(s)pi(s)vi(s − αi(s))

+ξ−1
i

n∑

j=1

aij(s)fj(xj(s)) + ξ−1
i

n∑

j=1

bij(s)fj(xj(s − τij(s)))

+ξ−1
i

n∑

j=1

dij(s)
∫ +∞

0

Nij(u)fj(xj(s − u))du + ξ−1
i Bi(s)Si(s) + ξ−1

i Ii(s)
]

ds

∣
∣
∣
∣

≤ |Vi(0)|kie−
∫ t1
0 c∗i (u)du +

∫ t1

0

e−
∫ t1

s
c∗i (u)duki

∣
∣
∣
∣ − ci(s)pi(s)vi(s − αi(s))

+ξ−1
i

n∑

j=1

aij(s)fj(xj(s)) + ξ−1
i

n∑

j=1

bij(s)fj(xj(s − τij(s)))

+ξ−1
i

n∑

j=1

dij(s)
∫ +∞

0

Nij(u)fj(xj(s − u))du + ξ−1
i Bi(s)Si(s) + ξ−1

i Ii(s)ds

∣
∣
∣
∣

≤ (‖Φ‖1 + ε)kie−
∫ t1
0 c∗i (u)du

+
∫ t1

0

e−
∫ t1

s
c∗i (u)duki

[

|ci(s)||pi(s)yi(s − αi(s))| + ξ−1
i

n∑

j=1

|aij(s)|Ljξj |yj(s)|

+ξ−1
i

n∑

j=1

|bij(s)|Ljξj |yj(s − τij(s))|

+ξ−1
i

n∑

j=1

|dij(s)|
∫ +∞

0

|Nij(u)|Ljξj |yj(s − u)|du

+ξ−1
i |Bi(s)|ξi|ui(s)| + ξ−1

i |Ii(s)|ds

]
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≤ (‖Φ‖1 + ε)e−λt1kie−
∫ t1
0 [c∗i (u)−λ]du +

∫ t1

0

e−
∫

t1
s

[c∗i (u)−λ]duki

[
eλα+

i |ci(s)pi(s)|
1 − p+

i eλα+
i

+ξ−1
i

n∑

j=1

|aij(s)|Ljξj
1

1 − p+
j eλα+

j

+ ξ−1
i

n∑

j=1

|bij(s)|Ljξj
eλτ+

ij

1 − p+
j eλα+

j

+ξ−1
i

n∑

j=1

|dij(s)|
∫ +∞

0

|Nij(u)|eλuduLjξj
1

1 − p+
j eλα+

j

+|Bi(s)| 1

1 − q+
i eλβ+

i

+ λ

]

dsK(‖Φ‖1 + ε)e−λt1

≤ (‖Φ‖1 + ε)e−λt1kie−
∫ t1
0 [c∗i (u)−λ]du

+
∫ t1

0

e−
∫ t1

s
[c∗i (u)−λ]du

[
c∗i (s) − λ

]
dsK(‖Φ‖1 + ε)e−λt1

= K(‖Φ‖1 + ε)e−λt1

[(
ki

K
− 1

)

e−
∫ t1
0 [c∗i (u)−λ]du + 1

]

< K(‖Φ‖1 + ε)e−λt1 , (32)

which contradicts (20).
Similarly, combining (9), (13), (17), (23) and (31) we get

|Ui(t1)| =
∣
∣
∣
∣Ui(0)e−

∫ t
0 ei(u)du +

∫ t

0

e−
∫ t

s
ei(u)du

×[ − ei(s)qi(s)ui(s − βi(s)) + ξ−1
i fi(xi(s)) + ξ−1

i Ji(s)
]
ds

∣
∣
∣
∣

≤ |Ui(0)ki|e−
∫ t
0 e∗

i (u)du +
∫ t

0

e−
∫ t

s
e∗

i (u)duki

×
[

|ei(s)||qi(s)||ui(s − βi(s))| + ξ−1
i Liξi|yi(s)| + ξ−1

i |Ji(s)|
]

ds

∣
∣
∣
∣

≤ (‖Φ‖1 + ε)e−λt1kie−
∫

t
0 [e∗

i (u)−λ]du

+
∫ t

0

e−
∫ t

s
[e∗

i (u)−λ]duki

[
eλβ+

i

1 − p+
i eλβ+

i

|ei(s)qi(s)| + Li
1

1 − p+
i eλα+

i

+ λ

]

ds

×K(‖Φ‖1 + ε)e−λt1

≤ (‖Φ‖1 + ε)e−λt1kie−
∫

t
0 [e∗

i (u)−λ]du +
∫ t

0

e−
∫

t
s
[e∗

i (u)−λ]du
[
e∗i (s) − λ

]
ds

×K(‖Φ‖1 + ε)e−λt1

= (‖Φ‖1 + ε)e−λt1

[(
ki

K
− 1

)

e−
∫

t
0 [e∗

i (u)−λ]du + 1
]

< K(‖Φ‖1 + ε)e−λt1 , (33)

which contradicts (21).
Therefore, (18) and (19) hold. Letting ε → 0+, one has from (18) and (19) that

‖V (t)‖ ≤ K‖Φ‖1e−λt, (34)

‖U(t)‖ ≤ K‖Φ‖1e−λt, for all t > 0. (35)
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Then, arguing as in the proof of (24)–(27), in view of (34) and (35), one can show

eλt|vj(t)| ≤ sup
s∈(−∞,t]

eλs|vj(s)| ≤ K‖Φ‖1

1 − p+
j eλα+

j

,

eλt|uj(t)| ≤ sup
s∈(−∞,t]

eλs|uj(s)| ≤ K‖Φ‖1

1 − q+
j eλβ+

j

,

and

|vj(t)| ≤ K‖Φ‖1

1 − p+
j eλα+

j

e−λt,

|uj(t)| ≤ K‖Φ‖1

1 − q+
j eλβ+

j

e−λt, ∀t > 0, j = 1, 2, · · · , n.

Thus, we have xi(t) = O(e−λt), Si(t) = O(e−λt) as t → +∞. The proof of Theorem 3.1 is
completed.

Remark 3.2 In the following, we summarize the process steps for obtaining the global
exponential convergence of the solution of the system (3). For establishing some sufficient
conditions of global exponential stability in this paper, we only employ the method of proof by
contradiction rather than traditional Lyapunov functional approach.

Process steps for obtaining main results:
Step 1 By using calculus basic formula,

vi(t) = ξ−1
i xi(t), Vi(t) = vi(t) − pi(t)vi(t − αi(t)),

ui(t) = ξ−1
i Si(t), Ui(t) = ui(t) − qi(t)ui(t − βi(t)).

Step 2 We define the norm

‖Φ‖1 = max{‖ϕ‖ξ, ‖φ‖ξ}.
Step 3 We will show for all t > 0

‖V (t)‖ < K(‖Φ‖1 + ε)e−λt, ‖U(t)‖ < K(‖Φ‖1 + ε)e−λt.

Step 4 We assume that Step 3 is not true, i.e., there must exist i ∈ {1, 2, · · · , n} and t1 > 0
such that

|Vi(t1)| = ‖V (t1)‖ = K(‖Φ‖1 + ε)e−λt1 ,

|Ui(t1)| = ‖U(t1)‖ = K(‖Φ‖1 + ε)e−λt1 ,

and
‖V (t)‖ < K(‖Φ‖1 + ε)e−λt, ‖U(t)‖ < K(‖Φ‖1 + ε)e−λt,

for all t ∈ (−∞, t1].
Step 5 Using (H1)–(H4) we have

|V (t1)| < K(‖Φ‖1 + ε)e−λt1 , |U(t1)| < K(‖Φ‖1 + ε)e−λt1 .

We find a contradiction with Step 4.
Step 6 We have xi(t) = O(e−λt), Si(t) = O(e−λt) as t → +∞.
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4 Example and Remarks

In this section, we give an example to illustrate the results obtained in the previous sections.
Considering the following neutral-type competitive neural networks with multi-proportional

delays and leakage delays
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

STM : [x1(t) − p1(t)x1(t − α1(t))]′ = −c1(t)x1(t) +
2∑

j=1

a1j(t)fj(xj(t))

+
2∑

j=1

b1j(t)fj(xj(t − τ1j(t)))

+
n∑

j=1

d1j(t)
∫ +∞

0

N1j(u)fj(xj(t − u))du

+B1(t)S1(t) + I1(t),

STM : [x2(t) − p2(t)x2(t − α2(t))]′ = −c2(t)x2(t) +
2∑

j=1

a2j(t)fj(xj(t))

+
2∑

j=1

b2j(t)fj(xj(t − τ2j(t)))

+
n∑

j=1

d2j(t)
∫ +∞

0

N2j(u)fj(xj(t − u))du

+B2(t)S2(t) + I2(t),

LTM : [S1(t) − q1(t)S1(t − β1(t))]′ = −e1(t)S1(t) + f1(x1(t)) + J1(t),

LTM : [S2(t) − q2(t)S2(t − β2(t))]′ = −e2(t)S1(t) + f2(x2(t)) + J2(t),

(36)

where fi(u) = 1
20 arctan(u) ⇒ Li = 1

20 , α1(u) = β1(u) = 1
2 | cos(u)|, α2(u) = β2(u) = 1

2 | sin(u)|,
p1(u) = q1(u) = 1

100 sin(u), p2(u) = q2(u) = 1
100 cos(u), c1(t) = e1(t) = 1

10 (1 + 3
2 sin(t)),

c2(t) = e2(t) = 1
10 (1 + 3

2 cos(t)), τij(t) = 1
2 | sin(t)|, Nij(t) = 1

10e−2t, B1(t) = 0.01 sin(t), B2(t) =
0.02 cos(t),

(aij(t))1≤i,j≤2 =

⎛

⎝
0.02 sin(t) 0.02 cos(t)

0.01 cos(t) 0.01 sin(t)

⎞

⎠ , (bij(t))1≤i,j≤2 =

⎛

⎝
0.01 cos(t) 0.015 sin(t)

0.02 sin(t) 0.01 cos(t)

⎞

⎠ ,

(dij(t))1≤i,j≤2 =

⎛

⎝
0.01 sin(t) 0.01 cos(t)

0.01 cos(t) 0.03 sin(t)

⎞

⎠ , (Ii(t))1≤i≤2 =

⎛

⎝
e−2t sin4(t)

e−2t cos4(t)

⎞

⎠ ,

(Ji(t))1≤i≤2 =

⎛

⎝
e−2t sin4(t)

e−2t cos4(t)

⎞

⎠ .

Let ω = 1, ξ1 = ξ2 = 1, c∗i (t) = e∗i (t) = 1
10 , ki = ki = e

3
10 , e−

∫
t
s

ci(u)du ≤ e
3
10 e−(t−s),

e−
∫ t

s
ei(u)du ≤ e

3
10 e−(t−s), i = 1, 2, t ≥ s.
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Then, for λ0 = 2, we have

Γ1(0) = sup
t≥0

{

− c∗1(t)

+k1

[
1

1 − p+
1

|c1(t)p1(t)| + ξ−1
1

2∑

j=1

|a1j(t)|Ljξj
1

1 − p+
j

+ξ−1
1

2∑

j=1

|bij(t)|Ljξj
1

1 − p+
j

+ ξ−1
1

2∑

j=1

|d1j(t)|
∫ +∞

0

|N1j(u)|duLjξj
1

1 − p+
j

+|B1(t)| 1
1 − q+

1

]}

= −0.0827 < 0,

Γ2(0) = sup
t≥t0

{

− c∗2(t)

+k2

[
1

1 − p+
2

|c2(t)p2(t)| + ξ−1
2

2∑

j=1

|a2j(t)|Ljξj
1

1 − p+
j

+ξ−1
2

2∑

j=1

|b2j(t)|Ljξj
1

1 − p+
j

+ ξ−1
i

2∑

j=1

|d2j(t)|
∫ +∞

0

|N2j(u)|duLjξj
1

1 − p+
j

+|B2(t)| 1
1 − q+

2

]}

= −0.0690 < 0,

Υ1(0) = sup
t≥0

{

− e∗1(t) + k1

[
1

1 − p+
1

|e1(s)q1(s)| + L1
1

1 − p+
1

]}

= −0.0284 < 0,

Υ1(0) = sup
t≥t0

{

− e∗2(t) + k2

[
1

1 − p+
2

|e2(s)q2(s)| + L2
1

1 − p+
2

]}

= −0.0284 < 0.

This implies that all the conditions in Theorem 3.1 are satisfied, then all solution of the sys-
tem (3) converge exponentially to the zero vector (0, 0)T. The state trajectories of the system (3)
with t ∈ [0, 150] and t ∈ [0, 1000] are illustrated in Figure 1 and Figure 2, respectively. Figure 3
and Figure 4 depict the time responses of state variables x1(t), x2(t), S1(t) and S2(t) with
different initial conditions.
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Figure 1 Transient responses of the state x1, x2, S1 and S2 of the system (36) for t ∈ [0, 150]
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Figure 2 Transient responses of the state x1, x2, S1 and S2 of the system (36) for t ∈ [0, 1000]
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Figure 3 Transient response of state variables x1(t) and x2(t)
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Figure 4 Transient response of state variables S1(t) and S2(t)

Remark 4.1 To the best of our knowledge, the exponential convergence for the neutral-
type (CNNs) with D operator has not been considered before. Thus, all the results in the
references in [13–25, 37] cannot be applicable to prove that all the solutions of (1) converge
exponentially to the zero vector (0, 0)T. This implies that the results of this paper are essentially
new and have wider application range of the proposed approach.

Remark 4.2 In example above, replacing c1(t) = e1(t) = 1
10 (1+ 3

2 sin(t)), c2(t) = e2(t) =
1
10 (1 + 3

2 cos(t)) with c1(t) = e1(t) = −4, c2(t) = e2(t) = −5, respectively, it is easily to see
that (H1)–(H4) are not satisfied. Some numerical simulations in Figure 5 illustrate that the
exponential convergence does not exist. This demonstrates the validity of the theoretical result
of this paper.
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Figure 5 Transient responses of the state x1, x2, S1 and S2 of the system (36) for (x(0), S(0))T =

(300, 200,−300,−200)T with c1(t) = e1(t) = −4, c2(t) = e2(t) = −5

Remark 4.3 In this paper, a new exponential function inequality has been added to deal
with the case that leakage term coefficient function is oscillating (see (H1)), which is different
from the results in [42]. In addition, some numerical simulations are introduced to illustrate
that the exponential convergence of addressed system does not exist when the condition is not
verified, the validity of the conclusion of this article is demonstrated from the other point of
view.

Remark 4.4 In [13], the authors developed the stability problem for competitive neural
networks with multi-proportional delays. Further, the authors in [25] investigated the existence
and global exponential stability analysis of almost periodic solution for delayed competitive
neural networks with discontinuous activations. In [42], the authors studied the existence and
the global exponential stability of almost periodic solutions of a class of neutral type competitive
neural networks with mixed time-varying delays and leakage delays on time scales. However,
in this paper, we provide new criteria concerning the global exponential convergence of neutral
type competitive neural networks with mixed delay and D operator. The method of this paper
is to construct a delay differential inequality rather than a Lyapunov functional, whose results
can be easily checked. Until now, there are no results on the global exponential convergence
CNNs with mixed delay and D operator, which means that our results are essentially new and
more meaningful.

5 Conclusion

The global exponential convergence plays an important role in designing neural networks
to serve mankind. Thus, many researchers have extensively focused on this question recently.
In this paper, neutral-type (CNNs) with D operator have been studied. By employing the
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differential inequality theory, some sufficient conditions for the global exponential convergence
have been established. The method affords a possible method to analyze the global exponential
stability of anti-periodic and pseudo almost periodic solutions for neutral-type (CNNs) with D

operator. The corresponding results will appear in the near future.
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