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Abstract This paper studies the general decay synchronization (GDS) of a class of recurrent neural

networks (RNNs) with general activation functions and mixed time delays. By constructing suitable

Lyapunov-Krasovskii functionals and employing useful inequality techniques, some sufficient conditions

on the GDS of considered RNNs are established via a type of nonlinear control. In addition, one example

with numerical simulations is presented to illustrate the obtained theoretical results.

Keywords General activation functions, general decay synchronization, mixed time delay, recurrent

neural network.

1 Introduction

As is well known, in recent years neural networks have received much attentions due to their
wide applications in a variety of areas such as signal processing, automatic control engineering,
associative memories, parallel computation, combinatorial optimization and pattern recogni-
tion, and so on[1–4]. In particular, the recurrent neural networks (RNNs) systems are of great
interest among the scholars. For example, in the past decades, there is a mass of literature
concerned with the dynamical behaviors of recurrent neural networks have been studied by
many researchers[5–15]. However, in mathematical modeling of real world problems, time delays
are frequently encountered as a result of the inherent communication time between neurons and
the finite switching speed of amplifiers. In particular, in hardware implementation, time delays
usually causes oscillation, instability, divergence, chaos, or other bad performances of neural
networks[16]. Thus, the study of dynamic behaviors for delayed recurrent neural networks has
been one of the hot research topics in the past few decades[5–16].

It is worth noting that, a very important problem in neural networks system is the synchro-
nization. Especially, when we investigate the dynamical behaviors of chaotic neural networks,
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the synchronization can play an extremely vital role. The so-called synchronization is that the
orbits of two chaotic systems which start from different initial conditions gradually converge to
the same equilibrium point[17]. In recent years, many researchers have focused on the synchro-
nization for delayed neural networks (NNs) and obtained most significant results[12–16, 18–21].
Moreover, lots of synchronization results have been obtained under different synchronization
methods, such as linear matrix inequality (LMI) technique[22], matrix measure strategy and Lya-
punov approach[23, 24], Lyapunov theory and fractional-order differential inequalities[25], gener-
alized Halanay inequalities and matrix measure approaches[26], Lyapunov function approach[27],
and so on.

On the other hand, in the process of investigating neural networks the estimate of the con-
vergent rate of synchronization is a very interesting and useful for studying the synchronization
of chaotic systems. However, in some cases, the convergence rate of the synchronization can
not be shown or it is very difficult to estimate. Recently, Wang, et al.[28, 29] investigated the
synchronization problem for a classes of chaotic NNs with discontinuous and continuous acti-
vations by introducing new concept of synchronization, namely general decay synchronization
(GDS). This motivates us to consider a new type of convergence rate, such as convergence with
general decay. Moreover, studies on the general decay synchronization for recurrent neural
networks with both time-varying and distributed delays are fairly rare. Therefore, based on
the above analysis and reasons, in this paper we study the following n-dimensional RNNs with
both time-varying and distributed delays

ẋi(t) = −cixi(t) +
n∑

j=1

aijfj(xj(t)) +
n∑

j=1

bijgj(xj(t− τj(t)))

+
n∑

j=1

dij

∫ t

t−σj(t)

hj(xj(s))ds + Ii, (1)

where i ∈ I � {1, 2, · · · , n}, n ≥ 2 denotes the number of neurons in the neural networks; xi(t)
corresponds to the state variable of the ith unit at time t; ci > 0 denotes the rate with which
the ith neuron resets its potential to the resting state when isolated from the other neuron and
inputs; aij , bij and dij are denote the connection weights between the ith neuron and the jth
neuron at time t; fi(·), gi(·) and hi(·) are the nonlinear activation functions, Ii is the external
input vector. τi(t) and σi(t) are the transmission time-varying delays and satisfy 0 ≤ τi(t) ≤ τi

and 0 ≤ σi(t) ≤ σi.
The main purpose of the paper is by constructing suitable Lyapunov-Krasovskii functionals

and applying the method given in [28, 29] to establish some new sufficient conditions on the
general decay synchronization for System (1).

2 Preliminaries

In this paper, we always use I � {1, 2, · · · , n} and R+ = [0,+∞), unless otherwise stated.
The initial conditions associated with the system (1) are given by

xi(s) = ϕi(s), s ∈ [−τ, 0], i = 1, 2, · · · , n,
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where τ = maxj∈I {τj , σj} and ϕ(s) = (ϕ1(s), ϕ2(s), · · · , ϕn(s)) ∈ C([−τ, 0], Rn), which de-
notes the Banach space of all continuous functions mapping [−τ, 0] into Rn with norm defined
by

‖ϕ‖ = sup
s∈[−τ,0]

‖ϕ(s)‖

with ‖ϕ(s)‖ = maxi∈I |ϕi(s)|.
Throughout this paper, we assume that the following assumptions are satisfied.
H1 Activation functions fj(u), gj(u) and hj(u) are continuous and there exist nonnegative

constants Lj , Hj,Kj , Nj,Mj , Oj ≥ 0, such that for any v1, v2 ∈ R,

|fj(v1) − fj(v2)| ≤ Lj |v1 − v2| +Nj, |gj(v1) − gj(v2)| ≤ Hj |v1 − v2| +Mj,

|hj(v1) − hj(v2)| ≤ Kj|v1 − v2| +Oj .

H2 Time-varying delays τj(t) and σj(t) are differentiable, and there exist real numbers
0 ≤ ζj ≤ 1 and 0 ≤ γj ≤ 1

2 , such that for any t ∈ R+

0 ≤ τ̇j(t) ≤ ζj , 0 ≤ σ̇j(t) ≤ γj .

In the paper, we consider the system (1) as the drive system, the response system is given
as follows

ẏi(t) = −ciyi(t) +
n∑

j=1

aijfj(yj(t)) +
n∑

j=1

bijgj(yj(t− τj(t)))

+
n∑

j=1

dij

∫ t

t−σj(t)

hj(yj(s))ds + ui + Ii, (2)

where ui(t) is the controller to be designed.
Let ei(t) = yi(t) − xi(t), then from (1) and (2), the error dynamical system is expressed as

ėi(t) = −ciei(t) +
n∑

j=1

aij f̃j(ej(t)) +
n∑

j=1

bij g̃j (ej(t− τj(t)))

+
n∑

j=1

dij

∫ t

t−σj(t)

h̃j(ej(s))ds + ui, (3)

where f̃j(ej(t)) = fj(yj(t)) − fj(xj(t)).
Now, we will give the definitions of ψ-type function and GDS.
Definition 2.1 (see [28, 29]) A function ψ : R+ → [1,+∞) is said to be ψ-type function

if it satisfies the following conditions
1) It is differentiable and nondecreasing;
2) ψ(0) = 1 and ψ(+∞) = +∞;
3) ψ̃(t) = ψ̇(t)/ψ(t) is nondecreasing and ψ∗ = supt≥0 ψ̃(t) < +∞, where ψ̇(t) is the time

derivative of ψ(t);
4) For any t, s ≥ 0, ψ(t+ s) ≤ ψ(t)ψ(s).
It is not difficult to check that functions ψ(t) = eαt and ψ(t) = (1+ t)α for any α > 0 satisfy

the above four conditions, thus can be seen as ψ-type functions.
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Definition 2.2 (see [28, 29]) The drive-response systems (1) and (2) are said to be general
decay synchronized if there exists a constant ε > 0 and a ψ-type function ψ such that for any
solutions x(t) = (x1(t), x2(t), · · · , xn(t)) of System (1) and y(t) = (y1(t), y2(t), · · · , yn(t)) of
System (2), one has

lim sup
t→+∞

log ‖y(t) − x(t)‖
logψ(t)

≤ ε,

where ε > 0 can be seen the convergence rate as synchronization error approaches zero.
H3 For function ψ(t) given in Definition 2.1, there exist a function 
(t) ∈ C(R,R+) and a

constant δ such that for any t ≥ 0

ψ̃(t) ≤ 1, sup
t∈[0,+∞)

∫ t

0

ψδ(s)
(s)ds < +∞. (4)

Now, we present a useful lemma. This lemma is essential to our later study.

Lemma 2.1 (see [28, 29]) Under Assumption H3, assume that the synchronization error
e(t) = y(t) − x(t) of driver-response systems (1) and (2) satisfy the differential equation ė(t) =
g(t, et), where et = e(t + s) for s ∈ [−τ, 0], function g(t, et) is locally bounded. If there exist
a differentiable functional V (t, et) : R+ × C → R+, and positive constants λ1, λ2 such that for
any (t, et) ∈ R+ × C

(λ1‖e(t)‖)2 ≤ V (t, et),
dV (t, et)

dt

∣∣∣∣
(3)

≤ −δV (t, et) + λ2
(t), (5)

where x(t) and y(t) are solutions of the systems (1) and (2) respectively, δ > 0 and 
(t) are
defined in H3. Then the driver-response systems (1) and (2) are general decay synchronized in
the sense of Definition 2.2, and the convergence rate is δ/2.

3 Main Results

In this section, we will obtain some sufficient conditions to insure the GDS of the systems (1)
and (2). First, under Assumption H3 designing the controller ui(t) of response system (2) as
follows:

ui(t) = −αisign(ei(t)) − βi‖e(t)‖ei(t)
ei(t) + 
(t)

, i ∈ I , (6)

where βi and αi for i ∈ I are control gains satisfying

Ei � ci + βi −
n∑

j=1

(
Aji +

Bji

(1 − ζi)
+ τiBji + 2σiDji +

1
2
σ2

iDji

)
> 0,

αi −
n∑

j=1

(
Ni|aji| + τiMi|bji| + σiOi|dji|) > 0,

(7)

where Aij = |aij |Lj , Bij = |bij |Hj and Dij = |dij |Kj.

Then based on the nonlinear controller (6), the following theorem can be obtained.
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Theorem 3.1 Suppose H1–H3 hold, then the response network (2) can be general decay
synchronized with the drive network (1) under the nonlinear controller (6) if, the control gains
βi and αi satisfy the inequality (7).

Proof Firstly, we construct the following Lyapunov-Krasovskii functional:

V1(t) =
n∑

i=1

|ei(t)| +
n∑

i=1

n∑

j=1

∫ t

t−τj(t)

Bij

(1 − ζj)
|ej(s)|ds

+
n∑

i=1

n∑

j=1

2Dij

∫ 0

−σj(t)

∫ t

t+θ

|ej(s)|dsdθ. (8)

Calculating the derivative of V1(t) along the system (3), we get

V̇1(t) =
n∑

i=1

sign(ei(t))

{
− ciei(t) +

n∑

j=1

aij f̃j(ej(t)) +
n∑

j=1

bij g̃j (ej(t− τj(t)))

+
n∑

j=1

dij

∫ t

t−σj(t)

h̃j (ej(s)) ds− αisign(ei(t)) − βi‖e(t)‖ei(t)
ei(t) + 
(t)

}

+
n∑

i=1

n∑

j=1

Bij

(
1

(1 − ζj)
|ej(t)| − (1 − τ̇j(t))

(1 − ζj)
|ej(t− τij(t))|

)

+
n∑

i=1

n∑

j=1

2Dij

[∫ 0

−σj(t)

(|ej(t)| − |ej(t+ θ)|)dθ + σ̇j(t)
∫ t

t−σj(t)

|ej(s)|ds
]

≤
n∑

i=1

{
− ci|ei(t)| +

n∑

j=1

|aij ||f̃j(ej(t))| +
n∑

j=1

|bij ||g̃j (ej(t− τj(t))) |

+
n∑

j=1

|dij |
∫ t

t−σj(t)

|h̃j(ej(s))|ds − αi − βi‖e(t)‖|ei(t)|
|ei(t)| + 
(t)

+
n∑

j=1

Bij

(1 − ζj)
|ej(t)| −

n∑

j=1

Bij |ej(t− τj(t))| +
n∑

j=1

2Dijσj(t)|ej(t)|

−
n∑

j=1

2Dij

∫ t

t−σj(t)

|ej(s)|ds+
n∑

j=1

2Dij σ̇j(t)
∫ t

t−σj(t)

|ej(s)|ds
}
. (9)

Now, using H1, we have

n∑

i=1

n∑

j=1

|aij ||f̃j(ej(t))| ≤
n∑

i=1

n∑

j=1

|aij |(Lj|ej(t)| +Nj)

=
n∑

i=1

n∑

j=1

Aij |ej(t)| +
n∑

i=1

n∑

j=1

Nj |aij |. (10)
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Similarly, we have

n∑

i=1

n∑

j=1

|bij ||g̃j(ej(t− τj(t)))| ≤
n∑

i=1

n∑

j=1

|bij |(Hj |ej(t− τj(t))| +Mj)

=
n∑

i=1

n∑

j=1

Bij |ej(t− τj(t))| +
n∑

i=1

n∑

j=1

|bij |Mj (11)

and
n∑

i=1

n∑

j=1

|dij |
∫ t

t−σj(t)

|h̃j(ej(s))|ds ≤
n∑

i=1

n∑

j=1

Dij

∫ t

t−σj(t)

|ej(s)|ds+
n∑

i=1

n∑

j=1

|dij |σjOj . (12)

Using H2 and from (7), (9)–(12), we have

V̇1(t) ≤
n∑

i=1

{
− ci|ei(t)| +

n∑

j=1

Aij |ej(t)| +
n∑

j=1

Nj |aij | +
n∑

j=1

Bij |ej(t− τj(t))|

+
n∑

j=1

|bij |Mj +
n∑

j=1

Dij

∫ t

t−σj(t)

|ej(s)|ds+
n∑

j=1

|dij |σjOj − αi − βi‖e(t)‖|ei(t)|
‖e(t)‖ + 
(t)

+
n∑

j=1

Bij

(1 − ζj)
|ej(t)| −

n∑

j=1

Bij |ej(t− τij(t))| +
n∑

j=1

2Dijσj(t)|ej(t)|

−
n∑

j=1

2Dij

∫ t

t−σj(t)

|ej(s)|ds+
n∑

j=1

Dij

∫ t

t−σj(t)

|ej(s)|ds
}

=
n∑

i=1

{
−

[
ci + βi −

n∑

j=1

(
Aji +

Bji

(1 − ζi)
+ 2σiDji

)]
|ej(t)| −

[
αi −

n∑

j=1

(
Ni|aji|

+Mi|bji| + σiOi|dji|
]

+ βi|ei(t)| − βi‖e(t)‖|ei(t)|
‖e(t)‖ + 
(t)

}

≤
n∑

i=1

−
[
ci + βi −

n∑

j=1

(
Aji +

Bji

(1 − ζi)
+ 2σiDji

)]|ej(t)| +
n∑

i=1

βi
(t)|ei(t)|
‖e(t)‖ + 
(t)

. (13)

Next, we construct the following Lyapunov-Krasovskii functional:

V2(t) =
n∑

i=1

n∑

j=1

Bij

∫ 0

−τj

∫ t

t+s

|ej(ε)|dεds+
n∑

i=1

n∑

j=1

Dij

∫ 0

−σj

∫ 0

s

∫ t

t+θ

|ej(ε)|dεdθds.

Calculating the derivative of V2(t), we get

V̇2(t) =
n∑

i=1

n∑

j=1

[
Bij

(
τj |ej(t)| −

∫ t

t−τj

|ej(s)|ds
)

+Dij

∫ 0

−σj

∫ 0

s

(|ej(t)| − |ej(t+ θ)|)dθds
]

≤
n∑

i=1

n∑

j=1

(
τjBij +

1
2
σ2

jDij

)
|ej(t)| −A, (14)
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where

A =
n∑

i=1

n∑

j=1

[
Bij

∫ t

t+s

|ej(s)|ds+Dij

∫ 0

−σj

∫ t

t+s

|ej(ω)|dωds
]
.

Finally, we construct the following Lyapunov-Krasovskii functional:

V (t) = V1(t) + V2(t).

Then, there exists a scalar χ > 1 such that
n∑

i=1

|ei(t)| ≤ V (t) ≤ χ

n∑

i=1

|ei(t)| + χ

E
A, (15)

where E = mini∈I {Ei}.
Calculating the derivative of V (t) and from (13)–(14), we get

V̇ (t) ≤
n∑

i=1

−
[
ci + βi −

n∑

j=1

(
Aji +

Bji

(1 − ζi)
+ τiBji + 2σiDji +

1
2
σ2

iDji

)]
|ej(t)|

+
n∑

i=1

βi
(t)‖ei(t)‖
‖e(t)‖ + 
(t)

−A

≤
n∑

i=1

−Ei|ei(s)| + max
i∈I

{βi} ‖e(t)‖
(t)
‖e(t)‖ + 
(t)

−A. (16)

Let β = maxi∈I {βi} > 0 and using the inequality 0 ≤ ab/(a+ b) ≤ a for any a > 0, b > 0,
we have

V̇ (t) ≤
n∑

i=1

−Ei|ei(t)| + β
(t) −A. (17)

Now taking a small enough δ such that δχ < E, then from the inequalities (15) and (17), we
get

d

dt
V (t) + δV (t) ≤

n∑

i=1

−Ei|ei(t)| + β
(t) −A+ δ

(
χ

n∑

i=1

|ei(t)| + χ

E
A

)

≤(δχ− E)
n∑

i=1

|ei(t)| +
(
δχ

E
− 1

)
A+ β
(t)

≤β
(t),
which means that

V̇ (t) + δV (t) ≤ β
(t). (18)

Then, from Lemma 2, the drive-response systems (1) and (2) achieve GDS under the adaptive
nonlinear controller (6). The convergence rate of e(t) approaching zero is δ/2. The proof is
completed.

Remark 3.2 (see [29]) The function ψ is used as the decay function, so ψ-type stability
is also said to be stability with general decay rate. When ψ(t) = eαt and ψ(t) = (1 + t)α for
any α > 0, ψ-type stability may be specialized as exponential synchronization and polynomial
synchronization.
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If, in H1 we assume that the activation functions fj(u), gj(u), hj(u) are globally Lipschitz,
i.e., the constants Nj = Mj = Oj = 0, then H1 turns to

H1: fj(u), gj(u), hj(u) are globally Lipschitz continuous, i.e., there exist constants Lj , Hj ,

Kj > 0, such that

|fj(v1)−fj(v2)| ≤ Lj|v1−v2|, |gj(v1)−gj(v2)| ≤ Hj |v1−v2|, |hj(v1)−hj(v2)| ≤ Kj|v1−v2|,

where v1, v2 ∈ R.
In addition, the controller (6) in the system (2) becomes

ui(t) = −βi‖e(t)‖ei(t)
ei(t) + 
(t)

, i ∈ I . (19)

Then from Theorem 3.1, we have the following corollary.

Corollary 3.3 Suppose H1,H2,H3 hold, then the response network (2) can be general
decay synchronized with the drive network (1) under the nonlinear controller (19) if, the control
gains βi satisfy the following inequality:

ci + βi −
n∑

j=1

(
Aji +

Bji

(1 − ζi)
+ τiBji + 2σiDji +

1
2
σ2

iDji

)
> 0.

In System (1), if bij = 0, then the system (1) is reduced to the following form n-dimensional
RNNs with distributed time delays

ẋi(t) = −cixi(t) +
n∑

j=1

aijfj(xj(t)) +
n∑

j=1

dij

∫ t

t−σj(t)

hj(xj(s))ds+ Ii. (20)

Accordingly, the response system (2) is degenerated to

ẏi(t) = −ciyi(t) +
n∑

j=1

aijfj(yj(t)) +
n∑

j=1

dij

∫ t

t−σj(t)

hj(yj(s))ds+ Ii + ui(t). (21)

Accordingly, the assumptions H1 and H1 turn to
H∗

1 For each j ∈ I, the activation functions fj(u) and hj(u) are continuous and there exist
constants Lj ,Kj, Nj , Oj > 0, such that

|fj(v1) − fj(v2)| ≤ Lj |v1 − v2| +Nj, |hj(v1) − hj(v2)| ≤ Kj |v1 − v2| +Oj , v1, v2 ∈ R.

H
∗
1 For each j ∈ I, the activation functions fj(u), hj(u) are globally Lipschitz continuous,

i.e., there exist constants Lj,Kj > 0, such that

|fj(v1) − fj(v2)| ≤ Lj |v1 − v2|, |hj(v1) − hj(v2)| ≤ Kj |v1 − v2|,

where v1, v2 ∈ R.
Then also from Theorem 3.1, we have the following two corollaries.
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Corollary 3.4 Suppose H∗
1,H2 and H3 hold, then the response network (21) can be general

decay synchronized with the drive network (20) under the nonlinear controller (6) if, the control
gains βi and αi satisfy the following inequalities:

ci + βi −
n∑

j=1

(
Aji + 2σiDji +

1
2
σ2

iDji

)
> 0,

αi −
n∑

j=1

(
Ni|aji| + σiOi|dji|) > 0.

(22)

Corollary 3.5 Suppose H
∗
1,H2 and H3 hold, then the response network (21) can be general

decay synchronized with the drive network (20) under the nonlinear controller (19) if, the control
gains βi satisfy the following inequality:

ci + βi −
n∑

j=1

(
Aji + 2σiDji +

1
2
σ2

iDji

)
> 0. (23)

4 Numerical Simulations

In this section, one example is given to illustrate the effectiveness of our results obtained in
this paper.

Example 4.1 For n = 2, we consider the following chaotic recurrent neural network system
with time-varying delays

ẋi(t) = −cixi(t) +
2∑

j=1

aijfj(xj(t)) +
2∑

j=1

bijgj(xj(t− τj(t)))

+
2∑

j=1

dij

∫ t

t−σj(t)

hj(xj(s))ds + Ii, (24)

where f1(u) = f2(u) = tanh(u), g1(u) = g2(u) = tanh(u) − sin(u), h1(u) = h2(u) = tanh(u) −
cos(u). The parameters of System (24) are assumed that c1 = c2 = 1, a11 = 2, a12 =
−0.11, a21 = −2.5, a22 = 3.2, b11 = −1.6, b12 = −0.1, b21 = 0.18, b22 = −2.4, d11 =
0.2, d12 = 0, d21 = −0.2, d22 = 0.15, τj(t) = et/(1 + et), σj(t) = et/(5 + et) and Ii = 0 for
i = 1, 2.

The corresponding response system is described by

ẏi(t) = −ciyi(t) +
2∑

j=1

aijfj(yj(t)) +
2∑

j=1

bijgj(yj(t− τj(t)))

+
2∑

j=1

dij

∫ t

t−σj(t)

hj(yj(s))ds + Ii + ui(t), (25)

where ci, aij , bij , dij , fj(t), gj(t), hj(t) τj(t), σj(t) and Ii are the same as in System (24).
The numerical simulations of System (24) and System (25) with initial values x1(s) = 0.2,

x2(s) = 0.5 and y1(s) = −1.3, y2(s) = 2.1 for s ∈ [−1, 0] are represented in Figures 1 and 2, we
can see that System (24) and System (25) have chaotic attractors.
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Figure 1 The chaotic behavior of delayed recurrent neural network system (24) and (25)
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Figure 2 The chaotic behavior of delayed recurrent neural network system (24) and (25)

The nonlinear controller ui(t) is designed as follows

ui(t) = −αisign(ei(t)) − βi‖e(t)‖ei(t)
ei(t) + 
(t)

, i ∈ I , (26)

where ei(t) = yi(t) − xi(t) for i = 1, 2.
It is not difficult to estimate that Lj = Hj = Kj = 1, Nj = 0.05,Mj = 0.04, Oj = 0.035

and τj = σj = 1. Thus, the assumptions H1 and H2 are satisfied. Letting 
(t) = e−0.1t, ψ(t) =
et and choosing α1 = 0.5, α2 = 0.6, β1 = 7, β2 = 5. Then, the assumption H3 and the
inequality (7) of Theorem 3.1 are satisfied. Therefore, according to Theorem 3.1, the drive-
response systems (24) and (25) can be achieved GDS under the controller (26). The time
evolution of synchronization errors between systems (24) and (25) are demonstrated in Figure 3.
The synchronization curves between the systems (24) and (25) are shown in Figure 4.
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Figure 3 The evaluation of synchronization error e1(t) and e2(t)
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Figure 4 Synchronization curves of x1(t), y1(t) and x2(t), y2(t)
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