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Abstract This paper is concerned with an interval general Cohen-Grossberg bidirectional associative

memory neural networks with mixed delays. Under proper conditions, the authors studied the existence,

the uniqueness and the global exponential stability of almost automorphic solutions for the suggested

system. The proposed method was mainly based on the exponential dichotomy of linear differential

equation, the Banach’s fixed point principle and the differential inequality techniques. The authors

illustrate with an example to demonstrate the effectiveness of the proposed findings.

Keywords Almost automorphic solution, bi-almost automorphic function, global exponential stabil-

ity, interval general CGBAM neural networks.

1 Introduction

Artificial neural networks (ANNs) has been widely investigated (see [1–18]). In 1983, Cohen
and Grossberg proposed one of the most popular ANNs called Cohen-Grossberg neural network
(see [19]). The study of dynamic behaviors of Cohen-Grossberg neural networks (CGNNs) has
quickly attracted many attention and new interesting results have been obtained: In [20],
Yang studied the existence and the global exponential stability of periodic solution for Cohen-
Grossberg shunting inhibitory cellular neural networks with delays and impulses. In [21], Xu,
et al. investigated the existence and the uniqueness of almost automorphic solutions of CGNNs
with delays. Paper [22], dealt with the existence and the exponential stability of pseudo almost
automorphic solutions for Cohen-Grossberg neural networks with mixed delays. In [3], the
asymptotic almost automorphic solution for impulsive Cohen-Grossberg neural networks with
mixed delays is analysed. In 1988, Kosko proposed bidirectional associative memories (BAMs)
as typical models of ANNs (see [23]). BAMs has been proved to have widespread applications
in various fields such medical image edge detection, medical event detection in electronic health
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records, diagnosis prediction in health care, pattern recognition and robotics (see [24–26]).
These applications heavily depend on the dynamic behaviors of BAMs that is why extensive
results have been proved: In [27], Xu and Zhang studied the existence and the global exponential
stability of anti-periodic solutions for BAM neural networks with inertial term and delay. Then,
in [28], they studied the existence and the exponentially stability of anti-periodic solutions for
neutral BAM neural networks with time-varying delays in the leakage terms. In [29], Yang, et al.
investigated the almost automorphic solution for neutral type high-order Hopfield BAM neural
networks with time-varying leakage delays on time scales. Paper [5], dealt with the existence
and the global exponential stability of pseudo almost periodic solution for neutral delay BAM
neural networks with time-varying delay in leakage terms. Paper [4] focused on the analyse of
the (μ, ν)-pseudo-almost automorphic solutions for high-order Hopfield bidirectional associative
memory neural networks. The reader can also see papers [30–32], and so on. The combination
of the two previous models gives Cohen-Grossberg Bidirectional Associative Memory neural
networks (CGBAMs) which is our central model in this work.

In fact, time delay exists in practical dynamical systems, including ANNs, because neurons
cannot respond instantaneously (see [33, 34]). It can changes their dynamical behavior (see [1–
11, 35]). In this work, we look at two different types of delays (time-varying delays, distributed
delays) in the analysis of our main model.

Indeed, several real phenomena can be more or less periodic. Therefore, studying these
phenomena requires concepts that go beyond the concept of periodicity. From a mathematical
point of view, many mathematicians have proposed more appropriate classes of functions to
explain complex behaviors such as the class of Almost Automorphic functions (AA). This class
was introduced in the literature by Bochner, et al. (see [36, 37]). AA functions became an
attractive topic in the qualitative theory of differential equations because of their applications
in physics, mathematical biology, control theory, and other related areas. In neural network
theory, an important question can be asked: What will be the nature of output when all the
parameters are almost automorphic? A lot of research work has been published to answer this
question. However, interval general CGBAMs with almost automorphic connection weights have
never been investigated. This is a very challenging problem. Motivated by the aforementioned
discussion, in this paper we try to establish the dynamics of the system defined by the following
equations:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋi(t) = −α1
i (xi(t))

{

a1
i (xi(t)) −

p∑

j=1

b1ji(t)f
1
j

[
xj(t− τji), yj(t− υji)

]

−
p∑

j=1

d1
ji(t)

∫ t

−∞
Kji(t− s)g1

j

[
xj(s), yj(s)

]
ds− Ii(t)

}

, 1 ≤ i ≤ n,

ẏj(t) = −α2
j(xi(t))

{

a2
j(yj(t)) −

n∑

i=1

b2ij(t)f
2
i

[
xi(t− ζij), yi(t− ϑij)

]

−
n∑

i=1

d2
ij(t)

∫ t

−∞
Gij(t− s)g2

i

[
xi(s), yi(s)

]
ds− Jj(t)

}

, 1 ≤ j ≤ p,

(1)

where i = 1, 2, · · · , n, j = 1, 2, · · · , p (n and p are the number of neurons in layers); xi(·), yj(·)
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are the activations of the ith and jth neurons; α1
i (·), α2

j (·) represent the amplification func-
tions; a1

i (·), a2
j(·) represent the rate with which the ith and jth neuron will reset their potential

to the resting state in isolation when they are disconnected from the network and the exter-
nal inputs; b1ji(·), b2ji(·), d1

ji(·), d1
ij(·) are the connection weights, which denote the strengths

of connectivity between the cells j and i; τji, υji, ζij , ϑij > 0 are the constant time delay;
f1
j (·, ·), f2

i (·, ·), g1
j (·, ·), g1

j (·, ·) are the activation functions; Kji(·), Gij(·) are the transmis-
sion delay kernels; Ii(·), Jj(·) denote the ith and jth component of an external input source
introduced from outside the network to the cell i and j respectively.

The system (1) is supplement with initial value given by:
⎧
⎨

⎩

xi(s) = φi(s), s ∈ (−∞, 0],

yj(s) = ψj(s), s ∈ (−∞, 0],
(2)

where φi(·), ψi(·) are continuous functions on (−∞, 0].

Remark 1.1 Our motivation for this letter stems from the fact that the system in Equa-
tion (1) can exist in many applications of science or engineering. The success of these applica-
tions relies on understanding the underlying dynamical behavior of the model.

Our main purpose is to present new criteria concerning the existence, the uniqueness and
the global exponential stability of almost automorphic solutions for System (1) by using the
exponential dichotomy theory, the Banach fixed point and the differential inequality technique.

Remark 1.2 Our principal contributions are:

• The choice of model in Equation (1) is significant since it includes Hophold neural networks,
BAM neural networks, cellular neural networks and Lotka-Volterra competition models
as special cases. We generalize the results of papers [1–5, 11, 27, 38].

• The class of bi-almost automorphic functions is never used in the theory of neural networks.

• The study of the existence, the uniqueness and the global exponential stability of the almost
automorphic solutions of system in Equation (1) is firstly put forward.

• The research for the almost automorphic solutions of dynamic systems are complicated. The
fundamental property of uniform continuity is not verified. Our findings improve many
results reported in the literature (see [20, 21, 27, 31, 38–42]).

The rest of this paper is organized as follows: In Section 2, we give useful definitions,
assumptions and lemmas. Section 3 is devoted to establish new criteria for the existence, the
uniqueness and the global exponential stability of almost automorphic solution of system in
Equation (1). In Section 4, a numerical example is given to illustrate the feasibility of the
obtained results. We conclude with remarks.

2 Preliminaries

Throughout this paper, we will use the following concepts and notations. BC(R,Rn) denotes
the set of bounded continued functions from R to R

n.
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Note that (BC(R,Rn), ‖ · ‖∞) is a Banach space where ‖ · ‖∞ denotes the sup norm

‖ f ‖∞:= sup
t∈R

‖f(t)‖.

For the sake of simplicity, we adapt the following notation: For f ∈ BC(R,R), let

f∗ = sup
t∈R

|f(t)|, f∗ = inf
t∈R

|f(t)|.

Definition 2.1 (see [38, 43]) A continuous function f : R → R
n is called almost au-

tomorphic if for every real sequence (s′n)n∈N, there exists a subsequence (sn)n∈N such that
g(t) = limn→∞ f(t + sn) is well defined for each t ∈ R and limn→∞ g(t − sn) = f(t) for each
t ∈ R. The collection of all almost automorphic functions which go from R to R

n is denoted by
AA(R,Rn).

Definition 2.2 (see [44]) A continuous function F (t, s) : R × R → R
n is called bi-almost

automorphic if for every real sequence (s′n)n∈N, there exists a subsequence (sn)n∈N such that
G(t, s) = limn→∞ F (t+sn, s+sn) is well defined for each t, s ∈ R and limn→∞G(t−sn, s−sn) =
F (t, s) for each t, s ∈ R. The collection of such functions is denoted by bAA(R × R,Rn).

Remark 2.3 (see [44]) • If f ∈ C(R×R,R) and f(t, s) = g(t−s) for some g ∈ C(R,Rn),
then f ∈ bAA(R × R,Rn).

• The concept of bi-almost automorphic function is a natural generalization of the function
f(t, s) having the same period in the two arguments, that is f(t+ T, s+ T ) = f(s, t) for
all t, s ∈ R for some T ∈ R\{0}.

Example 2.4 (see [44]) f(t, s) = sin(t) cos(s) is a bi-almost automorphic function from
R × R to R.

Definition 2.5 Let x ∈ R
p and Q(t) be a p × p continuous matrix defined on R. The

linear system

x′(t) = Q(t)x(t) (3)

is said to admit an exponential dichotomy on R if there exist positive constants b, δ and pro-
jection P and the fundamental solution matrix X(t) of (3) satisfy

‖X(t)PX−1(s)‖ ≤ be−δ(t−s), for t ≥ s,

‖X(t)(I − P )X−1(s)‖ ≤ be−δ(t−s), for t ≤ s,

where I is the identity matrix.

Lemma 2.6 Let ci(·) be an almost automorphic function on R. For each 1 ≤ i ≤ n,

M [ci] = lim
T→+∞

1
T

∫ t+T

t

ci(s)ds > 0,

then the linear system

x′(t) = diag(−c1(t),−c2(t), · · · ,−cn(t))x(t) (4)
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admits an exponential dichotomy on R.

Lemma 2.7 The inhomogeneous linear system

x′(t) = −c(t)x(t) + f(t)

has a unique bounded solution for a vector f ∈ C(R,Rn) if and only if the inhomogeneous linear
system (4) has exponential dichotomy.

Throughout this paper, it will be assume that:
For all 1 ≤ i ≤ n, 1 ≤ j ≤ p, b1ji(·), d1

ji(·), b2ij(·), d2
ij(·), Ii(·), Ji(·) ∈ AA(R,R) and we

introduce the following fundamental assumptions.
Assumption 1 α1

i (u) are uniformly continuous functions and there are positive constants
α1∗
i , α1

i∗ such that 0 < α1
i∗ ≤ α1

i (u) ≤ α1∗
i , ∀u ∈ R, i = 1, 2, · · · , n. α2

j (u) are uniformly
continuous functions and there are positive constants α2∗

j , α2
j∗ such that 0 < α2

j∗ ≤ α2
j (u) ≤

α2∗
j , ∀u ∈ R, j = 1, 2, · · · , p.

Assumption 2 a1
i (u), i = 1, 2, · · · , n, are uniformly continuous functions and there exist

positive constants a1∗
i , a1

i∗ such that a1
i∗ ≤ a1

i (u)−a1
i (v)

u−v ≤ a1∗
i , ∀u, v ∈ R, u 	= v, a1

i (0) = 0. a2
j(u),

j = 1, 2, · · · , p, are uniformly continuous functions and there exist positive constants a2∗
j , a1

j∗
such that a2

j∗ ≤ a2
j (u)−a2

j(v)

u−v ≤ a2∗
j , ∀u, v ∈ R, u 	= v, a2

j(0) = 0.
Assumption 3 For all 1 ≤ i ≤ n, 1 ≤ j ≤ p, there exist a nonnegative constants numbers

Lfj , M
f
j , L

f
i ,M

f
i , L

g
j , M

g
j , L

g
i , M

g
i , for all x, y, u, v ∈ R, such that

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

|f1
j (x, y) − f1

j (u, v)| ≤ Lfj | x− u | +Mf
j | y − v |,

|f2
i (x, y) − f2

i (u, v)| ≤ Lfi | x− u | +Mf
i | y − v |,

|g1
j (x, y) − g1

j (u, v)| ≤ Lgj | x− u | +Mg
j | y − v |,

|g2
i (x, y) − g2

i (u, v)| ≤ Lgi | x− u | +Mg
i | y − v | .

Assumption 4 For all i ∈ {1, 2, · · · , n}, j ∈ {1, 2, · · · , p}, the delay kernels Kji, Gij :
[0,+∞) −→ R are almost automorphic, integrable and there exists a real number λ such that

∫ +∞

0

Kji(m)dm =
∫ +∞

0

Gij(m)dm = 1,
∫ +∞

0

eλmKji(m)dm <∞,

∫ +∞

0

eλmGij(m)dm <∞.

Assumption 5

r = max
{

max
1≤i≤n

{
1

a1
i∗α

1
i∗

p∑

j=1

[
b1∗ji (L

f
j +Mf

j ) + d1∗
ji (L

g
j +Mg

j )
]
α1∗
j

}

max
1≤i≤n

{
1

a2
j∗α

2
j∗

n∑

i=1

[
b2∗ij (Lfi +Mf

i ) + d2∗
ij (Lgi +Mg

i )
]
α2∗
i

}}

< 1.

Now, we need the following lemmas.
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Lemma 2.8 (see [43]) Let φ(·) ∈ AA(R,R), a ∈ R be a constant. Then φ(· − a) ∈
AA(R,R).

Lemma 2.9 (see [43]) If ϕ, ψ ∈ AA(R,R), then we have
⎧
⎨

⎩

ϕ+ ψ ∈ AA(R,R),

ϕ× ψ ∈ AA(R,R).

Lemma 2.10 If f1
j (·, ·) ∈ C(R×R,R) satisfies Assumption 3, x(·), y(·) ∈ AA(R,R), τ, υ

are nonnegative constants then f1
j

[
x(· − τ), y(· − υ)

] ∈ bAA(R × R,Rn).

Proof x(·), y(·) ∈ AA(R,Rn). Let (s′n)n∈N
be a sequence of real numbers. By hypothesis

we can extract a subsequence (sn)n∈N of (s′n)n∈N
such that:

lim
n→+∞x (t− τ + sn) = x1(t− τ), ∀t ∈ R, lim

n→+∞x1 (t− τ − sn) = x(t− τ), ∀t ∈ R

and

lim
n→+∞ y (t− υ + sn) = y1(t− υ), ∀t ∈ R, lim

n→+∞ y1 (t− υ − sn) = y(t− υ), ∀t ∈ R.

Obviously,
∣
∣f1
j

[
x(t − τ + sn), y(t− υ + sn)

] − f1
j

[
x1(t− τ), y1(t− υ)

]∣
∣

≤ Lfj
∣
∣x(t− τ + sn) − x1(t− τ)

∣
∣ +Mf

j

∣
∣y(t− υ + sn) − y1(t− υ)

∣
∣ → 0 when n→ +∞.

Therefore, limt→∞ f1
j

[
x(t− τ + sn), y(t− υ+ sn)

]
= f1

j

[
x1(t− τ), y1(t− υ)

]
. By the same way,

we have
lim
t−→∞ f1

j

[
x1(t− τ − sn), y1(t− υ − sn)

]
= f1

j

[
x(t− τ), y(t− υ)

]
.

Then, f1
j

[
x(· − τ), y(· − υ)

] ∈ bAA(R × R,Rn).

Lemma 2.11 Assume that Assumption 4 holds. For all 1 ≤ i ≤ n, 1 ≤ j ≤ p, if
xj(·), yj(·) ∈ AA(R,Rn) then the function

t 
−→
∫ t

−∞
Kji(t− s)g1

j

[
xj(s), yj(s)

]
ds =

∫ ∞

0

Kji(s)g1
j

[
xj(t− s), yj(t− s)

]
ds ∈ AA(R,Rn).

Proof Suppose that

Φji(t) =
∫ t

−∞
Kji(t− s)gj

[
xj(s), yj(s)

]
ds. (5)

Our goal is to show that Φij(·) ∈ AA(R,Rn).
Let xj(·), yj(·) ∈ AA(R,Rn), by using Lemma 2.10 we have s 
→ gj

[
xj(s), yj(s)

]
belongs on

bAA(R×R,Rn). Now, let (s′n)n∈N
be a sequence of real numbers. By hypothesis we can extract

a subsequence (sn)n∈N
of (s′n)n∈N

such that for all t, s ∈ R:

lim
n→+∞Kji(t− s+ sn) = K1

ji(t− s), lim
n→+∞K1

ji(t− s− sn) = Kji(t− s)
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and

lim
n→+∞ gj

[
xj(s+ sn), yj(s+ sn)

]
= g1

j

[
xj(s), yj(s)

]
,

lim
n→+∞ g1

j

[
xj(s− sn), yj(s− sn)

]
= gj

[
xj(s), yj(s)

]
.

Pose

Φ1
ji(t) =

∫ t

−∞
Kji(t− s)g1

j

[
xj(s), yj(s)

]
ds.

Obviously,

∣
∣Φji(t+ sn) − Φ1

ji(t)
∣
∣ =

∣
∣
∣
∣

∫ t+sn

−∞
Kji(t− s+ sn)gj

[
xj(s+ sn), yj(s+ sn)

]
ds

−
∫ t

−∞
Kji(t− s)g1

j

[
xj(s), yj(s)

]
ds

∣
∣
∣
∣

=
∣
∣
∣
∣

∫ t

−∞
Kji(t− u)gj

[
xj(u+ sn), yj(u+ sn)

]
du

−
∫ t

−∞
Kji(t− s)g1

j

[
xj(s), yj(s)

]
ds

∣
∣
∣
∣

≤
∫ t

−∞
Kji(t− u)

∣
∣gj

[
xj(u+ sn), yj(u + sn)

] − g1
j

[
xj(u), yj(u)

]∣
∣du.

Using the Lebesgue dominated convergence theorem, we obtain

lim
n−→∞Φji(t+ sn) = Φ1

ji(t).

By the same way, we have
lim

n−→∞Φ1
ji(t− sn) = Φji(t).

Then, Φij(·) ∈ AA(R,Rn).

3 Existence, Uniqueness and Global Exponential Stability of Almost

Automorphic Solutions

In this section, we start by studying the existence and the uniqueness of almost automorphic
solution of system in Equation (1).

By Assumption 1, the antiderivatives of 1
α1

i (xi(t))
and 1

α2
j (yj(t))

exist.

Then we choose an antiderivatives F 1
i (xi) of 1

α1
i (xi(t))

and F 2
j (yj) of 1

α2
j(yj(t))

with F 1
i (0) =

F 2
j (0) = 0. Obviously, (F 1

i )′(xi) = 1
α1

i (xi(t))
and (F 2

j )′(yj) = 1
α2

j(yj(t))
.

By α1
i (xi(t)) > 0, α2

j (yj(t)) > 0, we see that F 1
i (xi), F 2

j (yj) are strictly monotone increasing
respectively on xi and yj.

By derivative theorem for inverse function, there exist an inverse functions (F 1
i )−1(xi) of

F 1
i (xi) and (F 2

j )−1(yj) of F 2
j (yj) which are continuous and differential.
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Moreover, we have ((F 1
i )−1(xi))′ = α1

i (xi(t)) and ((F 2
j )−1(yj))′ = α2

j (yj(t)). Denoting

(F 1
i )′(xi)x′i(t) = x′

i(t)

α1
i (xi(t))

= u′i(t), (F
2
j )′(yj)y′j(t) = y′j(t)

α2
j(yj(t))

= v′j(t), we get xi(t) = (F 1
i )−1(ui(t))

and yj(t) = (F 2
j )−1(vj(t)). Then, we get:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u̇i(t) = −a1
i ((F

1
i )−1(ui(t))) +

p∑

j=1

b1ji(t)f
1
j

[
(F 1
i )−1(ui(t− τji)), (F 2

j )−1(vj(t− υji))
]

+
p∑

j=1

d1
ji(t)

∫ t

−∞
Kji(t− s)g1

j

[
(F 1
i )−1(ui(s)), (F 2

j )−1(vj(s))
]
ds+ Ii(t), 1 ≤ i ≤ n,

ẏj(t) = −a2
j((F

2
j )−1(vj(t)) +

n∑

i=1

b2ij(t)f
2
i

[
(F 1
i )−1(ui(t− ζij)), (F 2

j )−1(vj(t− ϑij))
]

+
n∑

i=1

d2
ij(t)

∫ t

−∞
Gij(t− s)g2

i

[
(F 1
i )−1(ui(s)), (F 2

j )−1(vj(s))
]
ds+ Jj(t), 1 ≤ j ≤ p,

(6)

By using Assumption 2 and the mean value theorem, we have

a1
i ((F

1
i )−1(ui(t))) =

[
a1
i ((F

1
i )−1(θiui(t)))

]′
ui(t) = ã1

i (ui(t))ui(t),

where θi is a constant such that 0 ≤ θi ≤ 1.

a2
j((F

2
j )−1(vj(t))) =

[
a2
j((F

2
j )−1(θjvj(t)))

]′
vj(t) = ã2

j(vj(t))vj(t),

where θj is a constant such that 0 ≤ θj ≤ 1.
Substituting this into (6) yields,

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u̇i(t) = −ã1
i (ui(t))ui(t) +

p∑

j=1

b1ji(t)f
1
j

[
(F 1
i )−1(ui(t− τji)), (F 2

j )−1(vj(t− υji))
]

+
p∑

j=1

d1
ji(t)

∫ t

−∞
Kji(t− s)g1

j

[
(F 1
i )−1(ui(s)), (F 2

j )−1(vj(s))
]
ds+ Ii(t), 1 ≤ i ≤ n,

ẏj(t) = −ã2
j(vj(t))vj(t) +

n∑

i=1

b2ij(t)f
2
i

[
(F 1
i )−1(ui(t− ζij)), (F 2

j )−1(vj(t− ϑij))
]

+
n∑

i=1

d2
ij(t)

∫ t

−∞
Gij(t− s)g2

i

[
(F 1
i )−1(ui(s)), (F 2

j )−1(vj(s))
]
ds+ Jj(t), 1 ≤ j ≤ p.

(7)

Remark 3.1 Evidently, System (1) has a unique almost automorphic solution if and only
if System (7) has a unique almost automorphic solution. Then we only need to consider the
almost automorphic solution of System (7).

By the Lagrange theorem we have
∣
∣(F 1

i )−1(u) − (F 1
i )−1(v)

∣
∣ =

∣
∣
[
(F 1
i )−1(v + θi(u− v))

]′(u− v)
∣
∣

=
∣
∣α1
i (v + θi(u− v))

∣
∣
∣
∣u− v

∣
∣

and
∣
∣(F 2

j )−1(u) − (F 2
j )−1(v)

∣
∣ =

∣
∣
[
(F 2
j )−1(v + θj(u − v))

]′(u − v)
∣
∣

=
∣
∣α2
j (v + θj(u − v))

∣
∣
∣
∣u− v

∣
∣.
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By Assumption 1, we get

α1
i∗

∣
∣u− v

∣
∣ ≤ ∣

∣(F 1
i )−1(u) − (F 1

i )−1(v)
∣
∣ ≤ α1∗

i

∣
∣u− v

∣
∣,

α2
j∗

∣
∣u− v

∣
∣ ≤ ∣

∣(F 2
j )−1(u) − (F 2

j )−1(v)
∣
∣ ≤ α2∗

j

∣
∣u− v

∣
∣.

Combined with Assumption 2, we obtain

a1
i∗α

1
i∗ ≤ [

a1
i ((F

1
i )−1(·))] ≤ a1∗

i α
1∗
i ,

a2
j∗α

2
j∗ ≤ [

a2
j ((F

2
j )−1(·))] ≤ a2∗

j α
2∗
j .

For any arbitrary vector Z(t) = (x1(t), x2(t), · · · , xn(t), y1(t), y2(t), · · · , yp(t))T, we define the
norm

‖Z(t)‖ = max
{

max
1≤i≤n

{|xi(t)|}; max
1≤j≤p

{|yj(t)|}
}

.

Theorem 3.2 Under Assumptions 1–5, System (7) has a unique almost automorphic
solution in the region

Δ =
{

Z ∈ AA(R,Rn+p), ‖Z − Z0‖∞ ≤ rM

1 − r

}

,

where

Z0(t) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

∫ t
−∞ e−

∫
t
s
ã1
1(ϕ1(u))duI1(s)ds

...
∫ t
−∞ e−

∫ t
s
ã1

n(ϕn(u))duIn(s)ds
∫ t
−∞ e−

∫
t
s
ã2
1(ψ1(u))duJ1(s)ds

...
∫ t
−∞ e−

∫
t
s
ã2

p(ψp(u))duJp(s)ds

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Proof Define the nonlinear operator ΘZ : AA(R,Rn+p) 
→ AA(R,Rn+p) as follows: For
all Z(ϕ,ψ)T = (ϕ1, ϕ2, · · · , ϕn, ψ1, ψ2, · · · , ψp) ∈ AA(R,Rn+p),

ΘZ(t) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

∫ t
−∞ e−

∫ t
s
ã1
1(ϕ1(u))duΓ 1

1 (s)ds
...

∫ t
−∞ e−

∫
t
s
ã1

n(ϕn(u))duΓ 1
n(s)ds

∫ t
−∞ e−

∫ t
s
ã2
1(ψ1(u))duΓ 2

1 (s)ds
...

∫ t
−∞ e−

∫
t
s
ã2

p(ψp(u))duΓ 2
p (s)ds

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,



INTERVAL GENERAL COHEN-GROSSBERG BAM NEURAL NETWORKS 953

Γ 1
i (s, ϕ, ψ) =

p∑

j=1

b1ji(s)f
1
j

[
(F 1
i )−1(ϕi(s− τji)), (F 2

j )−1(ψj(s− υji))
]

+
p∑

j=1

d1
ji(s)

∫ s

−∞
Kji(s− u)g1

j

[
(F 1
i )−1(ϕi(u)), (F 2

j )−1(ψj(u))
]
du+ Ii(s),

1 ≤ i ≤ n,

Γ 2
j (s, ϕ, ψ) =

n∑

i=1

b2ij(s)f
2
i

[
(F 1
i )−1(ui(s− ζij)), (F 2

j )−1(vj(s− ϑij))
]

+
n∑

i=1

d2
ij(s)

∫ s

−∞
Gij(s− u)g2

i

[
(F 1
i )−1(ui(u)), (F 2

j )−1(vj(u))
]
du + Jj(s),

1 ≤ j ≤ p.

For all 1 ≤ i ≤ n, 1 ≤ j ≤ p, by using Lemmas 2.8–2.11, the functions Γ 1
i and Γ 2

j are almost
automorphic.

Suppose that Assumptions 1–5 hold. Because M [α1
i ] > 0,M [α2

j ] > 0, the linear system
⎧
⎨

⎩

ẋi(t) = −ã1
i (ui(t))ui(t), 1 ≤ i ≤ n,

ẏj(t) = −ã2
j(t)(vj(t))vj(t), 1 ≤ j ≤ p,

admits an exponential dichotomy on R. By Lemma 2.7, System (7) has a unique almost auto-
morphic solution Z(ϕ,ψ)T which can be expressed as follows

Z(ϕ,ψ)T(t) =
( ∫ t

−∞
e−

∫
t
s
ã1
1(u(m))dm

[ p∑

j=1

b1j1(s)f
1
j

[
(F 1
i )−1(ϕj(s− τj1)), (F 2

j )−1(ψj(s− υj1))
]

+
p∑

j=1

d1
j1(s)

∫ s

−∞
Kj1(s−m)g1

j

[
(F 1
i )−1(ϕj(m)), (F 2

j )−1(ψj(m))
]
dm+ I1(s)

]

ds, · · · ,
∫ t

−∞
e−

∫ t
s
ã1

n(u(m))dm

[ p∑

j=1

b1jn(s)f1
j

[
(F 1
i )−1(ϕj(s− τjn)), (F 2

j )−1(ψj(s− υjn))
]

+
p∑

j=1

d1
jn(s)

∫ s

−∞
Kjn(s−m)g1

j

[
(F 1
i )−1(ϕj(m)), (F 2

j )−1(ψj(m))
]
dm+ In(s)

]

ds, · · · ,
∫ s

−∞
e−

∫
t
s
ã2
1(v(m))dm

[ n∑

i=1

b2i1(s)f
2
i

[
(F 1
i )−1(ϕi(s− ζi1)), (F 2

j )−1(ψi(s− ϑi1))
]

+
n∑

i=1

d2
i1(s)

∫ s

−∞
Gi1(s−m)g2

i

[
(F 1
i )−1(ϕi(m)), (F 2

j )−1(ψi(m))
]
dm+ J1(s)

]

ds, · · · ,

∫ s

−∞
e−

∫ t
s
ã2

p(v(m))dm

[ n∑

i=1

b2ip(s)f
2
i

[
(F 1
i )−1(ϕi(s− ζip)), (F 2

j )−1(ψi(s− ϑip))
]

+
n∑

i=1

d2
ip(s)

∫ s

−∞
Gip(s−m)g2

i

[
(F 1
i )−1(ϕi(m)), (F 2

j )−1(ψi(m))
]
dm+ Jp(s)

]

ds

)

.
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One has

M = ‖Z0‖

= max
{

sup
t∈R

max
1≤i≤n

{∣
∣
∣
∣

∫ t

−∞
e−

∫
t
s
ã1

i (u(m))dmIi(s)ds
∣
∣
∣
∣

}

;

sup
t∈R

max
1≤j≤p

{∣
∣
∣
∣

∫ t

−∞
e−

∫
t
s
ã2

j(v(m))dmJj(s)ds
∣
∣
∣
∣

}}

≤ max
{

sup
t∈R

max
1≤i≤n

{∣
∣
∣
∣

∫ t

−∞
e−a

1
i∗α

1
i∗(t−s)Ii(s)ds

∣
∣
∣
∣

}

;

sup
t∈R

max
1≤j≤p

{∣
∣
∣
∣

∫ t

−∞
e−a

2
j∗α

2
j∗(t−s)Jj(s)ds

∣
∣
∣
∣

}}

≤ max
{

max
1≤i≤n

(
I∗i

a1
i∗α

1
i∗

)

; max
1≤j≤p

(
J∗
j

a2
j∗α

2
j∗

)}

.

After
‖Z‖ ≤ ‖Z − Z0‖ + ‖Z0‖ ≤ rM

1 − r
+M.

Set Δ =
{
Z ∈ AA(R,Rn+p) : ‖Z − Z0‖ ≤ rM

1−r
}
. Clearly, Δ is a closed convex subset of

AA(R,Rn+p). We have, for 1 ≤ i ≤ n, 1 ≤ j ≤ p,

∥
∥ΘZ(t) − Z0(t)

∥
∥

=max
{

sup
t∈R

max
1≤i≤n

{∣
∣
∣
∣

∫ t

−∞
e−

∫ t
s
ã1

i (ui(m))dm

[ p∑

j=1

b1ji(s)f
1
j

[
(F 1
i )−1(ϕi(s−τji)), (F 2

j )−1(ψj(s−υji))
]

+
p∑

j=1

d1
ji(s)

∫ s

−∞
Kji(s−m)g1

j

[
(F 1
i )−1(ϕi(m)), (F 2

j )−1(ψj(m))
]
dm

]

ds

∣
∣
∣
∣

}

;

sup
t∈R

max
1≤j≤p

{∣
∣
∣
∣

∫ t

−∞
e−

∫
t
s
ã2

j (vj(m))dm

[ n∑

i=1

b2ij(s)f
2
i

[
(F 1
i )−1(ui(s− ζij)), (F 2

j )−1(vj(s− ϑij))
]

+
n∑

i=1

d2
ij(s)

∫ s

−∞
Gij(s−m)g2

i

[
(F 1
i )−1(ui(m)), (F 2

j )−1(vj(m))
]
dm

]

ds

∣
∣
∣
∣

}}

≤ max
{

sup
t∈R

max
1≤i≤n

{∫ t

−∞
e−

∫
t
s
ã1

i (ui(m))dm

[ p∑

j=1

∣
∣b1ji(s)

∣
∣
∣
∣f1
j

[
(F 1
i )−1(ϕi(s−τji)), (F 2

j )−1(ψj(s−υji))
]∣
∣

+
p∑

j=1

∣
∣d1
ji(s)

∣
∣
∫ s

−∞
Kji(s−m)

∣
∣g1
j

[
(F 1
i )−1(ϕi(m)), (F 2

j )−1(ψj(m))
]∣
∣dm

]

ds

}

;
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sup
t∈R

max
1≤j≤p

{∫ t

−∞
e−

∫
t
s
ã2

j(vj(m))dm

[ n∑

i=1

∣
∣b2ij(s)

∣
∣
∣
∣f2
i

[
(F 1
i )−1(ui(s− ζij)), (F 2

j )−1(vj(s− ϑij))
]∣
∣

+
n∑

i=1

∣
∣d2
ij(s)

∣
∣
∫ s

−∞
Gij(s−m)

∣
∣g2
i

[
(F 1
i )−1(ui(m)), (F 2

j )−1(vj(m))
]∣
∣dm

]

ds

}}

≤ max
{

max
1≤i≤n

{
1

a1
i∗α

1
i∗

p∑

j=1

[
b1∗ji (L

f
j +Mf

j ) + d1∗
ji (L

g
j +Mg

j )
]
α1∗
j

}

;

max
1≤i≤n

{
1

a2
j∗α

2
j∗

n∑

i=1

[
b2∗ij (Lfi +Mf

i ) + d2∗
ij (Lgi +Mg

i )
]
α2∗
i

}}

‖Z‖ = r‖Z‖,

then ΘZ ∈ Δ.
We next prove that the mapping Θ is a contraction mapping of the Δ. Let Z, Z̃ ∈ Δ,

∥
∥ΘZ(t) − ΘZ̃(t)

∥
∥

= max
{

sup
t∈R

max
1≤i≤n

{∣
∣
∣
∣

∫ t

−∞
e−

∫ t
s
ã1

i (ui(m))dm

[ p∑

j=1

b1ji(s)
{

f1
j

[
(F 1
i )−1(ϕj(s−τji)), (F 2

j )−1(ψj(s−υji))
]

−f1
j

[
(F 1
i )−1(ϕ̃j(s− τji)), (F 2

j )−1(ψ̃j(s− υji))
]
}

+
p∑

j=1

d1
ji(s)

∫ s

−∞
Kji(s−m)

{

g1
j

[
(F 1
i )−1(ϕj(m)), (F 2

j )−1(ψj(m))
]

−g1
j

[
(F 1
i )−1(ϕ̃j(m)), (F 2

j )−1(ψ̃j(m))
]
dm

}

ds

∣
∣
∣
∣

}

;

sup
t∈R

max
1≤j≤p

{∣
∣
∣
∣

∫ t

−∞
e−

∫
t
s
ã2

j (vj(m))dm

[ n∑

i=1

b2ij(s)
{

f2
i

[

(F 1
i )−1(ϕi(s− ζij)), (F 2

j )−1(ψi(s− ϑij))
]

−f2
i

[
(F 1
i )−1(ϕ̃i(s− ζij)), (F 2

j )−1(ψ̃i(s− ϑij))
]
}

+
n∑

i=1

d2
ij(s)

∫ t

−∞
Gij(s−m)

{

g2
i

[
(F 1
i )−1(ϕi(m)), (F 2

j )−1(ψi(m))
]

−g2
i

[
(F 1
i )−1(ϕ̃i(m)), (F 2

j )−1(ψ̃i(m))
]
dm

}

ds

∣
∣
∣
∣

}}

≤ max
{

max
1≤i≤n

{
1

a1
i∗α

1
i∗

p∑

j=1

[
b1∗ji (L

f
j +Mf

j ) + d1∗
ji (L

g
j +Mg

j )
]
α1∗
j

}

;

max
1≤i≤n

{
1

a2
j∗α

2
j∗

n∑

i=1

[
b2∗ij (Lfi +Mf

i ) + d2∗
ij (Lgi +Mg

i )
]
α2∗
i

}}

‖Z − Z̃‖ = r‖Z − Z̃‖,

which prove that Θ is a contraction mapping. Then, by virtue of the Banach fixed point
theorem, Θ has a unique fixed point which corresponds to the solution of system in Equation (7).
The proof is completed.

Remark 3.3 To the best of our knowledge, there have been no results on the almost
automorphic solutions for interval general Cohen-Grossberg BAM neural networks with time-
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varying coefficients and mixed time-varying delays until now. Hence, the obtained results are
essentially new.

Now, we establish new results for the global exponential stability of almost automorphic
solution of system in Equation (1).

Definition 3.4 Let Z∗(t) = (x∗1(t), x
∗
2(t), · · · , x∗n(t), y∗1(t), y∗2(t), · · · , y∗p(t))T an almost

automorphic solution of system in Equation (1) with initial value

φ∗(s) = (ϕ∗
1(s), ϕ

∗
2(s), · · · , ϕ∗

n(s), ψ
∗
1(s), ψ∗

2(s), · · · , ψ∗
p(s))

T.

If there exist a positive constant λ and M > 1 such that for every solution Z(t) = (x1(t), x2(t),
· · · , xn(t), y1(t), y2(t), · · · , yp(t))T of system in Equation (6) with any initial value φ(t) =
(ϕ1(s), · · · , ϕn(s), ψ1(s), · · · , ψp(s))T satisfies

‖ x− x∗ ‖≤M ‖ φ− φ∗ ‖ e−λt, ‖ y − y∗ ‖≤M ‖ φ− φ∗ ‖ e−λt, ∀t ≥ 0,

then, Z∗ is said to be globally exponentially stable.

Theorem 3.5 Under Assumptions 1–5 and Theorem 3.2, the unique almost automorphic
solution of system in Equation (7) is globally exponentially stable.

Proof Suppose that Z(t) = (x1(t), x2(t), · · · , xn(t), y1(t), y2(t), · · · , yp(t))T be an arbitrary
solution of system in Equation (6) with initial value φ(t) = (ϕ1(t), ϕ2(t), · · · , ϕn(t), ψ1(t), ψ2(t),
· · · , ψp(t))T. It follows from Theorem 3.2 that system in Equation (1) has one and only one
almost automorphic solution Z∗(t) = (x∗1(t), x

∗
2(t), · · · , x∗n(t), y∗1(t), y∗2(t), · · · , y∗p(t))T ∈ Δ, with

initial value φ∗(t) = (ϕ∗
1(t), ϕ

∗
2(t), · · · , ϕ∗

n(t), ψ∗
1(t), ψ∗

2(t), · · · , ψ∗
p(t))

T. Let Ui(t) = ui(t)−u∗i (t)
and Vj(t) = vj(t) − v∗j (t), for i = 1, 2, · · · , n, j = 1, 2, · · · , p.

Similarly to 7, we have

a1
i ((F

1
i )−1(ui(t))) − a1

i ((F
1
i )−1(u∗i (t)))

= a1
i ((F

1
i )−1(Ui(t) + u∗i (t))) − a1

i ((F
1
i )−1(u∗i (t)))

=
[
a1
i ((F

1
i )−1(u∗i (t) + θUi(t)))

]′
Ui(t)

= β1
i (Ui(t))Ui(t)

such that β1
i (Ui(t)) =

[
a1
i ((F

1
i )−1(u∗i (t) + θUi(t)))

]′
Ui(t), 0 ≤ θ ≤ 1 and

a2
j((F

2
j )−1(vj(t))) − a2

j((F
2
j )−1(v∗j (t)))

= a2
j((F

2
j )−1(Vj(t) + v∗j (t))) − a2

j((F
2
j )−1(v∗j (t)))

=
[
a2
j((F

2
j )−1(v∗j (t) + θVj(t)))

]′
Vj(t)

= β2
j (Vj(t))Vj(t)
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such that β2
j (Vj(t)) =

[
a2
j((F

2
j )−1(v∗j (t) + θVj(t)))

]
, 0 ≤ θ ≤ 1. Then, we have

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

U̇i(t) = −β1
i (Ui(t))Ui(t) +

p∑

j=1

b1ji(t)
{
f1
j

[
(F 1
i )−1(uj(t− τji)), (F 2

j )−1(vj(t− υji))
]

−f1
j

[
(F 1
i )−1(u∗j (t− τji)), (F 2

j )−1(v∗j (t− υji))
]}

+
p∑

j=1

d1
ji(t)

∫ t

−∞
Kji(t−m)

{
g1
j

[
(F 1
i )−1(uj(m)), (F 2

j )−1(vj(m))
]

−g1
j

[
(F 1
i )−1(u∗j (m)), (F 2

j )−1(v∗j (m))
]}
dm, 1 ≤ i ≤ n,

V̇j(t) = −β2
j (Vj(t))Vj(t) +

n∑

i=1

b2ij(t)
{
f2
i

[
(F 1
i )−1(ui(t− ζij)), (F 2

j )−1(vi(t− ϑij))
]

−f2
i

[
(F 1
i )−1(u∗i (t− ζij)), (F 2

j )−1(v∗i (t− ϑij))
]}

+
n∑

i=1

d2
ij(t)

∫ t

−∞
Gij(t−m)

{
g2
i

[
(F 1
i )−1(ui(m)), (F 2

j )−1(vi(m))
]

−g2
i

[
(F 1
i )−1(u∗i (m)), (F 2

j )−1(v∗i (m))
]}
dm, 1 ≤ j ≤ p.

(8)

The initial conditions of System (8) are
⎧
⎨

⎩

U̇i(t) = ϕi(s) − ϕ∗
i (s), s ∈ (−∞, 0], 1 ≤ i ≤ n,

V̇j(t) = ψ(s)j − ψ∗
j (s), s ∈ (−∞, 0], 1 ≤ j ≤ p.

(9)

For i = 1, 2, · · · , n, j = 1, 2, · · · , p, w ∈ [0,+∞[, let Γ 1
i ,Γ

1
j , be defined by

Γ̃ 1
i (w) = a1

i∗α
1
i∗ − w −

p∑

j=1

[

b1∗ji (L
f
j e
τjiw +Mf

j eυjiw) + d1∗
ji

∫ t

−∞
Kji(t− u)(Lgj +Mg

j )ewudu
]

α1
j

and

Γ̃ 2
j (w) = a2

j∗α
2
j∗ − w −

n∑

i=1

[

b2∗ij (Lfi e
ζijw +Mf

i eϑijw) + d2∗
ij

∫ t

−∞
Gij(t− u)(Lgi +Mg

i )ewudu
]

α2
j .

In view of Assumption 4, for i = 1, 2, · · · , n, j = 1, 2, · · · , p, we obtain
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Γ̃ 1
i (0) = a1

i∗α
1
i∗ −

p∑

j=1

[

b1∗ji (L
f
j +Mf

j ) + d1∗
ji

∫ t

−∞
Kji(t− u)(Lgj +Mg

j )du
]

α1
j > 0,

Γ̃ 2
j (0) = a2

j∗α
2
j∗ −

n∑

i=1

[

b2∗ij (Lfi +Mf
i ) + d2∗

ij

∫ t

−∞
Gij(t− u)(Lgi +Mg

i )du
]

α2
i > 0.

Both, Γ̃ 1
i (.) and Γ̃ 2

j (.) are continuous on [0,∞[ such that Γ̃ 1
i (w) −→ −∞ when w 
−→ +∞,

∃ε∗i > 0 such that Γ̃ 1
i (ε∗i ) = 0 and Γ̃ 1

i (εi) > 0 for εi ∈ (0, ε∗i ) and Γ̃ 2
j (w) −→ −∞ when

w 
−→ +∞, ∃ζ∗j > 0 such that Γ 2
j (ζ∗j ) = 0 and Γ̃ 2

j (ζj) > 0 for ζj ∈ (0, ζ∗j ).
By choosing η = min{ε0, ε∗1, · · · , ε∗n, ζ∗1 , ζ∗2 , · · · , ζ∗p}, we obtain

⎧
⎨

⎩

Γ̃ 1
i (η) ≥ 0, i = 1, 2, · · · , n,

Γ̃ 2
j (η) ≥ 0, j = 1, 2, · · · , p.
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We can choose a positive constant λ ∈ (0, η) such that
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1
a1
i∗α

1
i∗ − λ

p∑

j=1

{

b1∗ji (L
f
j e
λτji +Mf

j eλυji) + d1∗
ji

∫ t

−∞
Gij(t−m)(Lgi +Mg

i )eλmdm
}

α1
j < 1,

1
a2
j∗α

2
j∗ − λ

n∑

i=1

{

b2∗ij (Lfi e
λζij +Mf

i eλϑij ) + d2∗
ij

∫ t

−∞
Kji(s− u)(Lgj +Mg

j )eλmdm
}

α2
i < 1.

Multiplying Equation (8) by e−
∫

s
0 β

1
i (Ui(m))dm and e−

∫
s
0 β

2
j (Vj(m))dm and integrating on [0, t], we

get
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

U̇i(t) = Ui(0)e−
∫ t
0 β

1
i (Ui(m))dm

+
∫ t

0

e−
∫ t
0 β

1
i (Ui(m))dm

{[ p∑

j=1

b1ji(s)
{
f1
j

[
(F 1
i )−1(uj(s− τji)), (F 2

j )−1(vj(s− υji))
]

−f1
j

[
(F 1
i )−1(u∗j (s− τji)), (F 2

j )−1(v∗j (s− υji))
]}

+
p∑

j=1

d1
ji(t)

∫ s

−∞
Kji(s−m)

{

g1
j

[
(F 1
i )−1(uj(m)), (F 2

j )−1(vj(m))
]

−g1
j

[
(F 1
i )−1(u∗j (m)), (F 2

j )−1(v∗j (m))
]
dm

}

ds, 1 ≤ i ≤ n,

V̇j(t) = Vj(0)e−
∫ t
0 β

2
j (Vj(m))dm

+
∫ t

0

e−
∫

t
0 β

2
j (Vj(m))dm

{[ n∑

i=1

b2ij(s)
{

f2
i

[
(F 1
i )−1(ui(s− ζij)), (F 2

j )−1(vi(s− ϑij))
]

−f2
i

[
(F 1
i )−1(u∗i (s− ζij)), (F 2

j )−1(v∗i (s− ϑij))
]
}

+
n∑

i=1

d2
ij(s)

∫ s

−∞
Gij(s−m)

{

g2
i

[
(F 1
i )−1(ui(m)), (F 2

j )−1(vi(m))
]

−g2
i

[
(F 1
i )−1(u∗i (m)), (F 2

j )−1(v∗i (m))
]
dm

}

ds, 1 ≤ j ≤ p.

Let

N = max
{

max
1≤i≤n

a1
i∗α

1
i∗

∑p
j=1

[
b1∗ji (L

f
j +Mf

j ) + d1∗
ji (L

g
j +Mg

j )
]
α1∗
j

;

max
1≤j≤p

a2
j∗α

2
j∗

∑n
i=1

[
b2∗ij (Lfi +Mf

i ) + d2∗
ij (Lgi +Mg

i )
]
α2∗
i

}

.

Besides, ∀ t ∈ (−∞, 0],
⎧
⎨

⎩

‖ U ‖ ≤ Ne−λt ‖ φ− φ∗ ‖,
‖ V ‖ ≤ Ne−λt ‖ φ− φ∗ ‖ .

(10)

We claim that, for t > 0,
⎧
⎨

⎩

‖ U ‖ ≤ Ne−λt ‖ φ− φ∗ ‖,
‖ V ‖ ≤ Ne−λt ‖ φ− φ∗ ‖,

(11)
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If (10) is false, then there must be some t1 > 0 some i ∈ {1, 2, · · · , n}, j ∈ {1, 2, · · · , p}, for any
p > 1 and some k such that

⎧
⎨

⎩

‖ U(t1) ‖ = pN ‖ φ− φ∗ ‖ e−λt1 ,

‖ V (t1) ‖ = pN ‖ φ− φ∗ ‖ e−λt1 ,
(12)

and
⎧
⎨

⎩

‖ U(t) ‖ < pN ‖ φ− φ∗ ‖ e−λt, ∀ t ∈ (−∞, t1],

‖ V (t) ‖ < pN ‖ φ− φ∗ ‖ e−λt, ∀ t ∈ (−∞, t1].
(13)

Now, we have the following:

∣
∣Ui(t1)

∣
∣ =

∣
∣
∣
∣Ui(0)e−

∫ t1
0 β1

i (Ui(m))dm

+
∫ t1

0

e−
∫ t1
0 β1

i (Ui(m))dm

{[ p∑

j=1

b1ji(s)
{

f1
j

[

(F 1
i )−1(uj(s− τji)), (F 2

j )−1(vj(s− υji))
]

−f1
j

[

(F 1
i )−1(u∗j (s− τji)), (F 2

j )−1(v∗j (s− υji))
]}

+
p∑

j=1

d1
ji(t)

∫ ∞

0

Kji(m)
{

g1
j

[

(F 1
i )−1(uj(s−m)), (F 2

j )−1(vj(s−m))
]

−g1
j

[

(F 1
i )−1(u∗j (s−m)), (F 2

j )−1(v∗j (s−m))
]

dm

}

ds

∣
∣
∣
∣

≤ ‖ φ− φ∗ ‖ e−t1a
1
i∗α

1
i∗ +

∫ t1

0

e−(t1−s)a1
i∗α

1
i∗

{ p∑

j=1

b1∗ji (L
f
j +Mf

j ) ‖ φ− φ∗ ‖

+
p∑

j=1

d1∗
ji

∫ ∞

0

Kji(m)(Lgj +Mg
j ) ‖ φ− φ∗ ‖ dm

}

ds

≤ ‖ φ− φ∗ ‖ e−t1a
1
i∗α

1
i∗

+
∫ t1

0

e−(t1−s)a1
i∗α

1
i∗

{ p∑

j=1

b1∗ji (L
f
j e

(s−τji)λ +Mf
j e(s−υji)λ)pN ‖ φ− φ∗ ‖

+
p∑

j=1

d1∗
ji

∫ ∞

0

Kji(m)(Lgj +Mg
j )e−λ(s−m)dmpN ‖ φ− φ∗ ‖

}

ds

≤ ‖ φ− φ∗ ‖ e−t1a
1
i∗α

1
i∗ +

∫ t1

0

e−(t1−s)a1
i∗α

1
i∗pN ‖ φ− φ∗ ‖

e−λs
{ p∑

j=1

b1∗ji (L
f
j e
λτji +Mf

j eλυji) +
p∑

j=1

d1∗
ji

∫ ∞

0

Kji(m)(Lgj +Mg
j )eλmdm

}

ds
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≤ pN ‖ φ− φ∗ ‖ e−λt1
{

e(λ−a1
i∗α

1
i∗)t1

[
1
N

− 1
a1
i∗α

1
i∗ − λ

p∑

j=1

{

b1∗ji (L
f
j e
λτji +Mf

j eλυji)

+ d1∗
ji

∫ ∞

0

Kji(m)(Lgj +Mg
j )eλmdm

}

α1
j

]

+
1

a1
i∗α

1
i∗ − λ

p∑

j=1

{

b1∗ji (L
f
j e
λτji +Mf

j eλυji)

+ d1∗
ji

∫ ∞

0

Kji(m)(Lgj +Mg
j )eλmdm

}

α1
j

}

≤ pN ‖ φ− φ∗ ‖ e−λt1
{

1
a1
i∗α

1
i∗ − λ

p∑

j=1

{

b1∗ji (L
f
j e
λτji +Mf

j eλυji )

+ d1∗
ji

∫ ∞

0

Kji(m)(Lgj +Mg
j )eλmdm

}

α1
j

}

< pN ‖ φ− φ∗ ‖ e−λt1 . (14)

We can easy obtain some upper bound of
∣
∣Vj(t1)

∣
∣ as follows:

|Vj(t1)| < pN ‖ φ− φ∗ ‖ e−λt1 . (15)

(14) and (15) contradict (11), then (10) holds. Letting p −→ 1, then (11) holds.
Hence, the almost automorphic solution Z of System (7) is globally exponentially stable.

4 Numerical Example and Comparisons

In this section, to illustrate the feasibility of our theoretical findings obtained in previous
sections, we give a numerical example. Consider the following interval general CGBAM neural
networks with mixed delays:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋi(t) = −α1
i (xi(t))

{

a1
i (xi(t)) −

2∑

j=1

b1ji(t)f
1
j

[
xj(t− τji), yj(t− υji)

]

−
2∑

j=1

d1
ji(t)

∫ t

−∞
Kji(t− s)g1

j

[
xj(s), yj(s)

]
ds− Ii(t)

}

, 1 ≤ i ≤ 2,

ẏj(t) = −α2
j(xi(t))

{

a2
j(yj(t)) −

2∑

i=1

b2ij(t)f
2
i

[
xi(t− ζij), yi(t− ϑij)

]

−
2∑

i=1

d2
ij(t)

∫ t

−∞
Gij(t− s)g2

i

[
xi(s), yi(s)

]
ds− Jj(t)

}

, 1 ≤ j ≤ 2.

(16)

For all x, y ∈ R, i, j = 1, 2, we have:

(α1
i (xi(t)))1≤i≤2 =

⎛

⎝
0.4 + 0.1 cos(xi(t))

0.4 − 0.1 cos(xi(t))

⎞

⎠ ,

(α2
j(yj(t)))1≤j≤2 =

⎛

⎝
0.4 + 0.1 sin(yj(t))

0.4 − 0.1 sin(yj(t))

⎞

⎠ ,
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(a1
i (xi(t)))1≤i≤2 =

⎛

⎝
0.2xi(t)

0.2xi(t)

⎞

⎠ ,

(a2
j(yj(t)))1≤j≤2 =

⎛

⎝
0.4yj(t)

0.4yj(t)

⎞

⎠ ,

τji = υji = ζij = ϑij = Lfi = Mf
i = Lgi = Mg

i = Lfj = Mf
j = Lgj = Mg

j = 0.5,

Kji(t) = Gij(t) = e−t, f1
j (x, y) = g1

j (x, y) = f1
i (x, y) = g1

i (x, y) = sinx+ sin y.

b1ji(t) =

⎛

⎝
0.04 cos 1

2+sin t+sin
√

2t
0

0 0.04 sin 1
2+cos t+cos

√
2t

⎞

⎠ ,

d1
ji(t) =

⎛

⎝
0.04 cos 1

2+sin t+sin
√

2t
0

0 0.04 sin 1
2+cos t+cos

√
3t

⎞

⎠ ,

Ii(t) =

⎛

⎝
cos t

sin t

⎞

⎠ ,

b2ij(t) =

⎛

⎝
0.04 sin 1

2+cos t+cos
√

3t
0

0 0.04 sin 1
2+cos t+cos

√
2t

⎞

⎠ ,

d2
ij(t) =

⎛

⎝
0.04 sin π

2+sin t+sin
√

3t
0

0 0.04 sin 1
2+cos t+cos

√
5t

⎞

⎠ ,

Jj(t) =

⎛

⎝
sin t

cos t

⎞

⎠ ,

r = max
{

max
1≤i≤2

{
1

a1
i∗α

1
i∗

2∑

j=1

[

b1∗ji + d1∗
ji

]

α1∗
j

}

; max
1≤i≤2

{
1

a2
j∗α

2
j∗

2∑

i=1

[

b2∗ij + d2∗
ij

]

α2∗
i

}}

= 0.4 < 1.

According to Theorem 3.2 and Theorem 3.5, the system in Equation (1) has a unique almost
automorphic solution, which is globally exponentially stable.

The simulation results can be seen in the following figures: Figure 1 depicts the numerical
simulation of (x1, x2, y1, y2) for system in Equation (1), Figure 2 represents the orbit of (x1, x2)
for system in Equation (16), Figure 3 represents the orbit of (y1, y2) for system in Equation (16),
Figure 4 represents the orbit of (x1, x2, y1) for system in Equation (16), and Figure 5 represents
the orbit of (x2, y1, y2) for system in Equation (16).
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Figure 1 Solutions (x1, x2, y1, y2) of system in Equation (16)
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Figure 2 Orbit of (x1, x2) of system in Equation (16)
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Figure 3 Orbit of (y1, y2) of system in Equation (16)
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Figure 4 Orbit of (x1, x2, y1) of system in Equation (16)
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Figure 5 Orbit of (x2, y1, y2) of system in Equation (16)

Remark 4.1 1) Figures 1–5 confirm that the proposed conditions in our theoretical results
are effective for this example.

2) The global exponential stability meaning the study of the behaviors of trajectories
(x1, x2, y1, y2) with initial conditions respectively (0.5, 0.1,−0.1,−0.5).

5 Comparison with Previous Results

In [32], the authors investigated the dynamics behavior of a class of interval general BAM
neural networks with multiple delays. Based on the fundamental solution matrix of coefficients,
inequality technique and Lyapunov method, they derived sufficient conditions to ensure the
existence and the exponential stability of anti-periodic solutions of the suggested system. The
model studied in [32] is without distributed delay. ai, bj are constants (not time dependent).
In our work, we dealt with general Cohen-Grossberg BAM neural networks with mixed delays
(transmission delay and distributed delays) so, our model is the most general. The analysis
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methods are totally different than the methods used for paper [32]. In [31], the author stud-
ied a class of general BAM neural networks with multiple delays. Employing the exponential
dichotomy theory, fixed-point theorem, and constructing suitable Lyapunov functionals, some
criteria are established to ensure the existence and the global exponential stability of pseudo
almost periodic solutions. However, the class of almost automorphic functions covers the class
of periodic, almost periodic and pseudo almost periodic functions. Our outcomes are essentially
new and generalize previously results in [31, 32]. In [39], a class of general Cohen-Grossberg
BAM neural networks has been investigated. The existence of periodic solution for the sug-
gested systems have been obtained. By observing Figures 3–10 of paper [39], we see that
the dynamic behavior of the solutions (x1, x2, y1, y2) of Systems (4.1) and (4.2) are perfectly
periodic. However, in this paper, we deal with almost automorphic solutions, Figures 1–5,
affirm our main results, they show an almost automorphic behavior and not a periodic behav-
ior. Roughly, our results generalize enormously many previous works in the aforementioned
references ([31, 32, 39]) and are very significant.

Remark 5.1 In light of Theorems 3.2–3.5, the existence, the uniqueness and the global
exponential stability of almost automorphic solution of system in Equation (1) are obtained,
indicating that the sufficient conditions in both theorems can be used to solve optimization
problem by converting object function into energy function. Our results are important because
system in Equation (1) have significant applications in pattern completion, classification, feature
detection, data compression, approximation, control, and so on (see [45–47]).

6 Conclusions

In this paper, a class of interval general CGBAM neural networks with mixed delays have
been dealt with. By using the exponential dichotomy of linear differential equation, the Banach
fixed point principle and the differential inequality techniques new sufficient conditions for
the existence, the uniqueness and the global exponential stability of the almost automorphic
solutions have been established. Finally, in the numerical example section, one can easily see
that the simulation support our theoretical findings.
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