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Abstract The problem of designing a passive filter for nonlinear switched singularly perturbed sys-

tems with parameter uncertainties is explored in this paper. Firstly, the multiple-time-scale phe-

nomenon is settled effectively by introducing a singular perturbation parameter in the plant. Secondly,

the interval type-2 fuzzy set theory is employed where parameter uncertainties are expressed in mem-

bership functions rather than the system matrices. It is worth noting that interval type-2 fuzzy sets

of the devised filter are different from the plant, which makes the design of the filter more flexible.

Thirdly, the persistent dwell-time switching rule, as a kind of time-dependent switching rules, is used

to manage the switchings among nonlinear singularly perturbed subsystems, and this rule is more gen-

eral than dwell-time and average dwell-time switching rules. Next, sufficient conditions are provided

for guaranteeing that the filtering error system is globally uniformly exponentially stable with a passive

performance. Furthermore, on the basis of the linear matrix inequalities, the explicit expression of the

designed filter can be obtained. Finally, a tunnel diode electronic circuit is rendered as an example to

confirm the correctness and the validity of the developed filter.

Keywords Interval type-2 fuzzy model, passive filter, persistent dwell-time switching rule, singularly

perturbed nonlinear systems.
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1 Introduction

Substantial theoretical achievements and abundant practical applications about hybrid sys-
tems have sprung up in the past few years, such as [1–9]. When concentrating on the properties
of continuous dynamics and discrete dynamics, such hybrid systems are assigned as switched
systems and discrete dynamics can be abstracted as the switching rule[10–12]. Served as the
manager of the running time and the sequence of subsystems, the switching rule could charac-
terize various systems. For example, in [13], the asynchronous filtering issue was studied for the
switched systems. By employing the hidden Markov model-based technique, the authors in [14]
proposed a non-fragile state estimation method for the switched neural networks with probabilis-
tic quantized outputs. Moreover, in [15], the fault-tolerant controller that can achieve multiple
objectives was given for persistent dwell-time (PDT) switched systems. Among time-dependent
switching rules applied in the published literature, dwell-time (DT), average dwell-time (ADT)
and PDT switching rules have played vital roles and received extensive attention[16–21]. In DT
switching rule, only a single element, slow switching, occurs, which is the main factor affecting
its generalization. In this regard, it is worth highlighting that ADT switching rule contains not
only slow switching but also fast switching. This feature allows ADT switching rule to express
more situations than DT switching rule. Additionally, PDT switching rule can remove the
restriction on the frequency of fast switching in ADT switching rule to some degree. Further-
more, the activated subsystem in slow switching of PDT switching rule could sustain a shorter
running time than ADT switching rule. To sum up, PDT switching rule is more general than
DT and ADT switching rules[22]. Thereupon, PDT switching rule is adopted and excavated in
this paper.

On the other hand, it is well known that modeling complex hybrid systems, such as power
systems and nuclear reactors, frequently encounters the situation that there are some extremely
smaller parameters[23, 24]. These small parasitic parameters may result in the numerical ill-
conditioning problem, which means that some state vectors are exceedingly susceptible to the
perturbations and change quickly. If this actual situation is not considered deliberately, the
accuracy of the model will be unsatisfactory, which will bring some difficulties to analyze and
synthesize this system[25–31]. Accordingly, singularly perturbed systems (SPSs) are employed
to remedy this trouble by employing a small singular perturbation parameter ε to reflect the
separation of the fast and the slow states[24]. Since the concept of SPSs was put forward, the
number of relevant researches has grown, which has produced many achievements on this theme.
For example, the authors in [32] used an ε-dependent Lyapunov function for fast sampling SPSs
to obtain two theorems: One was ε-independent to deduce the satisfactory controller, and the
other was used to estimate the upper bound of ε. As noted in [33], the non-fragile control issue
of nonlinear SPSs with semi-Markov jump parameters was investigated.

Furthermore, SPSs under PDT switching rule may be difficult to handle directly when the
nonlinearity exists, which is an interesting topic that gains much attention[34]. The nonlinearity
is usually caused by the physical traits of devices or environmental factors, like the hysteresis
curve of transformer and high temperature. A brilliant strategy to resolve nonlinearity is
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the type-1 Takagi-Sugeno (T-S) fuzzy set theory, whose essence is a weighted sum of linear
subsystems[6, 35, 36]. The parameter uncertainties, as a vital issue, add extra complexity to the
T-S fuzzy model[37]. Commonly, some restrictive assumptions on the uncertain characteristic
of systems are exploited in most papers when settling this problem for fuzzy systems, such
as the sector bound. But the process of calculating these special structures of uncertainty
may increase the dimension of the resulting linear matrix inequalities (LMIs), which increases
the complexity of the calculation. Hence, this fact arouses a fascinating study of searching
for an alternative approach to tackle the parameter uncertainties under the special pattern
of the T-S fuzzy modeling paradigm. Fortunately, Lam and Seneviratne resolved the system
stability issue with parameter uncertainties by an interval type-2 (IT2) T-S fuzzy model based
on the type-2 fuzzy set theory in [38]. Compared to the traditional approach, this new way
describes the uncertainty more accurately by using the firing strength of grades of memberships
(GFs), which comprises the lower and upper GFs and the corresponding nonlinear weighting
functions[39]. This merit stimulates the enthusiasm of scholars to extend the scope of applying
the IT2 T-S fuzzy model. In [40], the design of the switched filter for IT2 fuzzy systems was
investigated, where the filter has the same fuzzy sets of the plant. In the sense of slow and fast
switchings, the stability of IT2 fuzzy systems was guaranteed by means of the mode-dependent
ADT method[41]. The filter with different fuzzy rules for IT2 fuzzy systems was devised in [42],
which makes the structure of the filter more flexible. As far as the authors’ knowledge, there
are scarce results on the issue of designing a filter for IT2 T-S fuzzy SPSs with PDT switching
rule. In order to narrow this blank, this work is carried out.

In summary, this paper focuses on how to get the trace of a certain signal of the switched
IT2 T-S fuzzy SPSs. The main work is to design a filter to estimate this signal. And the
filtering error system (FES) needs to be globally uniformly exponentially stable (GUES) with a
given passive performance index. In short, the main contributions of this paper can be divided
into the following three aspects:

(i) A novel system model reflecting the phenomena of nonlinearities, multiple-time-scale and
parameter uncertainties is proposed by employing PDT switching rule, the singularly perturbed
and the IT2 T-S fuzzy set theories;

(ii) Based on the establishment of ε-dependent multiple Lyapunov-like functions (MLFs),
sufficient conditions for FES to be GUES with a passive performance index can be obtained
by confining the changes of MLFs at the switching instants and during the persistent times of
each acting system;

(iii) The adopted technology based on the strength of the IT2 T-S fuzzy model, which
enables the plant and the filter to have different premise variables and membership functions
(MFs), can improve the flexibility of the filter and reduce the conservatism of the obtained
results to some extent.

The notations used are standard and one can refer to [39].
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2 Problem Formulation

An applicable mathematical model is formed and interpreted in this section and a corre-
sponding filter system is also established, then FES can be obtained. Finally, some necessary
definitions and lemmas are given.

2.1 System Construction

Considering the nonlinear SPSs with PDT switching rule, the mth rule of a discrete-time
IT2 T-S fuzzy model is established as follows:

Plant Rule m: IF g1 (x (k)) is Qm1, g2 (x (k)) is Qm2, · · · , and gξ (x (k)) is Qmξ, THEN

⎧
⎪⎪⎨

⎪⎪⎩

x (k + 1) = Aεmσ(k)x (k) +D1mσ(k)w (k) ,

z (k) = Bmσ(k)x (k) +D2mσ(k)w (k) ,

y (k) = Cmσ(k)x (k) +D3mσ(k)w (k) ,

(1)

with

Aεmσ(k) �

⎡

⎣
A1mσ(k) εA2mσ(k)

A3mσ(k) εA4mσ(k)

⎤

⎦ , D1mσ(k) �

⎡

⎣
D1smσ(k)

D1fmσ(k)

⎤

⎦ , D3mσ(k) �

⎡

⎣
D3smσ(k)

D3fmσ(k)

⎤

⎦ ,

Bmσ(k) �
[

Bsmσ(k) Bfmσ(k)

]
, Cmσ(k) � diag

{
Csmσ(k), Cfmσ(k)

}
,

x (k) �
[

xT
s (k) xT

f (k)
]T
,

in which, ε is a positive scalar and stands for the singular perturbation parameter; for the time
k ∈ N, x (k) ∈ R

κx expresses the system state vector, which includes the slow state vector
xs (k) ∈ R

κxs and the fast state vector xf (k) ∈ R
κxf satisfying κxs + κxf

= κx; y (k) ∈ R
κy ,

z (k) ∈ R
κz and w (k) ∈ l2 [0,∞) denote the measurement output, the signal to be estimated

and the outside disturbance signal, respectively; σ (k) indicates PDT switching signal valued
in a finite set S � {1, 2, · · · , ℘}, where ℘ symbolizes the total number of subsystems; for
σ (k) � i, Aεmi, Bmi, Cmi, D1mi, D2mi and D3mi are the system matrices that have appropriate
dimensions. g1 (x (k)), g2 (x (k)), · · · , and gξ (x (k)) imply the premise variables of the plant.
For m ∈ M � {1, 2, · · · , θ} and � ∈ L � {1, 2, · · · , ξ}, Qm� signifies the IT2 fuzzy set of the
mth plant rule to the function g� (x (k)), where the positive scalars θ and ξ indicate the number
of the IF-THEN rules and the number of the fuzzy sets to the plant, respectively. Through the
IT2 T-S fuzzy reasoning[43], the overall switched nonlinear SPSs (Γ ) are presented as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x (k + 1) =
θ∑

m=1

fm (x (k)) [Aεmix (k) +D1miw (k)] ,

z (k) =
θ∑

m=1

fm (x (k)) [Bmix (k) +D2miw (k)] ,

y (k) =
θ∑

m=1

fm (x (k)) [Cmix (k) +D3miw (k)] ,

(2)



INTERVAL TYPE-2 FUZZY PASSIVE FILTERING 2199

where fm (x (k)) are the grades of membership to the plant and they are assumed to be made by
blending the lower grade of membership (LGM) f

m
(x (k)) and the upper grade of membership

(UGM) fm (x (k)) with two nonlinear weighting functions, αm (x (k)) and αm (x (k)), as shown
follows:

fm (x (k)) � f̃m (x (k))
∑θ
m̃=1 f̃m̃ (x (k))

, f̃m (x (k)) � αm (x (k)) f
m

(x (k)) + αm (x (k)) fm (x (k)) ,

with

θ∑

m=1

fm (x (k)) = 1, 0 ≤ fm (x (k)) ≤ 1,

αm (x (k)) + αm (x (k)) = 1, 0 ≤ αm (x (k)) ≤ 1, 0 ≤ αm (x (k)) ≤ 1.

For the mth rule of the plant, the firing strength is represented by an interval set which is
defined and confined by

Fm (x (k)) �
[

f
m

(x (k)) fm (x (k))
]
,

where

f
m

(x (k)) �
ξ∏

�=1

μ
Qm�

(g� (x (k))) , fm (x (k)) �
ξ∏

�=1

μQm�
(g� (x (k))) ,

with

0 ≤ f
m

(x (k)) ≤ fm (x (k)) ≤ 1, 0 ≤ μ
Qm�

(g� (x (k))) ≤ μQm�
(g� (x (k))) ≤ 1,

in which μ
Qm�

(g� (x (k))) and μQm�
(g� (x (k))) express the lower membership function (LMF)

and the upper membership function (UMF), respectively.

Remark 2.1 In the IT2 T-S fuzzy theory, the parameter uncertainties are embedded in
MFs instead of system matrices, which is advantageous to the derivation and computation. An
interval set including LMF and UMF is used to describe this kind of MFs with uncertainties.
And the mixture of LGM and UGM with nonlinear weighting functions represents the actual
GFs of systems.

Remark 2.2 A piecewise function, σ (k), which is continuous on the right, can be em-
ployed as a switching signal. In order to stabilize systems and describe more practical systems,
several switching rules are defined by scholars, among which PDT switching rule is the one
adopted in this paper. Consequently, a brief introduction to PDT switching rule is given. The
time sequence generated by PDT switching rule is composed of T -portion and τ -portion. Those
two portions take place in turn. In each τ -portion, only a single subsystem is allowed to act,
whose running time should be no less than the positive scalar τPDT . At the same time, quite
a few subsystems with running times less than τPDT can act in the T -portion and the length
of each T -portion should be less than the positive scalar TPDT . In addition, a τ -portion and a
successive T -portion make up a stage.
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Remark 2.3 Figure 1 facilitates the comprehension of the generation and the rule of
PDT switching sequence. Along the abscissa axis denoting the time, the minimum intervals,
such as

(
klg , klg + 1

)
, are the sampling intervals; the intervals similar to

(
klg−1, klg

)
mean the

running intervals of acting subsystems; otherwise, τ (g) � klg+1 − klg and T (g) � klg+1 − klg+1

represent running times of τ -portion and T -portion in the gth stage, respectively. And the
vertical axis signifies the value of the energy function. Some special symbols are employed for
the following process, and they are stated here as well: T im(Δt) shows the sustained running
time of the subsystem Δt; Num

(
klg−1 , klg

)
denotes the total number of acting subsystems in

the interval
[
klg−1 , klg

)
. Furthermore, we can derive the following inequality[44]:

0 ≤ Num (t, k) ≤
(

k − t

τPDT + TPDT
+ 1
)

(TPDT + 1) . (3)

T-portion -portion
t

th stage th stage

T

V

0 k
gl
k

1gl
k 1gl

k
1gl

k+1gl
k

1+1gl
k +1

gl
k

g-1g

-portion-portion -portion-portion
a

Figure 1 The sketch map of the energy function variation subject to PDT switching rule

Definition 2.4 (see [44]) PDT switching rule has the following features with two positive
constants τPDT and TPDT :

(i) There is a T -portion between every two neighbouring τ -portions;
(ii) The duration of τ -portion is no less than τPDT and the duration of T -portion is no more

than TPDT ;
(iii) A single subsystem is activated in a τ -portion, and in T -portion, a set of subsystems

whose running times are shorter than τPDT can switch among each other.

2.2 Filter Form

With the aid of defining the filter state vector x̂ (k), the output signal y (k) from the plant,
as well as the assumption that the mode of the filter shares the same one of the plant, one
can gain the output signal of the filter ẑ (k) as the estimate signal to z (k). The IT2 T-S fuzzy
format of the filter is described by:

Filter Rule n: IF ĝ1 (x (k)) is Q̂n1, ĝ2 (x (k)) is Q̂n2, · · · , and ĝξ̂ (x (k)) is Q̂nξ̂, THEN

⎧
⎨

⎩

x̂ (k + 1) = Ânix̂ (k) + Êniy (k) ,

ẑ (k) = B̂nix̂ (k) ,
(4)
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with

x̂ (k) �

⎡

⎣
x̂s (k)

x̂f (k)

⎤

⎦ , Âni �

⎡

⎣
Â1ni Â2ni

Â3ni Â4ni

⎤

⎦ , Êni �

⎡

⎣
Ê1ni Ê2ni

Ê3ni Ê4ni

⎤

⎦ , B̂ni �
[

B̂sni B̂fni

]
,

in which, Âni, B̂ni and Êni are the filter gains to be determined. ĝ1 (x (k)), ĝ2 (x (k)), · · · , and
ĝξ̂ (x (k)) imply the premise variables of the filter. For n ∈ N � {1, 2, · · · , χ} and �̂ ∈ L̂ �
{

1, 2, · · · , ξ̂
}

, Q̂n�̂ signifies the IT2 fuzzy set of nth filter rule to the function ĝ�̂ (x (k)), where

the positive scalars χ and ξ̂ indicate the number of the IF-THEN rules and the number of the
fuzzy sets to the filter, separately. Through the IT2 T-S fuzzy reasoning, the overall switched
IT2 T-S fuzzy filter (Γ̂ ) is described as follows:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

x̂ (k + 1) =
χ∑

n=1

hn (x (k))
[
Ânix̂ (k) + Êniy (k)

]
,

ẑ (k) =
χ∑

n=1

hn (x (k)) B̂nix̂ (k) ,
(5)

in which hn (x (k)) are the grades of membership to the filter.
The IT2 T-S fuzzy grades of membership towards the filter, hn (x (k)), are assumed to be

composed by h̃n (x (k)), which is obtained by blending LGM hn (x (k)) and UGM hn (x (k)) of
the filter with two nonlinear weighting functions, β

n
(x (k)) and βn (x (k)), as exhibited below:

hn (x (k)) � h̃n (x (k))
∑χ

ñ=1 h̃ñ (x (k))
, h̃n (x (k)) � β

n
(x (k))hn (x (k)) + βn (x (k))hn (x (k)) ,

with
χ∑

n=1

hn (x (k)) = 1, 0 ≤ hn (x (k)) ≤ 1,

β
n

(x (k)) + βn (x (k)) = 1, 0 ≤ β
n

(x (k)) ≤ 1, 0 ≤ βn (x (k)) ≤ 1.

For the nth rule of the filter, the firing strength is defined by an interval set satisfying:

Hn (x (k)) �
[

hn (x (k)) hn (x (k))
]
,

where

hn (x (k)) �
ξ̂∏

�̂=1

μ
Q̂n�̂

(
ĝ�̂ (x (k))

)
, hn (x (k)) �

ξ̂∏

�̂=1

μQ̂
n�̂

(
ĝ�̂ (x (k))

)
,

with

0 ≤ hn (x (k)) ≤ hn (x (k)) ≤ 1, 0 ≤ μ
Q̂

n�̂

(
ĝ�̂ (x (k))

) ≤ μQ̂
n�̂

(
ĝ�̂ (x (k))

) ≤ 1,

in which μ
Q̂n�̂

(
ĝ�̂ (x (k))

)
and μQ̂

n�̂

(
ĝ�̂ (x (k))

)
express LMF and UMF of the filter, respectively.
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2.3 Filtering Error System

Consider the plant (Γ ) as well as the filter (Γ̂ ) and define the augmented state vector x̃ (k) �
[

xT (k) x̂T (k)
]T

, the error signal z̃ (k) � z (k) − ẑ (k) as well as the grades of membership to

FES �mn (x (k)) � fm (x (k)) hn (x (k)) for ∀m ∈ M, n ∈ N such that the following conditions
hold:

1 =
θ∑

m=1

fm (x (k)) =
χ∑

n=1

hn (x (k)) =
θ∑

m=1

χ∑

n=1

fm (x (k))hn (x (k)) =
θ∑

m=1

χ∑

n=1

�mn (x (k)) .

From the above discussion, FES (Γ̃ ) can be deduced as:
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

x̃ (k + 1) =
θ∑

m=1

χ∑

n=1

�mn (x (k))
[
Ãεmnix̃ (k) + D̃1mniw (k)

]
,

z̃ (k) =
θ∑

m=1

χ∑

n=1

�mn (x (k))
[
B̃mnix̃ (k) + D̃2miw (k)

]
,

(6)

with

Ãεmni �

⎡

⎣
Aεmi 0

ÊniCmi Âni

⎤

⎦ , D̃1mni �

⎡

⎣
D1mi

ÊniD3mi

⎤

⎦ , B̃mni �
[

Bmi −B̂ni
]
, D̃2mi � D2mi.

The method in [45] is adopted for further analyzing FES in this note, which is recalled as
follows for ϕ ∈ N, ψ ∈ N:

(i) The interest state space Ω is separated equally into ϕ state subspaces Ωϑ with Ω =
∪ϕϑ=1Ωϑ;

(ii) The footprint of uncertainty (FOU) Λ is divided equally into ψ + 1 subspaces Λρ with
Λ = ∪ψ+1

ρ=1 Λ
ρ
.

With the aid of the different LGM and UGM in Ωϑ and Λρ , the grades of membership to
FES have another expression for ∀ρ ∈ R � {1, 2, · · · , ψ + 1}:

�mn (x (k)) �
ψ+1∑

ρ=1

τmnρ (x (k))
[
γ
mnρ

(x (k))�mnρ (x (k)) + γmnρx (k)�mnρ (x (k))
]
, (7)

in which

τmnρ (x (k)) �

⎧
⎨

⎩

1, �mn (x (k)) ∈ the FOU subspace ρ,

0, otherwise,
(8)

with
θ∑

m=1

χ∑

n=1

�mn (x (k)) = 1, γ
mnρ

(x (k)) + γmnρ (x (k)) = 1,

0 ≤ �mn (x (k)) , 0 ≤ γ
mnρ

(x (k)) ≤ 1, 0 ≤ γmnρ (x (k)) ≤ 1.

On the other hand, the variable scalar ε�ν�ϑρ (x� (k)) is introduced to format LGM and
UGM in different FOU, and is defined by the below three limitations:
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(i) When � takes values as 1, 2, · · · ,κx, ν� ∈ {1, 2}, and for x (k) ∈ Ωϑ, ϑ ∈ R̃ �
{1, 2, · · · , ϕ}, the inequalities 0 ≤ ε�ν�ϑρ (x� (k)) ≤ 1 as well as the equality ε�1ϑρ (x� (k)) +
ε�2ϑρ (x� (k)) = 1 hold;

(ii) The equation ε�ν�ϑρ (x� (k)) = 0 holds when x (k) /∈ Ωϑ;
(iii)

∑ϕ
ϑ=1

∑2
ν1=1 · · ·

∑2
νκx =1

∏
κx

�=1 ε�ν�ϑρ (x� (k)) = 1.
In this way, LMF and UMF in different FOU are expressed as follows for ∀m ∈ M, ∀n ∈ N ,

∀ρ ∈ R:

�mnρ (x (k)) �
ϕ∑

ϑ=1

2∑

ν1=1

· · ·
2∑

νκx =1

κx∏

�=1

ε�ν�ϑρ (x� (k))ωmnν1···νκxϑρ
,

�mnρ (x (k)) �
ϕ∑

ϑ=1

2∑

ν1=1

· · ·
2∑

νκx =1

κx∏

�=1

ε�ν�ϑρ (x� (k))ωmnν1···νκxϑρ,

satisfying
0 ≤ ωmnν1···νιϑρ ≤ ωmnν1···νιϑρ ≤ 1.

The target of this paper is to design a filter such that FES is GUES with a passive perfor-
mance. Some necessary definitions and lemmas are given below.

Definition 2.5 (see [15]) The FES (Γ̃ ) is GUES, if there exist scalars 0 < φ̃ < 1, δ > 0
and the below inequality is satisfied under the condition of zero disturbance:

‖x̃ (k)‖2 ≤ δφ̃k−k0 ‖x̃ (k0)‖2
, k0 ≤ k.

Definition 2.6 (see [46]) The FES (Γ̃ ) is passive, if the below inequality is achieved
under the condition of zero-initial state for 0 < r:

0 ≤
∞∑

k=0

[
sym

{
z̃T (k)w (k)

}
+ r2wT (k)w (k)

]
. (9)

Lemma 2.7 (see [47]) For two scalars 0 < ε ≤ ε, and two symmetric matrices H1, H2

that have the same dimension, the below necessary and sufficient condition exists:

H1 + εH2 < 0 ⇐⇒
⎧
⎨

⎩

H1 ≤ 0,

H1 + εH2 < 0.

Lemma 2.8 (see [48]) For three real matrices Amni, B > 0, Cmni, and a scalar �mn ∈
[0, 1], the following inequality holds:
[

θ∑

m=1

χ∑

n=1

�mnAmni

]T

Bi
[

θ∑

m=1

χ∑

n=1

�mnCmni
]

≤ 1
2

θ∑

m=1

χ∑

n=1

�mn

[AT
mniBiCmni + CT

mniBiAmni

]
.

Remark 2.9 In every state subspace, the value of uncertain GMs is a linear sum of
LGM and UGM, and is partly determined by some nonlinear functions, such as αm (x (k)) and
αm (x (k)). The designed filter can work under different forms of these nonlinear functions. In
this sense, such uncertainties can illustrate the universality of our methods.
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3 Main Results

In this section, GUES and passive performance issues of FES are studied. And then, via
some decoupling and matrix transformation techniques, the explicit format of the filter will
be obtained. Moreover, in the rest of the paper, f̃

m
(x (k)), f̃m (x (k)), h̃n (x (k)), h̃n (x (k)),

τmnρ (x (k)), �mn (x (k)), �mnρ (x (k)), �mnρ (x (k)), γ
mnρ

(x (k)), γmnρ (x (k)) are separately

rewritten as f̃
m

, f̃m, h̃n, h̃n, τmnρ, �mn, �mnρ, �mnρ, γmnρ, γmnρ for simplicity.

Theorem 3.1 Considering that the state space and FOU are partitioned into ϕ(∈ N
+)

and ψ + 1(∈ N
+) subspaces separately, for the admissible switching sequence obeying PDT

switching rule and given scalars 0 < θ, 0 < χ, 0 < ε , 0 < r, 0 < TPDT , 0 < τPDT , 0 < λ < 1,
1 < μ, λμ �= 1, FES (Γ̃ ) is GUES with a passive performance level r, if for ∀m ∈ M, ∀n ∈ N ,
∀ρ ∈ R, ∀i� ∈ {1, 2}, i �= j, and i, j ∈ S, there exist symmetric matrices P εi , Xi, 0 ≤ Wmnρi,
0 ≤ Ymnρi, 0 ≤ Vmnρi, 0 ≤ Umnρi, 0 ≤ Rmnρi such that the following conditions hold:

(TPDT + 1) ln (μ) + (TPDT + τPDT ) ln (λ) < 0, (10)

P εi > 0, (11)

P εi − μP εj < 0, (12)

ωΞ ε
1mnρi + ω2Xi + ω3Ymnρi < 0, (13)

Ξ ε
2mnρi + Xi + Ymnρi > 0, (14)

r̃ > 0, (15)

where

ω � ωmnν1···νκxϑρ, ω2 � ωmnν1···νκxϑρ −
1
θχ
, ω3 � ωmnν1···νκxϑρ − ωmnν1···νκxϑρ

,

r1 � μ
TP DT +1+

TPDT +1
τP DT +TPDT , r2 � λμ

TPDT +1
τPDT +TPDT , r̃ � r1 (1 − λ)

r2 (1 − r2)
− 1
r2
,

Ξ ε
1mnρi �

⎡

⎣
Ξ ε(1,1)

1mnρi Ξ ε(1,2)
1mnρi

∗ Ξ ε(2,2)
1mnρi

⎤

⎦ , Ξ ε
2mnρi �

⎡

⎣
Ξ ε(1,1)

2mnρi Ξ ε(1,2)
2mnρi

∗ Ξ ε(2,2)
2mnρi

⎤

⎦ ,

with

Ξ ε(1,1)
1mnρi � ÃεTmni (P

ε
i + Vmnρi) Ãεmni − λP εi + B̃T

mni (r̃I + Umnρi) B̃mni,
Ξ ε(1,2)

1mnρi � ÃεTmni (P
ε
i + Vmnρi) D̃1mni − B̃T

mni + B̃T
mni (r̃I + Umnρi) D̃2mni,

Ξ ε(2,2)
1mnρi � D̃T

1mni (P
ε
i + Vmnρi) D̃1mni − r2I − sym

{
D̃2mi

}
+ D̃T

2mni (r̃I + Umnρi) D̃2mni,

Ξ ε(1,1)
2mnρi � ÃεTmni (P

ε
i −Wmnρi) Ãεmni − λP εi + B̃T

mni (r̃I −Rmnρi) B̃mni,

Ξ ε(1,2)
2mnρi � ÃεTmni (P

ε
i −Wmnρi) D̃1mni − B̃T

mni + B̃T
mni (r̃I −Rmnρi) D̃2mni,

Ξ ε(2,2)
2mnρi � D̃T

1mni (P
ε
i −Wmnρi) D̃1mni − r2I − sym

{
D̃2mi

}
+ D̃T

2mni (r̃I −Rmnρi) D̃2mni.

Proof Choose the MLF candidate for the FES as

Vσ(k) (x̃ (k)) � x̃T (k)P εσ(k)x̃ (k) . (16)
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The target function is exhibited as follows when the subsystem i is running

Ji (k) � Vi (x̃ (k + 1)) − λVi (x̃ (k))

− [sym
{
z̃T (k)w (k)

}
+ r2wT (k)w (k) − r̃z̃T (k) z̃ (k)

]
. (17)

The introduction of some slack matrices satisfying the below inequalities can be beneficial
to the rest steps for finding the desired filter[49]:

[
θ∑

m=1

χ∑

n=1

ψ+1∑

ρ=1

τmnρ

(
γ
mnρ

�mnρ + γmnρ�mnρ

)
− 1

]

Xi = 0,

θ∑

m=1

χ∑

n=1

ψ+1∑

ρ=1

τmnργmnρ
(
�mnρ −�mnρ

)Ymnρi ≥ 0,

θ∑

m=1

χ∑

n=1

ψ+1∑

ρ=1

τmnρ�mnρVmnρi ≥ 0,

θ∑

m=1

χ∑

n=1

ψ+1∑

ρ=1

τmnργmnρ

(
�mnρ −�mnρ

)Wmnρi ≥ 0,

θ∑

m=1

χ∑

n=1

ψ+1∑

ρ=1

τmnρ�mnρUmnρi ≥ 0,

θ∑

m=1

χ∑

n=1

ψ+1∑

ρ=1

τmnργmnρ

(
�mnρ −�mnρ

)Rmnρi ≥ 0.

By Lemma 2.8 and the aforesaid six conditions, a straightforward result is demonstrated as
follows:

Ji (k) = x̃T (k + 1)P εi x̃ (k + 1) − λx̃T (k)P εi x̃ (k) − sym
{
z̃T (k)w (k)

}

−r2wT (k)w (k) + r̃z̃T (k) z̃ (k)

=

{
θ∑

m=1

χ∑

n=1

�mn

[
Ãεmnix̃ (k) + D̃1mniw (k)

]
}T

×P εi
{

θ∑

m=1

χ∑

n=1

�mn

[
Ãεmnix̃ (k) + D̃1mniw (k)

]
}

+r̃

{
θ∑

m=1

χ∑

n=1

�mn

[
B̃mnix̃ (k) + D̃2miw (k)

]
}T

×
{

θ∑

m=1

χ∑

n=1

�mn

[
B̃mnix̃ (k) + D̃2miw (k)

]
}

−sym

⎧
⎨

⎩

[
θ∑

m=1

χ∑

n=1

�mn

[
B̃mnix̃ (k) + D̃2miw (k)

]
]T

w (k)

⎫
⎬

⎭

−λx̃T (k)P εi x̃ (k) − r2wT (k)w (k)
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≤
θ∑

m=1

χ∑

n=1

�mn

[
Ãεmnix̃ (k) + D̃1mniw (k)

]T
P εi

[
Ãεmnix̃ (k) + D̃1mniw (k)

]

−
θ∑

m=1

χ∑

n=1

�mnsym
{[
B̃mnix̃ (k) + D̃2miw (k)

]T
w (k)

}

+r̃
θ∑

m=1

χ∑

n=1

�mn

[
B̃mnix̃ (k) + D̃2miw (k)

]T [
B̃mnix̃ (k) + D̃2miw (k)

]

+ηT (k)

{[
θ∑

m=1

χ∑

n=1

ψ+1∑

ρ=1

τmnρ

(
γ
mnρ

�mnρ + γmnρ�mnρ

)
− 1

]

Xi
}

η (k)

+ηT (k)

[
θ∑

m=1

χ∑

n=1

ψ+1∑

ρ=1

τmnρ

(
1 − γ

mnρ

) (
�mnρ −�mnρ

)Ymnρi
]

η (k)

+
θ∑

m=1

χ∑

n=1

ψ+1∑

ρ=1

τmnρ�mnρ

[
Ãεmnix̃ (k) + D̃1mniw (k)

]T
Vmnρi

×
[
Ãεmnix̃ (k) + D̃1mniw (k)

]
+

θ∑

m=1

χ∑

n=1

ψ+1∑

ρ=1

τmnργmnρ

(
�mnρ −�mnρ

)

×
[
Ãεmnix̃ (k) + D̃1mniw (k)

]T
Wmnρi

[
Ãεmnix̃ (k) + D̃1mniw (k)

]

+
θ∑

m=1

χ∑

n=1

ψ+1∑

ρ=1

τmnρ�mnρ

[
B̃mnix̃ (k) + D̃2miw (k)

]T
Umnρi

×
[
B̃mnix̃ (k) + D̃2miw (k)

]
+

θ∑

m=1

χ∑

n=1

ψ+1∑

ρ=1

τmnργmnρ

(
�mnρ −�mnρ

)

×
[
B̃mnix̃ (k) + D̃2miw (k)

]T
Rmnρi

[
B̃mnix̃ (k) + D̃2miw (k)

]

−λx̃T (k)P εi x̃ (k) − r2wT (k)w (k)

= ηT (k)

{
θ∑

m=1

χ∑

n=1

ψ+1∑

ρ=1

τmnρ
[
�mnρΞ ε

1mnρi +�mnρXi +
(
�mnρ −�mnρ

)Ymnρi
]−Xi

}

η (k)

−ηT (k)

[
θ∑

m=1

χ∑

n=1

ψ+1∑

ρ=1

τmnργmnρ

(
�mnρ −�mnρ

) (
Ξ ε

2mnρi + Ymnρi + Xi
)
]

η (k) ,

with
η (k) �

[

x̃T (k) wT (k)
]T
.

From (13), the following inequality holds:
ϕ∑

ϑ=1

2∑

ν1=1

· · ·
2∑

νκx =1

κx∏

�=1

ε�ν�ϑρ (x� (k))
(
ωΞ ε

1mnρi + ω2Xi + ω3Ymnρi
)
< 0,

which indicates that

�mnρΞ ε
1mnρi +

(

�mnρ − 1
θχ

)

Xi +
(
�mnρ −�mnρ

)Ymnρi < 0. (18)
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Combining (18) and (8), we can get that

ψ+1∑

ρ=1

τmnρ

[

�mnρΞ ε
1mnρi +

(

�mnρ − 1
θχ

)

Xi +
(
�mnρ −�mnρ

)Ymnρi
]

< 0.

Therefore, it follows that

θ∑

m=1

χ∑

n=1

ψ+1∑

ρ=1

τmnρ
[
�mnρΞ ε

1mnρi +�mnρXi +
(
�mnρ −�mnρ

)Ymnρi
]−Xi < 0.

Via the above discussion, the inequality Ji (k) ≤ 0 can be obtained from (13) and (14).
When w (k) ≡ 0, from Ji (k) ≤ 0 and condition (12), ones can know that Vi (x̃ (k + 1)) ≤

λVi (x̃ (k)) and 0 ≤ Vi (x̃ (k)) ≤ μVj (x̃ (k)). Based on Figure 1 and 0 < λ < 1, τ (g) ≥ τPDT , for
k ∈ [klg−1 , klg

)
, it can be inferred that

Vσ(k) (x̃ (k)) ≤ μNum(klg−1 ,k)λk−klg−1Vσ(klg−1)
(
x̃
(
klg−1

))

≤ (μλ)T
(g)

μλτ
(g)
Vσ(klg−1)

(
x̃
(
klg−1

)) ≤ φgVσ(klg−1)
(
x̃
(
klg−1

))
,

with
φg � (μλ)T

(g)

μλτP DT .

Thereafter, consider the following two cases:
(i) When μλ < 1, it can be observed that φg < 1;
(ii) When μλ > 1, φg ≤ (μλ)TPDT μλτPDT < 1 can be achieved under the condition (10) and

T (g) ≤ TPDT .
Then, denoting k0 and V0 (x̃ (k0)) as the initial time and the initial value of Lyapunov

function, respectively, it follows that

Vσ(k) (x̃ (k)) ≤ φgVσ(k0) (x̃ (k0)) ,

where

φ �

⎧
⎨

⎩

max
g̃∈[0,g]

φg̃, μλ < 1,

(μλ)TP DT μλτP DT , μλ > 1,

satisfying
φ < 1,

which means

‖x̃ (k)‖2 ≤
φg maxσ(k)∈S λmax

(
P εσ(k)

)

minσ(k)∈S λmin

(
P εσ(k)

) ‖x̃ (k0)‖2 ≤ δφ̃k−k0 ‖x̃ (k0)‖2
,

with

φ̃ � max
k0≤k

(
φ

g
k−k0+1

)
, δ �

φ̃maxσ(k)∈S λmax

(
P εσ(k)

)

minσ(k)∈S λmin

(
P εσ(k)

) .
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By Definition 2.5, the conditions from Theorem 3.1 can guarantee that FES is GUES.
On the other hand, from Ji (k) ≤ 0, ones can know that

Vi (x̃ (k + 1)) ≤ λVi (x̃ (k)) + sym
{
z̃T (k)w (k)

}
+ r2wT (k)w (k) − r̃z̃T (k) z̃ (k) . (19)

When k ∈ [klg−1 , klg
)

and V0 (x̃ (k0)) = 0, it can be inferred from (12) and the above inequality
that

Vσ(k) (x̃ (k))

≤
k−1∑

t=k0

μNum(t,k)λk−t−1
[
sym

{
z̃T (t)w (t)

}
+ r2wT (t)w (t) − r̃z̃T (t) z̃ (t)

]

=
k−1∑

t=k0

μNum(t,k)λk−t−1

[(

rw (t) +
1
r
z̃ (t)

)T(

rw (t) +
1
r
z̃ (t)

)

− r1 (1 − λ)
r2 (1 − r2)

z̃T (t) z̃ (t)

]

.

Therefore, we have

k−1∑

t=k0

μNum(t,k)λk−t−1

(

rw (t) +
1
r
z̃ (t)

)T (

rw (t) +
1
r
z̃ (t)

)

≥ r1 (1 − λ)
r2 (1 − r2)

k−1∑

t=k0

μNum(t,k)λk−t−1 z̃T (t) z̃ (t) .

Considering μ > 1, 0 < λ < 1 and inequality (3), we can get that

k−1∑

t=k0

rk−t−1
2

(

rw (t) +
1
r
z̃ (t)

)T(

rw (t) +
1
r
z̃ (t)

)

≥ (1 − λ)
r2 (1 − r2)

k−1∑

t=k0

λk−t−1 z̃T (t) z̃ (t) .

Then, we can deduce that

∞∑

k=k0+1

k−1∑

t=k0

rk−t−1
2

(

rw (t) +
1
r
z̃ (t)

)T (

rw (t) +
1
r
z̃ (t)

)

≥ (1 − λ)
r2 (1 − r2)

∞∑

k=k0+1

k−1∑

t=k0

λk−t−1z̃T (t) z̃ (t) ,

from which, we can obtain

∞∑

t=k0

(

rw (t) +
1
r
z̃ (t)

)T(

rw (t) +
1
r
z̃ (t)

)

≥ 1
r2

∞∑

t=k0

z̃T (t) z̃ (t) .

Concluding the above discussion, the inequality (9) holds, which implies that FES meets a
given passive performance index under the criteria in Theorem 3.1. This ends this proof.
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Remark 3.2 In the process of settling the fuzzy summation, two scalars with the explicit
relationship of size, ωmnν1···νκxϑρ and ωmnν1···νκxϑρ

, are obtained across the dividing processes
of FOU and the state space. It is easily acknowledged that the utilization of some LMIs stemmed
from this relationship can reduce the conservatism of stability conditions by large. Besides, the
results in Theorem 3.1 also take the information of MFs fully into consideration by these two
scalars. By contrast, the conclusions based on the type-1 T-S fuzzy model in most references are
not related to the message of MFs. This point also displays the advancement and superiority
of the type-2 T-S fuzzy model compared to the type-1 T-S fuzzy model.

Theorem 3.3 Considering that the state space and FOU are divided into ϕ(∈ N
+) and

ψ+1(∈ N
+) subspaces separately, for the admissible switching sequence obeying PDT switching

rule and given scalars ζ1, ζ2, ζ̃1, ζ̃2, 0 < θ , 0 < χ, 0 < ε, 0 < r, 0 < TPDT , 0 < τPDT ,
0 < λ < 1, 1 < μ, λμ �= 1 and symmetric matrices G � diag{G1,G2}, G̃ � diag{G̃1, G̃2}, FES
(Γ̃ ) is GUES with a passive performance level r for ε ∈ (0, ε], if for ∀m ∈ M, ∀n ∈ N , ∀ρ ∈ R,
∀i� ∈ {1, 2}, i �= j, and i, j ∈ S, there exist symmetric matrices P1i ∈ R

2κx , P2i ∈ R
2κx ,

Wmnρi ∈ R
κx , Xi �

[X1i X2i

∗ X3i

] ∈ R
2κx+1, 0 ≤ Ymnρi �

[ Y1mnρi Y2mnρi

∗ Y3mnρi

]
∈ R

2κx+1, 0 ≤ Vmnρi ∈
R

κx , 0 < Ũmnρi ≤ (r̃I)−1, R̃mnρi, and matrices Åni, B̊ni, E̊ni, Imnρi �
[ I1mnρi ζ1I3ni

I2mnρi ζ2I3ni

]
∈ R

2κx ,

Ĩmnρi �
[ Ĩ1mnρi ζ̃1I3ni

Ĩ2mnρi ζ̃2I3ni

]
∈ R

2κx , such that (10), (15) and the following conditions hold:

P1i −Wmnρi < 0,Pεi −Wmnρi < 0 (20)

P1i > 0, (21)

Pεi > 0, (22)

P1i − μP1j < 0, (23)

Pεi − μPεj < 0, (24)

Ξ̃1mnρi > 0, (25)

Ξ ε
1mnρi > 0, (26)

Ξ̃2mnρi < 0, (27)

Ξ ε
2mnρi < 0, (28)

where

Ξ̃1mnρi �

⎡

⎢
⎢
⎢
⎢
⎢
⎣

Ξ̃ (1,1)
1mnρi 0 Ξ̃ (1,3)

1mnρi Ξ̃ (1,4)
1mnρi

∗ −R̃mnρi B̃mni D̃2mi

∗ ∗ Ξ̃ (3,3)
1mnρi Ξ̃ (3,4)

1mnρi

∗ ∗ ∗ Ξ̃ (4,4)
1mnρi

⎤

⎥
⎥
⎥
⎥
⎥
⎦

,

Ξ ε
1mnρi �

⎡

⎢
⎢
⎢
⎢
⎢
⎣

Ξ̃ ε(1,1)
1mnρi 0 Ξ̃ ε(1,3)

1mnρi Ξ̃ (1,4)
1mnρi

∗ −R̃mnρi B̃mni D̃2mi

∗ ∗ Ξ̃ ε(3,3)
1mnρi Ξ̃ (3,4)

1mnρi

∗ ∗ ∗ Ξ̃ (4,4)
1mnρi

⎤

⎥
⎥
⎥
⎥
⎥
⎦

,
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Ξ̃2mnρi �

⎡

⎢
⎢
⎢
⎢
⎢
⎣

Ξ̃ (1,1)
2mnρi 0 Ξ̃ (1,3)

2mnρi Ξ̃ (1,4)
2mnρi

∗ −Ũmnρi ω1B̃mni ω1D̃2mi

∗ ∗ Ξ̃ (3,3)
2mnρi Ξ̃ (3,4)

2mnρi

∗ ∗ ∗ Ξ̃ (4,4)
2mnρi

⎤

⎥
⎥
⎥
⎥
⎥
⎦

,

Ξ ε
2mnρi �

⎡

⎢
⎢
⎢
⎢
⎢
⎣

Ξ̃ ε(1,1)
2mnρi 0 Ξ̃ ε(1,3)

2mnρi Ξ̃ (1,4)
2mnρi

∗ −Ũmnρi ω1B̃mni ω1D̃2mi

∗ ∗ Ξ̃ ε(3,3)
2mnρi Ξ̃ (3,4)

2mnρi

∗ ∗ ∗ Ξ̃ (4,4)
2mnρi

⎤

⎥
⎥
⎥
⎥
⎥
⎦

,

with

Ami �

⎡

⎣
A1mi 0

A3mi 0

⎤

⎦ , Aεmi �

⎡

⎣
0 A2mi

0 A4mi

⎤

⎦ , X2i �

⎡

⎣
X12i

X22i

⎤

⎦ , Y2mnρi �

⎡

⎣
Y12mnρi

Y12mnρi

⎤

⎦ ,

Ξ
(1,3)

1mnρi �

⎡

⎣
I1mnρiA

ε
mi 0

I2mnρiA
ε
mi 0

⎤

⎦ , Ξ̃ (1,3)
1mnρi �

⎡

⎣
I1mnρiAmi + ζ1E̊niCmi ζ1Åni

I2mnρiAmi + ζ2E̊niCmi ζ2Åni

⎤

⎦ ,

Ξ
(1,3)

2mnρi �

⎡

⎣
Ĩ1mnρiA

ε
mi 0

Ĩ2mnρiA
ε
mi 0

⎤

⎦ , Ξ̃ (1,3)
2mnρi �

⎡

⎣
ω1

(
Ĩ1mnρiAmi + ζ1E̊niCmi

)
ω1ζ̃1Åni

ω1

(
Ĩ2mnρiAmi + ζ2E̊niCmi

)
ω1ζ̃2Åni

⎤

⎦ ,

Ξ̃ (1,4)
1mnρi �

⎡

⎣
I1mnρiD1mi + ζ1E̊niD3mi

I2mnρiD1mi + ζ2E̊niD3mi

⎤

⎦ , Ξ̃ (1,4)
2mnρi �

⎡

⎣
ω1

(
Ĩ1mnρiD1mi + ζ̃1E̊niD3mi

)

ω1

(
Ĩ2mnρiD1mi + ζ̃2E̊niD3mi

)

⎤

⎦ ,

Ξ̃ (3,4)
1mnρi �

⎡

⎣
−BT

mi + X12i + Y12mnρi

B̊T
ni + X22i + Y22mnρi

⎤

⎦ , Ξ̃ (3,4)
2mnρi �

⎡

⎣
−ωBT

mi + ω2X12i + ω3Y12mnρi

ωB̊T
ni + ω2X22i + ω3Y22mnρi

⎤

⎦ ,

Ξ̃ (1,1)
1mnρi � G (P1i −Wmnρi)GT + sym

{ImnρiGT
}
,

Ξ̃ (1,1)
2mnρi � G̃ (P1i + Vmnρi) G̃T + sym

{
ĨmnρiG̃T

}
,

Ξ̃ ε(1,1)
1mnρi � Ξ̃ (1,1)

1mnρi + εGP2iGT, Ξ̃ ε(1,1)
2mnρi � Ξ̃ (1,1)

2mnρi + εG̃P2iG̃T, Ξ̃ ε(1,3)
1mnρi � Ξ̃ (1,3)

1mnρi + εΞ
(1,3)

1mnρi,

Ξ̃ ε(1,3)
2mnρi � Ξ̃ (1,3)

2mnρi + εω1Ξ
(1,3)

2mnρi, Ξ̃ (3,3)
1mnρi � −λP1i + X1i + Y1mnρi, Ξ̃ ε(3,3)

1mnρi � Ξ̃ (3,3)
1mnρi − ελP2i,

Ξ̃ (3,3)
2mnρi � −λωP1i + ω2X1i + ω3Y1mnρi, Ξ̃ ε(3,3)

2mnρi � Ξ̃ (3,3)
2mnρi − ελωP2i,

Ξ̃ (4,4)
1mnρi � −sym

{
D̃2mi

}
− r2I + X3i + Y3mnρi, ω1 �

√
ω, Pεi � P1i + εP2i,

Ξ̃ (4,4)
2mnρi � −sym

{
ωD̃2mi

}
− ωr2I + ω2X3i + ω3Y3mnρi.

In this case, the gains of filter are presented as follows:
[

Âni B̂ni Êni

]
=
[

I−1
3niÅni B̊ni I−1

3niE̊ni

]
.
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Proof Combining Lemma 2.7 with (21)–(28), it can be deduced that for ε ∈ (0, ε]:

P εi > 0, (29)

P εi − μP εj < 0, (30)

Ξ ε
1mnρi > 0, (31)

Ξ ε
2mnρi < 0, (32)

where

P εi � P1i + εP2i,

Ξ ε
1mnρi �

⎡

⎢
⎢
⎢
⎢
⎢
⎣

Ξ ε(1,1)
1mnρi 0 Ξ ε(1,3)

1mnρi Ξ̃ (1.4)
1mnρi

∗ −R̃mnρi B̃mni D̃2mi

∗ ∗ Ξ ε(3,3)
1mnρi Ξ̃ (3.4)

1mnρi

∗ ∗ ∗ Ξ̃ (4.4)
1mnρi

⎤

⎥
⎥
⎥
⎥
⎥
⎦

,

Ξ ε
2mnρi �

⎡

⎢
⎢
⎢
⎢
⎢
⎣

Ξ ε(1,1)
2mnρi 0 Ξ ε(1,3)

2mnρi Ξ̃ (1.4)
2mnρi

∗ −Ũmnρi ω1B̃mni ω1D̃2mi

∗ ∗ Ξ ε(3,3)
2mnρi Ξ̃ (3.4)

2mnρi

∗ ∗ ∗ Ξ̃ (4.4)
2mnρi

⎤

⎥
⎥
⎥
⎥
⎥
⎦

,

with

Ξ ε(1,1)
1mnρi � Ξ̃ (1,1)

1mnρi + εGP2iGT, Ξ ε(1,3)
1mnρi � Ξ̃ (1,3)

1mnρi + εΞ
(1,3)

1mnρi, Ξ ε(3,3)
1mnρi � Ξ̃ (3,3)

1mnρi − ελP2i,

Ξ ε(1,1)
2mnρi � Ξ̃ (1,1)

2mnρi + εG̃P2iG̃T, Ξ ε(1,3)
2mnρi � Ξ̃ (1,3)

2mnρi + εω1Ξ
(1,3)

2mnρi, Ξ ε(3,3)
2mnρi � Ξ̃ (3,3)

2mnρi − ελωP2i.

It is easily observed that (29) and (30) are equivalent to (11) and (12), respectively. Con-
sidering (20), the following inequality holds:

[G (P εi −Wmnρi) + Imnρi] (P εi −Wmnρi)
−1 [G (P εi −Wmnρi) + Imnρi]T < 0,

which follows that

G (P εi −Wmnρi)GT + ImnρiGT + GIT
mnρi < −Imnρi (P εi −Wmnρi)

−1 IT
mnρi. (33)

Applying inequality (33) to (31), ones have

0 < Ξ ε
1mnρi < Ξ̊ ε

1mnρi, (34)

where

Ξ̊ ε
1mnρi �

⎡

⎢
⎢
⎢
⎢
⎢
⎣

Ξ̊ ε(1,1)
1mnρi 0 Ξ ε(1,3)

1mnρi Ξ̃ (1.4)
1mnρi

∗ −R̃mnρi B̃mni D̃2mi

∗ ∗ Ξ ε(3,3)
1mnρi Ξ̃ (3.4)

1mnρi

∗ ∗ ∗ Ξ̃ (4.4)
1mnρi

⎤

⎥
⎥
⎥
⎥
⎥
⎦

,
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Ξ̊ ε(1,1)
1mnρi � −Imnρi (P εi −Wmnρi)

−1 IT
mnρi.

Perform a congruent transformation with diag
{I−T

mnρi, I, I, I
}

and apply Schur complement
to (34). Defining R̃mnρi � (r̃I −Rmnρi)

−1, (14) can be obtained. Furthermore, setting Ũmnρi �
(r̃I + Umnρi)−1 and using the same method to deal with (32), it can be inferred that (13) holds.
This ends the proof.

4 Simulation

As an example to prove the powerful application of the designed filter, a tunnel diode circuit
is exhibited in Figure 2. The volt-ampere characteristic of the tunnel diode is as follows [50]:

id (κ) = 0.002ud (κ) + �u3
d (κ) ,

where, for the continuous time κ, id (κ) is the current through this tunnel diode; ud (κ) ∈ [−3, 3]
denotes the voltage across this diode; � ∈ [0.01, 0.03] represents the parameter uncertainties.

Setting xs (κ) � ud (κ), xf (κ) � iL (κ), g1 (xs (κ) , �) � 0.002 + �x2
s (κ) and considering the

Kirchoff voltage and current law, ones have
⎧
⎨

⎩

Cẋs (κ) = −g1 (xs (κ) , �)xs (κ) + xf (κ) ,

Lẋf (κ) = −xs (κ) −Rxf (κ) ,

where C and L symbolize the values of the capacitor and the inductance, respectively; R ∈
{R1, R2} is the value of the resistance, where the two different values correspond to two sub-
systems.

R1

L

C

R2

Ci di

Li

Lu

Cu du

R1

R2
R

Figure 2 The tunnel diode circuit

Supposing that |xs (κ)| ≤ 3, the system matrices of Γ are expressed by

Aε11 =

⎡

⎣
− g1min

C
1
C

− 1
L −R1

L

⎤

⎦ , Aε12 =

⎡

⎣
− g1 min

C
1
C

− 1
L −R2

L

⎤

⎦ ,

Aε21 =

⎡

⎣
− g1max

C
1
C

− 1
L −R1

L

⎤

⎦ , Aε22 =

⎡

⎣
− g1 max

C
1
C

− 1
L −R2

L

⎤

⎦ ,

D1mi =
[

−0.1 0.1
]T
, m ∈ {1, 2} , i ∈ {1, 2} , g1max = 0.272, g1min = 0.002.
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For θ = 2, ξ = 1, χ = 2 and ξ̂ = 1, LMF and UMF of the plant and the filter are given
as follows, and the grades of membership of the plant and the filter are shown in Figure 3 and
Figure 4, respectively[42]:

-3 -2 -1 0 1 2 3
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0.3
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0.9

1

Figure 3 Membership functions of the plant

-3 -2 -1 0 1 2 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 4 Membership functions of the filter

μ
Q11

(xs (k)) =
g1max − g1 (xs (k) , 0.03)

g1max − g1min
, μQ11

(xs (k)) =
g1max − g1 (xs (k) , 0.01)

g1max − g1min
,

μ
Q21

(xs (k)) =
g1 (xs (k) , 0.01)− g1min

g1max − g1min
, μQ21

(xs (k)) =
g1 (xs (k) , 0.03)− g1 min

g1max − g1min
,
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and

μ
Q̂11

(xs (k)) = 0.8e−x
2
s(k), μ

Q̂21
(xs (k)) = 1 − μ

Q̂11
(xs (k)) ,

μQ̂11
(xs (k)) = μ

Q̂11
(xs (k)) , μQ̂21

(xs (k)) = μ
Q̂21

(xs (k)) .

LGM and UGM are independent of the state space Ω and FOU. Therefore, Ω is equally
divided into 10 regions, and FOU is not divided for reducing the complexity of computing.
Then the minimum value of state variate is xsϑρ = 0.6× (ϑ− 6) and the maximum value of the
state variate is xsϑρ = 0.6 × (ϑ− 5). Other functions relative to MFs are listed as follows:

αm (xs (k)) = sin2 (xs (k)) , αm (xs (k)) = 1−αm (xs (k)) , ε11ϑρ (xs (k)) = 1 − xs (k)−xsϑρ
xsϑρ−xsϑρ

,

β
n

(xs (k)) = cos2 (xs (k)) , βn (xs (k)) = 1 − β
n

(xs (k)) , ε12ϑρ (xs (k)) = 1 − ε11ϑρ (xs (k)) ,

ωmn1ϑρ = f
m

(
xsϑρ

)
hn
(
xsϑρ

)
, ωmn2ϑρ = f

m
(xsϑρ)hn (xsϑρ) ,

ωmn1ϑρ = fm
(
xsϑρ

)
hn
(
xsϑρ

)
, ωmn2ϑρ = fm (xsϑρ)hn (xsϑρ) .

The parameters of the circuit are chosen as C = 0.02 F, L = 0.0001 H, R1 = 10 Ω, R2 = 13
Ω. Setting the sampling time as T = 0.1585 s, the discrete-time model is obtained. Other
parameters used are shown below for m ∈ {1, 2}, i ∈ {1, 2}:

r = 1.55, τPDT = 3, TPDT = 4, ζ1 = −0.01, ζ2 = 0.01, ζ̃1 = −0.1, ζ̃2 = 0.1, λ = 0.95, μ = 1.05,

G1 = diag {−0.01,−0.01} , G2 = diag {0.01,−0.01} , G̃1 = diag {−0.01,−0.01} , D2mi = −0.1,

G̃2 = diag {−0.01, 0.01} , Bmi =
[

0.1 0.1
]
, Cmi = diag {2, 2} , D3mi =

[

0.1 0.1
]T
.

And then by calculating the conditions in Theorem 3.3, the filter gains are shown as follows:

Â11 =

⎡

⎣
0.0685 0.0055

0.0069 0.0005

⎤

⎦ , Â12 =

⎡

⎣
0.1131 0.0087

0.0087 0.0007

⎤

⎦ , Â21 =

⎡

⎣
0.0639 0.0051

0.0064 0.0005

⎤

⎦ ,

Â22 =

⎡

⎣
0.0960 0.0074

0.0074 0.0006

⎤

⎦ , Ê11 =

⎡

⎣
2.3427 −2.4500

0.2343 −0.2450

⎤

⎦ , Ê12 =

⎡

⎣
3.2495 −3.3944

0.2500 −0.2611

⎤

⎦ ,

Ê21 =

⎡

⎣
1.9451 −2.0438

0.1945 −0.2044

⎤

⎦ , Ê22 =

⎡

⎣
2.9156 −3.0229

0.2243 −0.2325

⎤

⎦ , B̂11 =

⎡

⎣
0.2944

0.0236

⎤

⎦

T

,

B̂12 =
[

0.5046 0.0391
]
, B̂21 =

[

0.1535 0.0123
]
, B̂22 =

[

0.2882 0.0223
]
.

Set the initial states x (0) =
[

−1 −0.5
]T

, x̂ (0) =
[

0 0
]T

, and the outside disturbance
w (k) = 5 sin (0.05k) exp (−0.009k). The responses of the actual signal z (k) and the estimation
signal ẑ (k) with PDT sequence are displayed in Figure 5. From Figure 5, it can be observed that
ẑ (k) can follow z (k), which further reveals the effectiveness of the designed filter in Theorem3.3.
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Figure 5 Responses of the actual signal z (k) and the estimation signal ẑ (k) with PDT sequence

5 Conclusion

This study has presented a new approach to devise a filter for the nonlinear switched SPSs
with parameter uncertainties by employing the IT2 T-S fuzzy theory. Through the stability
theory of the switched systems, sufficient conditions have been obtained to make sure FES
is GUES with a prescribed passive performance index. The expected filter gains have been
achieved by solving a set of LMIs. Finally, an application example has been adopted to show
the validity of the proposed method. In addition, for making this method more practical, our
future work will focus on the switched IT2 T-S fuzzy SPSs under network-induced phenomena
and some new matrix transformation techniques that can reduce the computational complexity.
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