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Abstract This paper deals with the robust admissibility and state feedback stabilization problems

for discrete-time T-S fuzzy singular systems with norm-bounded uncertainties. By introducing a new

approximation technique, the initial membership functions are conveniently expressed in piecewise-

linear functions with the consideration of the approximation errors. By utilizing the piecewise-linear

membership functions, the fuzzy weighting-based Lyapunov function and the use of auxiliary matrices,

the admissibility of the systems is determined by examining the conditions at some sample points. The

conditions can be reduced into the normal parallel distributed compensation ones by choosing special

values of some slack matrices. Furthermore, the authors design the robust state feedback controller

to guarantee the closed-loop system to be admissible. Two examples are provided to illustrate the

advantage and effectiveness of the proposed method.

Keywords Admissible, discrete-time singular systems, piecewise-linear membership functions, state

feedback, T-S fuzzy models.

1 Introduction

Most complex physical plants and industrial processes can be modeled as nonlinear systems
which are difficult to analysis and synthesis[1–5]. T-S fuzzy model[1] can successfully approxi-
mate a wide class of nonlinear systems and attracts considerable attention in recent years[6–11].
The quadratic Lyapunov method is popular to obtain the stability and stabilization condi-
tions via a set of linear matrix inequalities (LMIs)[12–17]. However, this method may lead to
conservatism because a single positive definite matrix is required in the Lyaponov function
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for all rules. Scholars have made great efforts on the aspect of reducing the conservatism
of the stability criteria. Recently, many results have been reported in terms of all kinds of
methods. For continuous-time systems, a fuzzy Lyapunov function-based approach[18], a fuzzy
weighting-dependent approach[19], and a fuzzy Lyapunov function combined with a line-integral
function[20, 21] are used for analysis and design. Other work tries to exploit the characteristics of
the membership functions. A membership function dependent method is proposed in [22]. The
imperfect premise matching method[23] and piecewise-linear membership function method[24]

are given and extended to the tracking control, sampled-data output feedback control for con-
tinuous systems[25–27]. For discrete-time systems, a piecewise Lyapunov function method[28], a
Kronecker-product approach[29] are given. In the fuzzy controller design, the controller shares
the same membership functions so that the implementation cost is increased. The member-
ship functions or the fuzzy controller rules are not necessarily the same, which can reduce the
complexity of the control systems. However, it makes the controller design more complicated.
In [23, 25, 26], the local or global information of membership functions was employed to relax
the stability criteria.

The singular system is used to describe many types of complex systems, such as biological
systems, robotic systems, or chemical systems[30–32]. A review of the latest literatures, more
interests are concentrated on the admissibility and robust control of singular systems[33]. In [34,
35], the authors have studied the H∞ control problems via dynamic feedback controller. The
methods in [36] and [37] give the bounded real lemma to deal with the controller design.
In [38], the dissipative control and filtering are studied. A sufficient and necessary condition
of H∞ control[29] is put forward for discrete-time singular systems. In [39, 40], fuzzy singular
models are introduced, and the robust stability are studied. The H∞ filter design for fuzzy
discrete-time singular systems are studied in [41]. The output feedback control for nonlinear
discrete-time systems is investigated in [42]. The sliding mode control[43] and finite-time control
via output feedback[44] are studied recently. From this, we can find that many achievements
in the research of singular fuzzy systems have been acquired. However, they are based on the
quadratic Lyapunov function method and rather conservative. In addition, there are less results
on discrete-time systems. This motivates us to do this work.

In this paper, the problems of admissibility and fuzzy control problems for uncertain discrete-
time singular systems are investigated. The membership functions and fuzzy rules of the systems
and the fuzzy controllers are not necessarily the same which is much helpful to practical ap-
plication. New sufficient conditions for the admissibility of the considered systems is derived
which can be expressed by LMIs, and the conditions are extended to design a fuzzy controller
for the closed-loop systems. Comparing with the existing achievements, the obtained results
have the following contributions.

• By introducing a new approximation technique, the initial membership functions are
expressed in piecewise-linear functions. The approximation errors are reduced.

• By using the piecewise-linear membership functions, the fuzzy weighting-based Lyapunov
function and the use of auxiliary matrices, the admissibility and stabilization conditions
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are less conservative.

2 Problem Formulation and Preliminaries

Consider the following T-S fuzzy discrete-time singular system:

Ex(k + 1) =
s∑

i=1

hi(θ(k))(Ai + ΔAi(k))x(k) +Biu(k)), (1)

where i ∈ R := {1, 2, · · · , s}, s is the number of IF-THEN rules, θ(k) = [θ1(k) θ2(k) · · · θs(k)]
are the premise variables. hi(θ(k)) are the normalized membership functions. Hence, for all k,
hi(θ(k)) ≥ 0, i = 1, 2, · · · , s, ∑s

j=1 hj(θ(k)) = 1. x(k) ∈ R
n is the state vector of the system,

and u(k) ∈ R
p is the control input.

The matrix E is known. We assume that rank(E) = r < n. Ai, and Bi, i = 1, 2, · · · , s,
are known matrices. ΔAi(k) is the unknown matrix representing time-varying norm-bounded
parameter uncertainties, and is assumed to be

ΔAi(k) = MiFi(k)Ni, i = 1, 2, · · · , s, (2)

where Mi and Ni are known real constant matrices and Fi(·) : N → R
l1×l2 are unknown real

and possibly time-varying matrices satisfying

Fi(k)TFi(k) ≤ I, ∀ k. (3)

The uncertainties ΔAi(k) is admissible if Equations (2) and (3) hold.

Assumption 2.1 Suppose that the membership functions hi(θ(t)) satisfies

|hi(θ(k + 1)) − hi(θ(k))| ≤ γi, i = 1, 2, · · · , s, (4)

where γi ≥ 0, and the range of θ(t) is known.

Remark 2.1 For the membership functions satisfies 0 ≤ hi(θ(t)) ≤ 1, the condition in
Assumption 2.1 is not loss of generality in real-world processes.

For the singular system:
Ex(k + 1) = Ax(k), (5)

the following definition will be adopted.

Definition 2.2 (see [45]) The pair (E,A) is said to be regular if det(zE − A) is not
identically zero. It is said to be causal if deg(det(zE −A)) = rank(E). It is said to be stable if
for any scalar ε > 0, there exists a scalar δ(ε) > 0 such that the solution x(k) to the system (5)
satisfies ‖ x(k) ‖≤ ε for any k ≥ 0, moreover limk→∞ x(k) = 0.

System (5) is said to be admissible if it is regular, causal and stable.
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Moreover, for the pair (E,
∑s

i=1 hi(θ(k))(Ai + ΔAi(k))), appropriate invertible matrices G
and H can be chosen, and we have

E := GEH =

⎡

⎣ Ir 0

0 0

⎤

⎦ ,

A = G

s∑

i=1

(Ai + ΔAi(k))H =

⎡

⎣ A11 A12

A21 A22

⎤

⎦ ,

Ai = GAiH =

⎡

⎣ Ai11 Ai12

Ai21 Ai22

⎤

⎦ ,

ΔAi(k) = GΔAi(k)H, Mi = GMi, Ni = NiH, (6)

where Ai11 ∈ Rr×r. It is stated in [37] that the system (1) with u(k) = 0 is admissible if and
only if det(A22) 	= 0 and A11 −A12A

−1
22 A21 is stable.

The aim of this paper is to design a c-rule state feedback controller

u(k) =
c∑

j=1

ηj(θ(k))Kj(θ(k))x(k), (7)

where ηj(θ(k)) is the membership function which also satisfies Assumptions 2.1–2.2. θ(k) is a
function which can different from θ(k). Kj(θ(k)) ∈ R

p×n are the controller gains, and ηj(θ(k))
satisfies ηj(θ(k)) ≥ 0 and

∑c
j=1 ηj(θ(k)) = 1, such that the following closed-loop system

Ex(k + 1) =
s∑

i=1

c∑

j=1

hi(θ(k))ηj(θ(k))(Ai + ΔAi(k) +BiKj)x(k) (8)

is admissible.
Next, we will give several useful lemmas to end this section.

Lemma 2.3 (see [46]) (Schur’s complement) For symmetric matrix S =
[

A B
BT D

]
, the

following inequalities are equivalent:

i) S > 0,

ii) A > 0, D −BTA−1B > 0,

iii) D > 0, A−BD−1BT > 0.

Lemma 2.4 Let M , N , and F (k) be real matrices of appropriate dimensions with F (k)T

F (k) ≤ I. Then, we have

MF (k)N +NTF (k)TMT ≤MUMT +NTU−1N, (9)

where U is an arbitrary invertible matrix.
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Lemma 2.5 (see [45]) Let Φ =
[
Φ11 Φ12
Φ21 Φ22

]
, where Φ11, Φ12, Φ21 and Φ22 are any real

matrices with appropriate dimensions such that Φ22 is invertible and Φ + ΦT < 0, we have

Φ11 + ΦT
11 − Φ12Φ−1

22 Φ21 − ΦT
21Φ

−T
22 ΦT

12 < 0. (10)

Lemma 2.6 (see [47]) Consider the following inequality in the variable U :

BUC + (BUC)T + Φ < 0, (11)

which has a solution U if and only if

NBΦNT
B < 0 and NT

C ΦNC < 0, (12)

where NB and NC are bases of the null spaces of B and C, respectively.

3 Main Results

3.1 Piecewise-Linear Membership Functions

Similar to the method in [24], we use the PLMF to facilitate the stability analysis. Let us
consider the membership functions depending on the function of θ(k), as defined in Assump-
tion 2.1, and the range of the function θ(k) is known as [a, b]. By choosing suitable points in
the range of the function θ(k), the membership functions hi(θ(k)), i = 1, 2, · · · , s are divided
into several pieces. Then, by the following optimization, the PLMF hi(θ(k)), i = 1, 2, · · · , s,
can be found.

min
{α

{j}
i ,β

{j}
i }

sup
θ(k)

(| hi(θ(k)) − hi(θ(k)) |)

s.t. hi(θ(k)) = α
{j}
i θ(k) + β

{j}
i , θ(k) ∈ [θ{j−1} θ{j}], j = 2, 3, · · · , t,

0 ≤ hi(θ(k)) ≤ 1, for all θ(k),

where θ{j}, j = 1, 2, · · · , t are the piecewise points of hi(θ(k)), and α{j}
i θ(k)+β{j}

i is the PLMF.
Nevertheless, the optimization is nonlinear and can not be solved directly. Instead, we use

a practical optimal approach to obtain a solution. It contains four steps (see Figure 1 for
example):

• Choosing the intersection abscissas of the endpoints of PLFM θ{1}, θ{2}, · · · , θ{t}. The
grades of membership functions are denoted as h{1}i , h{2}i , · · · , h{t}

i .

• Choosing the points on the membership functions. The inflection points, extremal points,
and boundary points are normally required. Drawing the tangent lines of membership
curves through the chosen points.

• Finding the endpoints of the piecewise liner membership functions in each region.

– Calculating the intersection ordinates of tangent lines h{j}′

i , h{j}′′

i associated with
each intersection abscissas of the endpoints.
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– By h
{j}′

i = (h{j}
i + (h{j}′

i + h
{j}′′

i )/2)/2, and h
{j}
i = h

{j}′
i∑

s
i=1 h

{j}′
i

, the endpoints are

obtained as (θ{j}, h
{j}
i ), j = 1, 2, · · · , t.

• Connecting the endpoints in a piecewise line.

The PLMFs can be extended to approximate higher dimensional membership functions
hηij(θ(k), θ(k)) = hi(θ(k))ηj(θ(k)). The PLFM is defined as

hηij(θ(k), θ(k)) =
2∑

l=1

2∑

ι=1

νl(θ(k))υι(θ(k))h
{l}
i η

{ι}
j , (13)

where
∑2

ι=1 υι(θ(k)) = 1, υ1(θ(k)) = θmax−θ(k)

θmax−θmin
, and υ2(θ(k)) = 1 − υ1(θ(k)). Outside this

range, both υ1 and υ2 have to be set to 0. θmax and θmin denote the minimum and maximum
values of θ(k) in the corresponding region, respectively, and η{1}j and η{2}j are the corresponding
endpoints of PLMFs of ηj(θ(k)).
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Figure 1 The steps to find a PLFM h(f)

Remark 3.1 The PLMF method is effective to deal with the membership functions which
are deterministic, and satisfy Assumption 2.1. Otherwise, the above method is inapplicable.
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Remark 3.2 The PLMF obtained by the the practical optimal approach is more close
to the real membership function than the method in [24]. Take the case of the function in
Figures 1–2, the maximum value of |h(θ(k))− h(θ(k))| is 0.0132 by using the practical optimal
approach. If we adopt the method in [24], the maximum value is 0.0227.
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Figure 2 Membership function of h(f) and PLFM h(f)

By the PLMF in (13), and noted that

s∑

i=1

c∑

j=1

(hi(θ(k))ηj(θ(k)) − hηij(θ(k), θ(k)))T = 0 (14)

holds for any symmetric matrix T . The condition

xTΩx = xT
s∑

i=1

c∑

j=1

hi(θ(k))ηj(θ(k))Ωijx < 0 (15)

can be transformed as follows.

xT
s∑

i=1

c∑

j=1

hi(θ(k))ηj(θ(k))Ωijx

= xT
s∑

i=1

c∑

j=1

(
hηij(θ(k), θ(k))Ωij + (hi(θ(k))ηj(θ(k)) − hηij(θ(k), θ(k)))(Ωij + T )

+ (δij − δij)(Ωij + T ))x

= xTΘx+ xT
s∑

i=1

c∑

j=1

(hi(θ(k))ηj(θ(k)) − hηij(θ(k), θ(k)) − δij)(Ωij + T )x,

where Θ =
∑s

i=1

∑c
j=1(hηij(θ(k), θ(k)) + δij)Ωij + δijT =

∑2
l=1

∑2
ι=1 νl(θ(k))υι(θ(k))Φlι, and

Φlι =
∑s

i=1

∑c
j=1(h

{l}
i η

{ι}
j + δij)Ωij + δijT . Thus, we have the following lemma.
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Lemma 3.3 The inequality (15) holds, if there exists symmetric matrix T , such that

Ωij + T < 0,
s∑

i=1

c∑

j=1

(h
{l}
i η

{ι}
j + δij)Ωij + δijT < 0,

hi(θ(k))ηj(θ(k)) − hηi,j(θ(k), θ(k)) − δij > 0, for all l, ι. (16)

3.2 Admissibility and Stabilization

In this subsection, a new admissibility condition for the system (1) with u(k) = 0 is derived
and the controller synthesis is addressed. For simplicity, in the rest of this section, we will
consider the equivalent transformation of the system (1) and the closed-loop system (8) as

Ex(k + 1) =
s∑

i=1

hi(θ(k))((Ai + ΔAi(k))x(k) +Biu(k)) (17)

=
s∑

i=1

c∑

j=1

hi(θ(k))ηj(θ(k))(Ai + ΔAi(k) +BiKj)x(k), (18)

respectively, where x(k) = H−1x(k), Bi = GBi, and Kj = KjH . For the system (17) with
u(k) = 0, the following admissible condition is proposed.

Theorem 3.4 System (17) with u(k) = 0 under Assumption 2.1 is admissible, if there
exist symmetric matrices Pi > 0, Ui > 0, i = 1, 2, · · · , s, T , X, matrices Q, R, S such that

Pi −X ≥ 0,⎡

⎣Ωi + T ∗
Π1i −Ui

⎤

⎦ < 0, i = 1, 2, · · · , s,
⎡

⎣
∑s

i=1(h
{l}
i + δi)Ωi + δiT ∗

Π2 Π3

⎤

⎦ < 0, for all l (19)

hold, where hi(θ(k)) − hi(θ(k)) − δi ≥ 0, and

Ωi =

⎡

⎢⎢⎣

− 1
2Q− 1

2Q
T ∗ ∗

AT
i [Q R]T Π22i ∗

Pi − 1
2Q−QT +

∑s
j=1 γj(Pj −X) [Q R]Ai −Q−QT

⎤

⎥⎥⎦ ,

Π22i = AT
i

⎡

⎣0 0

0 S

⎤

⎦
T

+

⎡

⎣ 0 0

0 S

⎤

⎦Ai −
⎡

⎣Pi 0

0 0

⎤

⎦ +NT
i UiNi,

Π1i =

⎡

⎢⎣([Q R]Mi)T

⎛

⎝

⎡

⎣ 0 0

0 S

⎤

⎦Mi

⎞

⎠
T

([Q R]Mi)T

⎤

⎥⎦ ,

Π2 = [(h
{l}
1 + δ1)Π T

11, (h
{l}
2 + δ2)Π T

12, · · · , (h
{l}
s + δs)Π T

1s]
T, Π3 = −diag{U1, U2, · · · , Us}.
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Proof By Lemma 2.4 and Equations (2)–(3), we obtain

⎡

⎢⎢⎣

0

ΔAi(k)T

0

⎤

⎥⎥⎦

⎡

⎣ [Q R]T

⎡

⎣ 0 0

0 S

⎤

⎦
T

[Q R]T

⎤

⎦ +

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

[
Q R

]

⎡

⎣ 0 0

0 S

⎤

⎦

[
Q R

]

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

[
0 ΔAi(k) 0

]

≤

⎡

⎢⎢⎣

0

NT
i

0

⎤

⎥⎥⎦Ui[0 Ni 0] +

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

[
Q R

]

⎡

⎣0 0

0 S

⎤

⎦

[
Q R

]

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

MiU
−1
i MT

i

⎡

⎣ [Q R]T

⎡

⎣ 0 0

0 S

⎤

⎦
T

[Q R]T

⎤

⎦ , (20)

where Ui > 0. By (20) and Schur’s complement, (19) gives

Pi −X ≥ 0,

Ω i + T < 0, i = 1, 2, · · · , s,
s∑

i=1

(h
{l}
i + δi)Ω i + δiT < 0, for all l, (21)

where

Ω i =

⎡

⎢⎢⎢⎣

− 1
2Q− 1

2Q
T ∗ ∗

(Ai + ΔAi(k))T[Q R]T Π 22i ∗
Pi − 1

2Q−QT +
∑s

j=1 γj(Pj −X)
[
Q R

]
(Ai + ΔAi(k)) −Q−QT

⎤

⎥⎥⎥⎦ ,

Π 22i = (Ai + ΔAi(k))T

⎡

⎣ 0 0

0 S

⎤

⎦
T

+

⎡

⎣0 0

0 S

⎤

⎦ (Ai + ΔAi(k)) −
⎡

⎣Pi 0

0 0

⎤

⎦ .

By Lemma 3.3 and the condition (21), we have

s∑

i=1

hi(θ(k))Ω i := Ω < 0, (22)

where

Ω =

⎡

⎢⎢⎣

− 1
2Q− 1

2Q
T ∗ ∗

A
T
[Q R]T Π 22 ∗

P k − 1
2Q−QT [Q R]A −Q−QT

⎤

⎥⎥⎦ ,

P k = Pk +
s∑

j=1

γj(Pj −X), Π 22 = A
T

⎡

⎣ 0 0

0 S

⎤

⎦
T

+

⎡

⎣ 0 0

0 S

⎤

⎦A−
⎡

⎣Pk 0

0 0

⎤

⎦ ,
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A is defined in (6), and Pk =
∑s

i=1 hi(θ(k))Pi.
Next, we will decompose (22) by (6) and obtain

Ω̃ < 0, (23)

where

Ω̃ =

⎡

⎢⎢⎢⎢⎢⎣

− 1
2Q− 1

2Q
T ∗ ∗ ∗

AT
11Q

T +AT
21R

T −Pk AT
21S

T ∗
AT

12Q
T +AT

22R
T SA21 AT

22S
T + SA22 ∗

P k − 1
2Q−QT QA11 +RA21 QA12 +RA22 −Q−QT

⎤

⎥⎥⎥⎥⎥⎦
.

Left and right-multiplying (23) by

[
Ir

Ir

Ir

In−r

]
and its transpose, we obtain that

W +WT < 0, (24)

where

W =

⎡

⎢⎢⎢⎢⎢⎣

− 1
2Q 0 0 0

AT
11Q

T +AT
21R

T − 1
2Pk A

T
11Q

T +AT
21R

T AT
21S

T

P k − 1
2Q−QT 0 −Q 0

AT
12Q

T +AT
22R

T 0 AT
12Q

T +AT
22R

T AT
22S

T

⎤

⎥⎥⎥⎥⎥⎦
,

which implies that AT
22S

T + SA22 < 0. Therefore, the system (17) with u(k) = 0 is regular,
and causal.

Applying Lemma 2.5 to (24), we obtain that
⎡

⎢⎢⎣

− 1
2Q− 1

2Q
T ∗ ∗

ÂTQT −Pk ∗
P k − 1

2Q−QT QÂ −Q−QT

⎤

⎥⎥⎦ < 0, (25)

where Â = A11 −A12A
−1
22 A21. Noted that Equation (25) can be rewritten as

Ξ + ξTQTψ + ψTQξ < 0, (26)

where Ξ =
[

P k

−Pk

P k

]
, ψ = [Ir 0 Ir]T, and ξ = [− 1

2Ir Â − Ir]. By Lemma 2.6, (26) is

equivalent to
ΥψTΞΥψ and ΥT

ξ ΞΥξ < 0, (27)

where

Υψ =

⎡

⎢⎢⎣

0 −Ir
Ir 0

0 Ir

⎤

⎥⎥⎦ , Υξ =

⎡

⎢⎢⎣

Ir 0

0 Ir

− 1
2Ir Â

⎤

⎥⎥⎦ ,
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which can be rewritten as
⎡

⎣−Pk

−2P k

⎤

⎦ < 0,

⎡

⎣−P k P kÂ
T

ÂP k −Pk

⎤

⎦ < 0. (28)

By Schur’s complement, (28) is equivalent to

ÂT

(
Pk +

s∑

j=1

γj(Pj −X)
)
Â− Pk < 0, (29)

where Pk > 0, and Pk +
∑s

j=1 γj(Pj − X) > 0. Now by Assumption 2.1, and noted that∑s
j=1(hj(θ(k + 1)) − hj(θ(k)))X = 0, we obtain that

Pk+1 :=
s∑

i=1

hi(θ(k + 1))Pi

=
s∑

i=1

hi(θ(k))Pi +
s∑

j=1

(hj(θ(k + 1) − hj(θ(k)))Pj

≤ Pk +
s∑

j=1

γj(Pj −X)

= P k, (30)

where Pj −X > 0, for j = 1, 2, · · · , s. Thus, (29) implies that

ÂTPk+1Â− Pk < 0, (31)

which ensures the stability of the system. Taken together, the conditions in Theorem 3.4 can
guarantee the admissibility of the system (17) with u(k) = 0.

Remark 3.5 The PFMB system, with the membership functions satisfying hi(θ(k)) −
hi(θ(k))− δi ≥ 0 for all i, is guaranteed to be admissible. It is easy to see that the value of δi is
greatly related to the value of maxθ(k) |hi(θ(k))−hi(θ(k))|. By the practical optimal approach,
the value of maxθ(k) |hi(θ(k)) − hi(θ(k))| can be effectively reduced. Thus, larger values of δi
can be obtained by the practical optimal approach which can reduce the conservatism of the
conditions.

Remark 3.6 For the conditions (19) in Theorem 3.4, the admissible condition
∑s

i=1 hi(θ(k))
Ω i < 0 can be achieved if it satisfied for all values of PLMFs in sample points. Therefore, an
infinite number of LMIs can be solved by the finite ones with the PLMFs. Furthermore, If
T = 0 in Theorem 3.4, the conditions reduce to the common PDC cases as in the following
corollarys.

Corollary 3.7 The discrete-time T-S fuzzy singular system (17) with u(k) = 0 under
Assumption 2.1 is admissible, if there exist symmetric matrices Pi > 0, Ui > 0, i = 1, 2, · · · , s,
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X, matrices Q, R, S, such that

Pi −X ≥ 0,⎡

⎣ Ωi ∗
Π1i −Ui

⎤

⎦ < 0, i = 1, 2, · · · , s (32)

hold, where Ωi, and Π1i are defined in Theorem 3.4.

Corollary 3.8 System (17) with u(k) = 0 under Assumption 2.1 is admissible, if there
exist symmetric matrices P > 0, Ui > 0, i = 1, 2, · · · , s, matrices Q, X, matrices R, S, such
that

⎡

⎣ Ω̃i ∗
Π1i −Ui

⎤

⎦ < 0, i = 1, 2, · · · , s (33)

hold, where

Ω̃i =

⎡

⎢⎢⎣

− 1
2Q− 1

2Q
T ∗ ∗

AT
i [Q R]T Π̃22i ∗

P − 1
2Q−QT [Q R]Ai −Q−QT

⎤

⎥⎥⎦ ,

Π̃22i = AT
i

⎡

⎣ 0 0

0 S

⎤

⎦
T

+

⎡

⎣ 0 0

0 S

⎤

⎦Ai −
⎡

⎣P 0

0 0

⎤

⎦ +NT
i UiNi,

Π1i is defined in Theorem 3.4.

Remark 3.9 If T = 0 in Theorem 3.4, the conditions in (19) reduce to the conditions
in (32) of Corollary 3.7. Thus, Corollary 3.7 is a special case of Theorem 3.4. A fuzzy weighting-
based Lyapunov function is used in Theorem 3.4 and Corollary 3.7. Its applicability relies on
|hi(θ(k + 1)) − hi(θ(k))|. Thus, the conditions in Theorem 3.4 and Corollary 3.7 are less
conservative than that in Corollary 3.8. This is because the LMIs in (32) reduce to (33) by
setting Pi = P , i = 1, 2, · · · , s, and X = P . If the number of subsystem is set by s = 1, it
reduces to the method in [37] for linear discrete-time singular systems.

Next, we will further deal with the state feedback stabilization problem for Systems (18)
and the following theorem is obtained.

Theorem 3.10 System (18) under Assumption 2.1 is admissible, if there exist matrices
Pi > 0, Ui > 0, Yi, Q, R, S, X, T , i = 1, 2, · · · , s, such that

Pi −X ≥ 0,⎡

⎣Φij + T ∗
Π̂1i −Ui

⎤

⎦ < 0, i = 1, 2, · · · , s, j = 1, 2, · · · , c,
⎡

⎣
∑s

i=1

∑c
j=1(h

{l}
i η

{ι}
j + δij)Φij + δijT ∗
Π̂2 Π̂3

⎤

⎦ < 0,

for all l, ι, (34)
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hold, where hi(θ(k))ηj(θ(k)) − hηij(θ(k), θ(k)) − δij ≥ 0, and

Φij =

⎡

⎢⎢⎢⎣

− 1
2Q− 1

2Q
T ∗ ∗

Ai[Q R]T +BiYj [Ir 0] Π̂22ij ∗
Pi − 1

2Q−QT +
∑s

m=1 γm(Pm −X)
[
Q R

]
AT

i + [Ir 0]TY T
j B

T
i −Q−QT

⎤

⎥⎥⎥⎦ ,

Π̂22ij = Ai

⎡

⎣ 0 0

0 S

⎤

⎦
T

+BiYj

⎡

⎣ 0 0

0 In−r

⎤

⎦+

⎡

⎣0 0

0 S

⎤

⎦AT
i +

⎡

⎣0 0

0 In−r

⎤

⎦ Y T
j B

T
i −

⎡

⎣Pi 0

0 0

⎤

⎦ +MiUiM
T
i ,

Π̂1i =

⎡

⎢⎣[Q R]TNi,

⎡

⎣ 0 0

0 S

⎤

⎦
T

Ni, [Q R]TNi

⎤

⎥⎦ ,

Π̂2 =

⎡

⎣
c∑

j=1

(h
{l}
1 η

{ι}
j + δ1j)Π̂ T

11,

c∑

j=1

(h
{l}
2 η

{ι}
j + δ2j)Π̂ T

12, · · · ,
c∑

j=1

(h
{l}
s η

{ι}
j + δsj)Π̂ T

1s

⎤

⎦
T

,

Π̂3 = −diag{U1, U2, · · · , Us}.

If it is the case, the controller gain can be solved by Ki = Yi

[
Q−1 −Q−1RS−1

0 S−1

]T

H−1.

Proof Replacing AT
i into Ai + BiKj, and letting Yj = Kj

[
Q R
0 S

]T
. Using the similar

procedure as the proof in Theorem 3.4, this theorem can be proved easily.

4 Numerical Examples

Example 4.1 Consider the system (1) with the parameters[29]

E =

⎡

⎣1 0

0 1

⎤

⎦ , A1 =

⎡

⎣ 0.3 0.1

a 0.9

⎤

⎦ , A2 =

⎡

⎣ 0.9 0.5

a 0.5

⎤

⎦ ,

where a ∈ (−∞, 0].
The system is stable in the region a ∈ [α, 0] where α(< 0) is the undetermined parameter.

Now we will determine the minimum value αmin of α. By Corollary 3.8, the value of αmin is
−0.3773 which is equal to the case of g = 0, d = 0 or d = 1, and m = 1 in [29]. Set γ1 = γ2 = 0.2
in Corollary 3.7, the minimum value of α is obtained as −0.7325, which is better than the case
of m = 1 in [29]. The Lyapunov matrices are

P1 =

⎡

⎣ 30.5925 8.5995

8.5995 87.8845

⎤

⎦ , P2 =

⎡

⎣ 43.9164 −15.1394

−15.1394 62.6322

⎤

⎦ .

If γ1 = γ2 = 0.1 in Corollary 3.7, we can obtain that αmin = −0.8752, which is better than all
the cases in Table 1 of [29]. In this case, the Lyapunov matrices are

P1 =

⎡

⎣51.9476 21.3634

21.3634 175.1358

⎤

⎦ , P2 =

⎡

⎣ 72.7435 −25.4349

−25.4349 127.6076

⎤

⎦ .
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Example 4.2 Consider the truck-trailer model[48] in this simulation.

x1(k + 1) = x1(k) + v · t/l · u(k),

x2(k) = x1(k) − x3(k),

x3(k + 1) = x3(k) + v · t/L · sin(x2(k)),

x4(k + 1) = x4(k) + v · t · cos(x2(k)) sin[{x3(k + 1) + x3(k)}/2],

x5(k + 1) = x5(k) + v · t · cos(x2(k)) cos[{x3(k + 1) + x3(k)}/2].

l is the length of truck, L is the length of trailer, t is sampling time, and v is the constant speed
of backing up. In this note, l = 2.8 m, L = 5.5 m, v = −1.0 m/s, and t = 2.0 s.

Let θ(k) = x3(k)+v·t/2L·x2(k), and assume −179.997◦ < θ(k) < 179.997◦, the membership
functions are defined as follows:

h1(θ(k)) =

⎧
⎪⎨

⎪⎩

sin(θ(k)) + 0.1θ(k)
1.2θ(k)

, if θ(k) 	= 0,

0.9167, if θ(k) = 0,

h2(θ(k)) = 1 − h1(θ(k)).

The T-S fuzzy model that represents the nonlinear system is as follows:

Plant Rule 1 : If θ(k) is h1

Then Ex(k + 1) = A1x(k) +Bu(k),

Plant Rule 2 : If θ(k) is h2

Then Ex(k + 1) = A2x(k) +Bu(k),

where

E =

⎡

⎢⎢⎢⎢⎢⎣

1 0 0 0

0 0 0 0

0 0 1 0

0 0 0 1

⎤

⎥⎥⎥⎥⎥⎦
, A1 =

⎡

⎢⎢⎢⎢⎢⎣

1 0 0 0

1 −1 −1 0

0 v · t/L 1 0

0 1.1v2 · t2/(2L) 1.1v · t 1

⎤

⎥⎥⎥⎥⎥⎦
,

A2 =

⎡

⎢⎢⎢⎢⎢⎣

1 0 0 0

1 −1 −1 0

0 v · t/L 1 0

0 −0.1 · v2 · t2/(2L) −0.1 · v · t 1

⎤

⎥⎥⎥⎥⎥⎦
,

B = [v · t/l 0 0 0]T, M = [0 0 0.3v · t/L 0]T, and N = [0 1 0 0].
The methods in [29, 39, 49] is infeasible for the above fuzzy model. If the piecewise-linear

membership functions are chosen as the method in [24], the controller can not be solved by The-
orem 3.10. Now, we use the practical optimal approach to obtain the PLMF of the membership
functions. We define the sample points as θ(k) = [−180◦,−157.08◦,−71.14◦,−19.57◦, 0◦]. The
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memberships at the sample points are h1(θ(k)) = [0.0833 0.2017 0.7185 0.9006 0.9164], and
h1(θ(k)) = [0.0833 0.1955 0.7281 0.9160 0.9164], respectively. The PLMFs are obtained in
Figure 3.
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_

h(3)
_ h(4)

_
h(5)
_

θ

h 1(θ
)

 

 
h1(θ)

PLMF

Figure 3 The PLMF of h1(θ(k))

Next, we will design the robust state feedback controller of this system. The member-
ship function of ηi(θ(k)) is chosen as hi(θ(k)), i = 1, 2. For B1 = B2 = B, the function∑s

i=1

∑c
j=1 h

{l}
i η

{ι}
j in Theorem 3.10 reduces to

∑2
i=1 h

{l}
i , and δij reduces to δi. It can be

found numerically that δ1 = −0.0132, and δ2 = −0.0096 such that hi − hi − δi > 0, i = 1, 2,

are satisfied. Let G =
[

1 0 0 0
0 0 1 0
0 0 0 1
0 1 0 0

]
, and H = GT. If we build the stabilization conditions by

Corollaries 3.7–3.8, the conditions are fail to achieve the feasible solutions. Now, we solve the
conditions in Theorem 3.10, let γ1 = γ2 = 0.1, and obtain the state feedback controller gains as

K1 = [1.3650 1.9134 − 5.4150 0.5162], K2 = [1.2765 1.5975 − 3.9488 0.3424].

In this case, the Lyapunov matrices are

P1 =

⎡

⎢⎢⎣

144.0101 41.1091 22.9274

41.1091 15.7136 23.0178

22.9274 23.0178 179.8645

⎤

⎥⎥⎦ , P2 =

⎡

⎢⎢⎣

124.8407 37.5273 23.0371

37.5273 16.1596 23.0315

23.0371 23.0315 179.8653

⎤

⎥⎥⎦ ,

and Y1 = [106.5224 19.8468 − 0.2968 46.4164], Y2 = [113.2999 24.6251 0.0249 38.7546], Q =[
88.0224 22.8588 8.6930
25.6959 10.0781 13.9035
15.3471 15.3520 119.9053

]
, R = [55.2243 16.8123 −0.0036]T, S = 24.2589. By the above controller

gains, and let x(0) = [0.3684 − 0.9943 1.3627 14.8691 9.9463]T, the control responses are
illustrated in Figure 4. Figure 4 (a) shows the state xi(k), i = 1, 2, 3, 4, of the closed-loop
system, where the admissibility is achieved. Figure 4 (b) shows the input signal of u(k), and
the position of rear end of trailer is shown in Figure 4 (c).



1360 CHEN JIAN · YU JINPENG

0 5 10 15 20 25 30
−2

0

2

4

6

8

10

12

14

16

 

 
x1(k)

x2(k)

x3(k)

x4(k)

0 5 10 15 20 25 30
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

 

 
u(k)

(a) State response of the closed-loop system (b) Input signal u(k)
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Figure 4 Control results of Example 4.2

Therefore, from Figure 4, it is obviously that the discrete T-S fuzzy singular system is
admissible.

5 Conclusion

The admissibility and robust control problems of discrete-time T-S fuzzy singular systems
are studied in this paper. In order to facilitate the analysis, we use a practical optimal approach
to obtain a PLMF to approximate the membership function of the control systems. By applying
the PLMFs, the fuzzy weighting-based Lyapunov function, and the use of auxiliary matrices,
new sufficient conditions with less conservatism for the admissibility of the singular systems are
derived. Then, the conditions are extended to check the admissibilization for the closed-loop
systems. Numerical examples demonstrate the effectiveness and advantage of the proposed
method. Possible research topics in the future study are to further reduce the conservatism
produced in the admissible conditions, and to extend the results to nonlinear singular systems
with time delay, or singular systems with input and state constraints.
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