
J Syst Sci Complex (2019) 32: 317–355

Conditional Congruence Closure over Uninterpreted and

Interpreted Symbols

KAPUR Deepak

DOI: 10.1007/s11424-019-8377-8

Received: 11 October 2018 / Revised: 24 December 2018

c©The Editorial Office of JSSC & Springer-Verlag GmbH Germany 2019

Abstract A framework for generating congruence closure and conditional congruence closure of

ground terms over uninterpreted as well as interpreted symbols satisfying various properties is pro-

posed. It is based on some of the key concepts from Kapur’s congruence closure algorithm (RTA97)

for ground equations based on introducing new symbols for all nonconstant subterms appearing in

the equation set and using ground completion on uninterpreted constants and purified equalities over

interpreted symbols belonging to different theories. In the original signature, the resulting rewrite sys-

tems may be nonterminating but they still generate canonical forms. A byproduct of this framework

is a constant Horn completion algorithm using which ground canonical Horn rewrite systems can be

generated for conditional ground theories.

New efficient algorithms for generating congruence closure of conditional and unconditional equa-

tions on ground terms over uninterpreted symbols are presented. The complexity of the conditional

congruence closure is shown to be O(n∗log(n)), which is the same as for unconditional ground equations.

The proposed algorithm is motivated by our attempts to generate efficient and succinct interpolants for

the quantifier-free theory of equality over uninterpreted function symbols which are often a conjunc-

tion of conditional equations and need additional simplification. A completion algorithm to generate a

canonical conditional rewrite system from ground conditional equations is also presented. The frame-

work is general and flexible and is used later to develop congruence closure algorithms for cases when

function symbols satisfy simple properties such as commutativity, nilpotency, idempotency and identity

as well as their combinations. Interesting outcomes include algorithms for canonical rewrite systems

for ground equational and conditional theories on uninterpreted and interpreted symbols leading to

generation of canonical forms for ground terms, constrained terms and Horn equations.

Keywords Completion, congruence closure, conditional congruence closure, intepreted symbols, rewrit-

ing, uninterpreted symbols.

KAPUR Deepak

Department of Computer Science, University of New Mexico, Albuquerque, NM, USA.

Email: kapur@cs.unm.edu.
�This paper was recommended for publication by Editor LI Hongbo.

318 KAPUR DEEPAK

1 Introduction

Equality reasoning arises in many applications including compiler optimization, functional
languages, and reasoning about databases as well as, most importantly, reasoning about differ-
ent aspects of software and hardware. Significance of congruence closure algorithms on ground
equations in compiler optimization and verification applications has long been recognized. Par-
ticularly, in the mid 70’s and early 80’s, a number of algorithms for computing congruence
closure were reported in the literature [1–3]. Congruence closure has also been used as a glue to
combine different decision procedures for various theories with uninterpreted symbols, arising
in program analysis and verification[3–8]. Whereas congruence closure algorithms were imple-
mented in earlier verification systems, their role has become particularly significant in SMT
solvers as a way to combine decision procedures.

Conditional equations arise in combining decision procedures especially if one of the compo-
nent theory is the theory of ground equality over uninterpreted symbols. As an example, in a
combination method for generating interpolants for linear arithmetic combined with the theory
of ground equality over uninterpreted symbols (EUF)[9], uninterpreted symbols are eliminated
by generating Horn clauses. Such conditional equations are often processed in SMT solvers by
abstracting them as propositional formulas in which equations are abstracted as propositional
variables.

In [10], Gallier combined Downey, et al.’s congruence closure algorithm[2] over ground equa-
tions with Dowling and Gallier’s linear time algorithm[11] for testing satisfiability of propo-
sitional Horn formulas to propose a polynomial time algorithm for testing unsatisfiability of
ground Horn clauses with equations. That algorithm seems to have been neglected by the
SMT community perhaps because of a folklore that one gets the same effect with CDCL solvers
when combined with ground congruence closure. This author is however unaware of any result
(proof) showing such a relationship.

In this paper, we focus on the topic of conditional congruence closure on ground equations
both in case of uninterpreted as well as interpreted symbols; unconditional congruence closure
is merely a byproduct. We propose a new algorithm for computing ground conditional congru-
ence closure which is in the same spirit as the ground congruence closure. This paper builds on
two key ideas in our congruence closure algorithm proposed in [12]: (i) flattening (or abstract-
ing) nonconstant ground terms using constants, (ii) unique signatures for nonconstant terms
in the same equivalence classes, leading to two separate parts in the algorithm: (a) constant
equivalence closure, and (b) generation of implied constant equalities used to update the con-
stant equivalence closure from signature equalities. These ideas provide a flexible framework
which is exploited to generate conditional congruence closures by manipulating Horn constant
equations. Using these ideas, we give an O(n ∗ log(n)) complexity algorithm for conditional
congruence closure; thus this algorithm is of the same complexity as that of (unconditional)
congruence closure.

In a later part of the paper, we extend these ideas and the framework incorporating them, to

CONDITIONAL CONGRUENCE CLOSURE 319

design congruence closure algorithms (both conditional and unconditional) for ground equalities
and conditional equalities over function symbols satisfying properties such as commutativity,
idempotency, nilpotency and identity as well as their combinations. The framework can also be
used to design congruence closures for conditional ground equalities over interpreted function
symbols with associativity and commutativity; this could not be included in this paper because
of space limitations. An interested reader can request a draft of the working paper from the
author. We present completion algorithms for ground Horn equations both for uninterpreted
symbols as well as interpreted symbols. This is done without having to assume any ordering
on nonconstant terms.

The key new idea introduced is that of Horn closure of rewrite rules — Both uncon-
ditional and conditional. This generates additional Horn equations by identifying conditions
under which additional ground conditional equalities can be generated. These additional Horn
equations can sometimes make the membership test in conditional congruence closure faster
by not having to provisionally update conditional congruence closure to account for nonempty
hypothesis in a conditional conjecture. As shown in the paper, it suffices to consider Horn
equations on constants as nonconstant terms are replaced by introducing new symbols. The
output of these algorithms is canonical on the extended signature including new symbols, but
is locally confluent[13] on ground terms in the original signature in case the rewrite rules on the
original signature are not terminating. Canonical rewrite systems on the extended signature
are decision procedures for Horn equations but for the interpreted symbols case, this approach
based on generating canonical rewrite systems using a general approach can be more expen-
sive than specialized methods which could be designed exploiting the properties of interpreted
symbols.

We propose an algorithm for generating a canonical rewrite system for conditional equations
on ground terms (ground Horn equations) which also serves as a congruence closure algorithm
for conditional congruence relation induced by ground Horn equations. In contrast to [10], the
proposed algorithm is simpler, easier to present as well as to understand. Further, it generates
canonical forms for terms constrained by a finite set of ground equations. It also constructs a
canonical rewrite system for conditional equations and can thus generate canonical forms for
conditional ground equations. Canonical rewrite systems of conditional ground equations can
also be used for checking equivalence of conditional congruence closures generated by differ-
ent sets of conditional ground equations. Like [10], the algorithm can be used to check for
unsatisfiability of a finite set of ground Horn equations. It can be extended to allow ground
atomic formulas with predicate symbols. The proposed algorithm, when specialized to ground
equations, is the same as in [12].

Congruence closure algorithms presented in this paper use a variety of well-known algo-
rithms as primitives, especially for the uninterpreted case. We do not provide many details
about well-known algorithms such as Tarjan’s[14] UNION-FIND algorithm for constant equiv-
alence closure (see also Galler and Fisher[15]) and its extension by Downey, et al.[2] to ground

320 KAPUR DEEPAK

congruence closure using signatures and encoding of arbitrary arity function symbols by binary
function symbols (called degree-2 graphs in [2]) for nonconstant ground terms (see also Cocke
and Schwartz[16] and [17]). The complexity analysis of the presented algorithms is based on the
complexity analysis of related constructions in [2, 10, 14]†. Proofs of relevant nontrivial results
are given but many routine proofs of obvious and well known results employed are omitted.

1.1 Related Work

The only work directly related is that of [10]. However, it should be obvious that any first-
order theorem proving strategy supporting equality when restricted to ground Horn equations
(such as paramodulation, superposition, etc) can also solve this problem of satisfiability of
ground Horn equations. But a canonical rewrite system can only be generated by superposition
calculus like techniques based on clausal superposition, saturation and completion[18–21].

There has been extensive research on conditional (nonground) rewrite systems including
testing confluence and generating canonical conditional rewrite systems. Those algorithms
can be specialized to work on ground Horn equations but they can often get unnecessarily
complicated. These comparisons could not be done in this paper because of space limitations;
they are worth further investigation.

The proposed algorithm for conditional congruence closure is an extension of Kapur’s
algorithm[12]. It is in the spirit of a standard completion procedure[22]. This is in sharp con-
strast to a satisfiability checking algorithm given by Gallier[10] by merging ground congruence
closure of Downey, et al.[2] and Dawling and Gallier’s linear algorithm for checking satisfiability
of Horn clauses[11]. Gallier’s algorithm does not generate unique normal forms or a confluent
rewrite system.

In [23], the authors adapted Kapur’s congruence closure[12] using its key ideas to an abstract
inference system; the Table data structure for new constant symbols defining flat terms intro-
duced during flattening of nested nonconstant terms in Make Rule in [12] were called D-rule
for defining a flat term and C-rule for introducing a new constant symbol. They expressed
various congruence closure algorithms in the literature using these inference steps. They also
proposed an extension of this inference system to associative commutative functions, essen-
tially integrating it with Peterson and Stickel’s extension[18] of the Knuth-Bendix completion
procedure adapted to ground equations; since extension rules used by Peterson and Stickel
inherently involve variables, their approach becomes more like Peterson and Stickel’s method,
which is very different from Kapur’s method[12].

In [24], a completion like algorithm for generating a canonical rewrite system from Horn
equations is discussed; a Horn equation is made into a conditional rewrite rule with the condition
that its left side in the conclusion is bigger than every other term in a reductive simplification
ordering in the Horn clause. It is however unclear whether canonical systems generated using

†[2] discussed many variations of the congruence closure algorithm using different data structures and gave

their complexity. All those results can be adapted for the algorithms in this paper also.

CONDITIONAL CONGRUENCE CLOSURE 321

that approach generate canonical forms for Horn clauses. This work is extended in [25] using
abstract canonical inference/presentation to consider ground Horn theories.

2 Preliminaries

Let F be a set of function symbols including constants and GT (F) be the ground terms
constructed from F . We will abuse the terminology somewhat by calling a k-ary function symbol
as a function symbol (or equivalently, a nonconstant) if k > 0 and constant if k = 0. Similarly,
by a function term, we mean a nonconstant term with a k-ary function, k > 0 as its outermost
symbol. We assume an unsorted (single-sorted) language but the constructions and algorithms
presented here can be extended to sorted languages including order-sorted languages. Every
function symbol f ∈ F is assumed to be uninterpreted; later in the paper we consider function
symbols having properties such as commutativity, nilpotency, idempotency and/or identity.

2.1 Equations, Conditional Equations and Congruence Relations

Let S be a finite set {(∧ hi
1 = hi

2) ⇒ (ci
1 = ci

2)|1 ≤ i ≤ k} of conditional (Horn) equations
where h’s and c’s are ground terms from T (F); the hypothesis in a Horn (conditional) equation
could be empty (meaning True and hence an unconditional equation). In addition, a Horn
equation of the form (

∧
hi

1 = hi
2) ⇒ False is allowed. A Horn equation (

∧
hi

1 = hi
2) ⇒ True

is trivial; similarly, if the hypothesis of a Horn equation includes False, the Horn equation
is trivial as well. Trivial Horn equations are deleted. True is deleted from the hypothesis of
a Horn equation. True ⇒ c1 = c2 is the same as the unconditional Horn equation c1 = c2.
Henceforth, it is assumed that this preprocessing is performed on the input as well as any Horn
equation generated during the algorithms.

There are two goals: (i) generate congruence closure to decide whether another conditional
equation follows from S or not, and (ii) generate canonical forms of constrained terms (terms un-
der constraints expressed as a conjunction of ground equations) as well as conditional equations
so that the algorithm can be used dynamically in an SMT solver. Canonical form computa-
tion can be used to decide membership in conditional congruence closure; however, it can be
much more expensive if the cost of generating canonical forms is not amortized over numerous
membership tests.

2.1.1 Congruence Closure of Equations and Conditional Equations

Definition 2.1 Given a finite set of S = {ai = bi|1 ≤ i ≤ m} of ground equations where
ai, bi ∈ GT (F), the congruence closure CC(S) is inductively defined as follows: (i) S ⊆ CC(S),
(ii) for every a ∈ GT (F), a = a ∈ CC(S), (iii) if a = b ∈ CC(S), b = a ∈ CC(S), (iv) if a = b

and b = c ∈ CC(S), a = c ∈ CC(S), and (v) for every nonconstant f ∈ F of arity k > 0, if
ai = bi ∈ CC(S), 1 ≤ i ≤ k, then f(a1, · · · , ak) = f(b1, · · · , bk) ∈ CC(S). Nothing else is in
CC(S).

CC(S) is thus the smallest relation that includes S and is closed under reflexivity, symmetry,
transitivity (an equivalence relation), and under function application, making it a congruence

322 KAPUR DEEPAK

relation. CC(S) is also the equational theory of S.
It is easy to see that CC(S) is in general infinite, but if F consists only of constants, then

CC(S) is finite. A remarkable insight of congruence closure algorithms is that even though
CC(S) is infinite, it suffices to consider only a finite set of ground terms that are congruent to
subterms of S in CC(S) and they suffice for checking membership in CC(S).

Definition 2.2 Given a finite set S = {Hi ⇒ ai = bi|1 ≤ i ≤ m}, where Hi is a finite
(possibly empty) conjunction of ground equations, the congruence closure C∗(S) induced by S

is inductively defined as:

1) C0(S) = CC({ai = bi | ai = bi ∈ S}) where the CC operation gives the congruence closure
of unconditional ground equations as defined above.

2) Ck+1(S) = CC(Ck(S) ∪ {ai = bi | ai
j = bi

j ∈ Ck,
∧

j(a
i
j = bi

j)⇒ ai = bi ∈ S}).

3) C∗(S) =
⋃

Ci(S).

Let CC(S) stand for the closure C∗(S) as defined above; we call CC(S) as the congruence
closure of conditional equations in S[10]. As evident, CC(S) is a set of pairs of ground terms and
is the equational theory of S. CC(S) in the conditional case is in general also infinite. However,
when F has only constant symbols, then CC(S) is finite just like the unconditional case (it
is assumed that the trivial and redundant equalities in the hypothesis of a Horn equation are
removed). It will be shown below that as in the unconditional case, it suffices to consider only
a finite set of ground terms that are congruent to subterms in S in CC(S) and they suffice to
decide membership in CC(S) even when S includes Horn equations.

2.1.2 Conditional Equational Closure of Conditional Equations

Using CC(S), the conditional congruence closure CCC(S) is defined as follows; it includes
equations and Horn equations and is thus a generalization of CC(S).

Definition 2.3 H ⇒ a = b ∈ CCC(S) iff a = b ∈ CC(S ∪H).

In this defintion, the hypotheses of a query are added to S and a provisional congruence
closure is generated and a = b is checked to be in it. It trivially follows from the definition that

Lemma 2.4 CC(S) ⊆ CCC(S).

The above definition is equivalent to: CCC(S ∪H ∪ {a = b⇒ False}) includes False. In
this case, membership in CCC(S) is being decided by refutation. It is also easy to see that if
H ⇒ a = b ∈ CCC(S), then so is H ′ ⇒ a = b, where CC(H) ⊆ CC(H ′); this capturing the
obvious fact that if a and b are equivalent assuming H , then they remain equivalent under H ′

with additional equalities.
If S has no function symbols other than the constants appearing in them, the problem is

simpler; we call it the conditional constant equivalence closure.

CONDITIONAL CONGRUENCE CLOSURE 323

2.2 Revisiting Congruence Closure Algorithm from [12]

Below we review the key steps of the congruence closure algorithm proposed in [12]. Without
any loss of generality, we may restrict the arity of function symbols to be ≤ 2 since function
symbols of arbitrary arity can be replaced using binary tree representation as in [2, 17].

In [12], a quadratic complexity algorithm for congruence closure of ground equations was
presented; it has two interacting components: (i) constant equivalence closure relation over con-
stants in the input as well as new constant symbols introduced to flatten nonconstant ground
terms (which amounts to introducing symbols for every nonconstant subterm in a DAG repre-
sentation of a problem) and (ii) inference of additional constant equalities due to congruences
using signatures of nonconstant terms. By imposing a total ordering on constant symbols and
making all nonconstant function symbols bigger than constants, the algorithm also generates
a complete/canonical rewrite system on ground terms built using original symbols and new
symbols (called extended signature) in which rewrite rules on ground terms need not be termi-
nating. The canonical form of a ground term could be a ground term properly containing it and
further, the term universe need not be fixed a priori. The focus of that paper was to demys-
tify Shostak’s congruence closure algorithm which also generated canonical forms but in an ad
hoc manner (see [3] and particularly [26] for a detailed analysis of Shostak’s algorithm). Since
Shostak’s algorithm is of quadratic complexity, we did not bother to optimize the algorithm
in [12] for its complexity.

It should be noted that the quadratic complexity is due to having to check for each pair
of equations with flat terms on the left sides to possibly generate new constant equalities.
If the arity of the function symbols is restricted to be less than some fixed arity, then this
check requires constant time. Using data structures from [2], including the use of balanced
trees for implementing UNION operation on equivalence clases, binary function symbols to
encode arbitrary arity function symbols and signature table for function terms built using
representatives of equivalence classes, Kapur’s algorithm[12] can be modified to have the same
complexity as that of [2] for various subcases, in particular O(n∗log(n)) (see also [17]). Equality
check of flat terms with the same outermost function symbol is built into the data structure and
consequently, does not have to be done explicitly. Most importantly, our algorithm is not only
easier to undestand and prove correct but also easier to implement, and is in fact supported in
Barcelogic SMT solver[17].

Let us revisit the key ideas of Kapur’s algorithm[12].

2.2.1 Equivalence Closure of Constant Equations

Given a finite set CE of constant equations, the equivalence relation generated by CE

is assumed to be efficiently computed in almost linear time using an equivalence generation
algorithm such as Tarjan’s UNION-FIND algorithm[14]. The output of the algorithm is a forest
of trees, with each tree representing an equivalence class of constants, and the root of the tree
being the representative of its equivalence class. Let EC(CE) stand for this equivalence closure.
This algorithm is incremental in the sense that equivalence checking as well as equivalence

324 KAPUR DEEPAK

extension can be done as needed.
Let Find(c) compute the representative of the equivalence containing c; during its compu-

tation, path compression is performed to keep the heights of trees small. Let Union(c, d) be the
operation that merges the equivalence classes of c and d if they are different: This operation
is implemented using Find(c) and Find(d); if c and d are in different equivalence classes, an
edge from the root of the tree with the bigger height to the root of the tree with the smaller
height is added to keep trees balanced (“modify the smaller half” heuristic (p. 759, [2]). The
root of the tree of bigger height is the new representative of the merged equivalence classes.
Find takes O(log(n)) steps in the worst case and O(α(n)) steps as the amortized cost, where
α is the inverse of unary Ackermann’s function, which grows extremely slowly; it is almost
constant after a certain value and n is the number of constants. In [12], equivalence closure
was computed as a canonical rewrite system by incrementally defining an ordering on constants
with rewrite rules from a bigger constant to a smaller constant‡.

2.2.2 Flattening

In [12], a key insight for getting an efficient congruence closure algorithm on ground term
equations as a completion procedure is that of flattening the input into two types of equations:
(i) Constant equations c = d and (ii) flat equations f(c1, · · · , ck) = d, where c1, · · · , ck, c, d are
constants. This is achieved by extending F to include new constant symbols not appearing in
the input.
Flatten({c = d}) = {c = d},
F latten({f(c1, · · · , ck) = d}) = {f(c1, · · · , ck) = d},
Flatten({d = f(c1, · · · , ck)}) = {f(c1, · · · , ck) = d},
F latten({f(t1, · · · , tk) = c}) = {f(c1, · · · , ck) = d, c = d} ∪⋃k

i=1 Flatten({ti = ci}),
F latten({c = f(t1, · · · , tk)}) = Flatten({f(t1, · · · , tk) = c}),
F latten({f(t1, · · · , tk) = g(s1, · · · , sk′)}) = {c = d, f(c1, · · · , ck) = c, g(d1, · · · , dk′) = d}∪

⋃k
i=1 Flatten({ti = ci})

⋃k′

i=1 Flatten({si = di}),
where new constant symbols c, d, c1, c2, d1, d2, etc., are introduced only for nonconstant sub-
terms, but constant symbols are not replaced by new symbols (for instance, if ti, si are constant
symbols, no new symbols are introduced for them). Number of new symbols introduced by the
above algorithm is minimized by introducing a single new constant for each distinct subterm
irrespective of its number of occurrences (which is equivalent to representing terms by dags
whose each non-leaf node is assigned a distinct constant).

It is easy to see that the flattening step can be done in linear steps in the input size. All
constant symbols in flat terms are representatives of equivalence classes from the first step,
which is equivalent to updating their signatures as in [2].

‡Choice of an ordering on constants can be delayed until congruence closure is generated. A user/application

may have preference for normal forms of terms. Kapur’s algorithm is very flexible as it mimics Shostak’s

algorithm which allows arbitrary canonical forms including those in which the canonical form of a subterm

can be a superterm containing it, something not allowed in classical term rewriting approach for generating

congruence closure because such rewriting is nonterminating.

CONDITIONAL CONGRUENCE CLOSURE 325

2.2.3 Implied Equalities Generation and Incremental Updating of Constant Equiv-
alence

The steps in the algorithm are: (i) Replace constant symbols in f -equations by their rep-
resentatives (canonical forms); (ii) if two f -equations have identical f -terms, then an implied
equality on constants is generated; (iii) in that case, equate the two constant symbols on their
right sides and update the equivalence closure by adding the implied equality. This process is
repeated until convergence which is guaranteed since there are only finitely many constants and
flat terms. Equivalence closure, implied equality generation and propagation steps interleave
with each other.

This algorithm terminates when all f -equations have distinct f -terms. Flattening can be
done in linear time in the size n of the input; equivalence closure takes O(n ∗ log(n)) steps to
perform constant congruence using Tarjan’s Union-Find algorithm[14], as in the worst case, there
can be O(n) constant symbols; the amortized complexity is O(n∗α(n)) as per[14]. The third step
of generating implied equalities and propagating them is the most expensive; its complexity is
determined by the maximum arity of a function symbol. In [12], careful complexity optimization
was not done to check when f -terms in f -equations become equal leading to an upper-bound of
O(n2). Using Downey, Sethi and Tarjan’s function signature checking technique and encoding
non-binary function symbols using binary function symbols, this check can be brought down to
O(n ∗ log(n))[2, 17]. Implied equalities generated when two f -equations have identical left sides
are used to incrementally update constant equivalence closure. It thus follows:

Theorem 2.5 The overall complexity of the congruence closure of ground equations using
completion is O(n ∗ log(n)), where n is the input size.

Upon termination of the algorithm, the result is a finite set of distinct constant equations in
which the right side of a constant equation is a representative of the congruence class containing
its left side, and a finite set of distinct f -equations in which all constants are representatives of
congruence classes. This set is also a canonical rewrite system and is reduced and unique given a
total ordering on constant symbols, and thus serves as a canonical form of a congruence relation
with respect to an ordering. The canonical form of an original constant term is the representative
of its congruence class, which could stand for an original constant term or a function term in
which all constants are in canonical forms. The canonical form of a nonconstant term is either
a constant term in canonical form or a term in which all constants are in canonical forms.
Further any two distinct terms have the same canonical form if and only if they are in the same
congruence class.

It should be noted that given a flat term or a constant, the canonical rewrite system corre-
sponding to a congruence relation generates its canonical form using original and new constant
symbols in one step; the canonical form of a non-flat term is computed in steps no more than
the number of function symbols appearing in the term.

Further, only subterms of S and others subterms equivalent to them using new symbols were

326 KAPUR DEEPAK

used in the above algorithm. Abusing the terminology somewhat, we called the output of the
algorithm as the congruence closure CC(S′) of S′, where S′ is S in which subterms have been
replaced by new symbols. Strictly speaking, the output is only the restriction of the infinite
CC(S′) on a restricted finite subset of GT (F ∪ C′), where C′ is the finite set of new constant
symbols introduced to stand for subterms in S. The following subsection discusses the basis of
this abuse of terminology.

2.2.4 Membership Test

Given a finite set of ground equations S and a query s = t, s = t is in the congruence
closure of S, denoted by CC(S), iff s and t have the same signature (i.e., identical normal
forms). Ground terms s, t are arbitrary elements of GT (F) and are thus not required to be in S

or congruent to subterms of terms in S. To distinguish the output of the above algorithm from
CC(S), we will use CCP (S), whenever there is possibility of confusion, to stand for the output
which is a finite presentation for CC(S). Thus, CCP (S) = CC(SC) ∪ FES , where CC(SC) is
the forest of trees of congruence classes on constants (original as well as new constants) and
FES is the finite set of f equations relating flat terms to constants.

Signature of s (which is not necessarily a subterm appearing in S) can be computed by
innermost traversal of s replacing each node in the DAG representation by its signature:
sig(c) = Find(c) if c is a constant, replacing constants by the representatives of their equiva-
lence classes; sig(f(s1, · · · , sk)) = sig(f(sig(s1), · · · , sig(sk))); this is the same as normalizing
s using f -equations by replacing their left sides by the respective right sides; a rewrite which
replaces an f -term by a constant always reduces the size of the term until no more rewrites
can be performed. This normalization step can be done in O(k) steps, where k is the size of
the query in addition to O(n ∗ log(n)) for generating CC(S). Checking membership in CC(S)
amounts to the signature computation of both sides of the query. Thus,

Theorem 2.6 Given a finite presentation CCP (S) of the congruence closure CC(S) of
S, the complexity of membership test in CC(S) using rewrite rules is O(k), where k is the size
of the query.

Consider an example: S = {a = f(a)}. Without any loss of generality, let us introduce
a new symbol c for f(a). In the extended signature, the equations are: {a = c, f(a) = c}.
Constant congruence generates a single equivalence class containing both a and c. If c is
chosen its representative (canonical form), then we have {a → c, f(c) → c}, implying that the
canonical form of both a, f(c) is c on the extended signature; on the original signature, a, f(f(a))
have canonical forms f(a). If we wish to check whether f(f(f(a)) = a are in the congruence
closure, then we compute canonical forms of f(f(f(a))) which is c; the canonical form of a

is also c, establishing their membership in CC(S). The reader should note that the rewrite
system representing congruence closure on the extended signature {a, f, c} is both terminating
and confluent. If new symbols are replaced by subterms for which they were introduced, the
resulting rewriting system could be non terminating; for example, the rewrite rule a→ f(a) is

CONDITIONAL CONGRUENCE CLOSURE 327

nonterminating; however f(f(a)) → f(a) is terminating. Canonical forms of a, f(a), f i(a) are
all f(a).

If a had been chosen as the representative of the equivalence class containing a and c, then
the rewrite system representing congruence closure is {c → a, f(a) → a} which is terminating
and confluent on the extended as well as original signature. And, the canonical forms of
a, f(a), f i(a) are all a.

This framework provides considerable flexibility in deciding what canonical forms should be
associated with various congruence classes. This was the intriguing feature of Shostak’s algo-
rithm for generating congruence closure motivating the author to develop the above framework
proposed in [12].

3 Conditional Congruence Closure from Horn Equations

Using the above framework for congruence closure for ground equations, we first give an
algorithm for computing congruence closure of Horn equations and then extend it to computing
conditional congruence closure. In the first subsection, we extend Tarjan’s Union-Find algo-
rithm to Horn equations on constants. Afterwards, nonconstant function terms are considered.
This extension mirrors the construction used in [12] based on flattening.

3.1 Computing Constant Equivalence Closure from Constant Horn Equations

Let S be the disjoint union of SC , a finite set of constant equations and SH , a finite set
of constant Horn equations. Let |S| = n, |SC | = k, |SH | = h be the sizes based on number of
symbols.

1) Apply Tarjan’s constant equivalence on the unconditional equations SC . The resulting
CC(SC) generates a forest of rooted trees in which the root of a tree serves as the represen-
tative of the equivalence class containing all constants labeling nodes in the tree. This step
takes O(k ∗ α(k))[14]. Let Find(c) be the root of the tree in which c appears; we will call
Find(c) as the signature of c and its amortized complexity is α(k).

2) Preprocessing of Horn Equations Pre(SH): This steps converts all constants appearing
in Horn equations by their representatives. Each conditional equation (

∧
hi

1 = hi
2)⇒ (ci

1 =
ci
2) is replaced by (

∧
Find(hi

1) = Find(hi
2)) ⇒ Find(ci

1) = Find(ci
2) after deleting any

trivial equality (in which Find(hj
1) and Find(hj

2) are identical). If Find(ci
1) and Find(ci

2)
are identical, then the Horn equation is deleted since it is trivial. Keeping Horn equations
on the representatives is one of the invariants of the subsequent steps.

The amortized complexity of this step is O(h ∗ α(k)).

3) Propagation of Horn Equations Prop(SH): This step involves determining whether the
hypothesis of any Horn equation(s) is True because all equalities appearing in it are True. If
so, its concluding equality is propagated to be in the equivalence relation. Data structures

328 KAPUR DEEPAK

similar to those used in Dowling and Gallier’s linear time algorithm for Horn satisfiability[11]

are used to keep track of representatives occurring in various Horn equations so that if that
representative changes due to new implied equalities, the update is reflected immediately.
Further, only those Horn equations whose hypotheses become True are processed. The
details about data structures used as well as the steps of the algorithm are given in the
Appendix; they are not included to avoid duplication with similar discussion in [11].

Whenever an implied equality from a Horn equation is propagated, it reduces the number
of representatives as well as the number of Horn equations left to be processed.

4) If no remaining Horn equation has its hypothesis in which each equality is valid, the algorithm
terminates, generating congruence closure CC(S) as well as conditional congruence closure
CCC(S) from the set S of Horn equations.

It should be noted that every equation and Horn equation in S is processed at most once.
However, equalities appearing in their hypotheses are updated as many times as the number
of new equalities propagated.

The complexity of propagation of implied equalities from Horn equations and updating
equivalence closure is O(h ∗ log(h)) since the representative of a constant can change log(k′)
times due to tree balancing in Tarjan Union-Find, where k′ ≤ h is the number of constants in
SH .

Lemma 3.1 Given CC(SC), Prop(SH) is of O(|SH | ∗ log(|S|) complexity.

Proof As discussed above, Prop(SH) involves computing Find on all constants in the
hypothesis of a conditional equation with path compression which is almost linear. In case
a hypothesis is True, then the equality in its conclusion updates CC(SC) by merging their
equivalence classes using tree balancing. Hence, the result follows.

Theorem 3.2 The above algorithm on S outputs a constant equivalence relation CC(S)
and a finite set HS of Horn equations on the representatives in CC(S).

Thus, CCP (S) = CC(S) ∪HS .

Theorem 3.3 The complexity of computing CC(S) and HS from S is O(k ∗α(k)+ |SH | ∗
log(|S|)), where k is the number of constants in S; the complexity of computing CCC(S) is
O(|S| ∗ log(|S|)).

S is said to have no nontrivial Horn equations iff CCC(S) = CC(S), i.e., HS is the empty set;
this happens if Horn equations in S are trivial by itself or are equations since their hypotheses
are True.

3.1.1 Deciding Membership in Conditional Constant Equivalence Closure

Deciding whether a Horn equation H ⇒ a = b is in CCC(S) can be done in many ways as
discussed in Subsection 2.1. The easiest but somewhat expensive way is to invoke the Deduction
theorem and update CCC(S) using constant equations in H and check whether a, b are in the

CONDITIONAL CONGRUENCE CLOSURE 329

same equivalence class in the updated conditional equivalence closure: (i) For each equality
c = d in H , if Find(c) and Find(d) are identical, then that equality can be deleted; otherwise,
Find(c) = Find(d) is processed the same way as an implied equality updating the CCC data
structure discussed earlier. After all equations in H have been processed, Find(a) and Find(b)
are computed; if they are identical, then the conjecture Horn equation is in CCC(S); otherwise,
it is not.

The complexity of this operation is O((n + k) ∗ log(n + k)) where k is the size of the Horn
equation being decided and n is the size of CCC(S). Unlike in the unconditional case, where
membership can be decided in almost constant time or O(k) in the presence of nonconstant
symbols, where k is the size of the query, congruence closure must be updated to include
equalities in the hypothesis of the conjecture.

If S does not have any nontrivial Horn equations, i.e., CCC(S) = CC(S), replacing con-
stants by their representatives in CC(S) is also a decision procedure for CCC(S) without
having to invoke the Deduction Theorem. To decide membership in CCC(S) is merely replac-
ing constants by their representatives in a conjecture and checking whether it conclusion follows
directly from the equalities in its hypothesis.

The following lemma trivially follows from the definitions.

Lemma 3.4 (H ⇒ a = b) ∈ CCC({}) iff a = b ∈ CC(H).

Using the above lemma, the following result follows.

Theorem 3.5 Given S with no nontrivial Horn equations, a Horn conjecture (H ⇒ a =
b), C ∈ CCC(S) iff C ′ = (H ′ ⇒ a′ = b′) ∈ CCC({}) where H ′ is computed by replacing
constants in H by their representatives in CC(S), and a′, b′ are respectively representatives of
a, b in CC(S).

The above theorem gives a decision procedure for CCC(S). The complexity in that case is
O(k), where k is the size of the conjecture.

The reason the above theorem does not hold if S has Horn equations which do not simplify
to equations is because the hypothesis of a conditional conjecture can imply an equality which
otherwise does not follow from CC(S). Consider S = {a = b ⇒ c = d}; the conjecture
(a = c ∧ b = c)⇒ a = d ∈ CCC(S) but a = d does not directly follow from {a = c, b = c}. A
similar situation arises if S has nonconstant equations even when it does not have any nontrivial
Horn equation, as discussed later.

3.2 Redundancy in the Presentation of CCC(S)

Unlike the congruence closure algorithm for (unconditional) equations, the result of the
above algorithm could still include redundant conditional equations including trivial conditional
equations in which the conclusion is implied by the hypothesis (see Lemma above). As an
example a Horn equation (a = b ∧ b = c) ⇒ a = c can be in the output HS even though
the Horn equation is trivial since a = c follows from the hypothesis. This is because constant
equivalence closure cannot check whether the conclusion of a Horn equation follows from its

330 KAPUR DEEPAK

hypothesis without additional work. The next subsection discusses a heuristic to remove some
obvious redundancies.

The output HS can also include two different Horn equations H1 ⇒ a1 = b1 and H2 ⇒ a1 =
b1 such that the equations in H2 implies the equations in H1. For example both a = b⇒ c = d

and (a = b ∧ a′ = b′) ⇒ c = d could be in HS whereas the second Horn equation follows from
the first. Rewriting in a later section will capture this kind of redundancy.

3.2.1 Normalized Horn Equations

To remove trivial Horn equations such as (a = b∧b = c)⇒ a = c, the provisional equivalence
relation induced by the equations in the hypothesis of a Horn equation is generated to check
whether its conclusion is in this equivalence relation of the hypothesis. The conditional equation
can then be deleted as being redundant. Otherwise, the conditional equation is brought into
a normal form: The hypothesis is presented as equations specifying the induced partition in a
unique fashion by using the total ordering on constants used in the congruence closure.

Let PE stand for the partition (equivalence relation) induced by a finite set E of constant
equations. Given a Horn equation on the representatives (roots) (ai

1 = bi
1 ∧ · · · ∧ ai

ki
= bi

ki
) ⇒

c = d, a normalized Horn equation is thus:
∧

j(u
j
1 = uj

0 ∧ · · · ∧ uj
kj

= uj
0) ⇒ (u = v), where j

ranges over equivalence classes in the partition PH defined by H = {ai
1 = bi

1, · · ·∧ · · ·ai
ki

= bi
ki
}.

A constant uj
0 is the representative of the j-th equivalence class containing other constants

uj
1, · · · , uj

kj
different from the representative uj

0, u, v are the distinct representatives of c and d

in PH , respectively.
It is easy to see that the normalized Horn equation H ′ of a given Horn equation H generates

the same conditional congruence as H . Let the operator N stand for normalizing a Horn
equation: N((ai

1 = bi
1 ∧ · · · ∧ ai

ki
= bi

ki
) ⇒ c = d) =

∧
j(u

j
1 = uj

0 ∧ · · · ∧ uj
kj

= uj
0) ⇒ (u = v).

For the special case where c, d are identical or u, v are identical, N(H) = True. It is easy to see
that N(N(H)) = N(H). This operation is of complexity O(k ∗ log(k)), where k is the size of a
Horn equation.

As an example, consider (a = b ∧ b = c ∧ d = e) ⇒ a = d. The hypothesis defines the
equivalence classes {a, b, c}, {d, e}. Using the ordering a
 b
 c
 d
 e, the representatives
of the two equivalence classes are respectively c, e. The Horn equation is normalized to (a =
c ∧ b = c ∧ d = e) ⇒ (c = e). A Horn equation (a = b ∧ b = c) ⇒ (a = c) normalizes to
(a = c ∧ b = c)⇒ (c = c) which is trivial and hence is deleted.

A partition PE ⊆ PE′ iff the equivalence relation that induces PE is a subset of the equiva-
lence relation for PE′ , i.e., PE is a refinement over PE′ since more equalities hold in PE′ than
PE . We abuse the notation by interchanging between writing a normalized Horn equation as
H ⇒ a = b or PH ⇒ a = b.

To remove the second kind of redundancies discussed above, e.g., between two normalized
Horn equations: {(a = c ∧ b = c) ⇒ d = e, a = b ⇒ d = e}, the second Horn equation
implies the first making it redundant. This can be taken care by rewriting (or simplification) as
discussed later in the section on generating a canonical Horn rewrite system using completion

CONDITIONAL CONGRUENCE CLOSURE 331

or by additional processing of the hypotheses in Horn equations.

Lemma 3.6 Given normalized PH ⇒ a = b and PH′ ⇒ c = d where PH ⊆ PH′ , the second
Horn equation is implied by the first Horn equation (i.e., PH′ ⇒ c = d ∈ CCC({PH ⇒ a = b}))
iff c, d are in the same equivalence class of the partition induced by PH′∪{a=b}.

This not only deals with Horn equations discussed earlier but shows that (a = c∧ b = c)⇒
c = e follows from a = b⇒ b = e.

So far, only redundancies relating one Horn equation to another have been analyzed. A
combination of Horn equations can also make another Horn equation redundant. Consider the
following simple example consisting of four Horn equations: {1. a = b ⇒ b = c, 2. b = c ⇒
c = d, 3. a = b ⇒ c = d, 4. a = b ⇒ b = d}, which are all normalized. Using the chain
rule (transitivity), a = b ⇒ c = d follows from 1 and 2; from 1 and 3, a = b ⇒ b = d. This
suggests that many Horn equations are redundant but they may be needed for ensuring the
local confluence of a conditional Horn rewrite system.

3.3 Extension to Nonconstant Function Symbols

The extension from the conditional constant equivalence closure of constant Horn equations
to conditional congruence closure for the nonconstant case is essentially the same as that of
extending Tarjan’s Union-Find for constant equivalence closure to congruence closure for ground
equations.

The reader needs to be reminded that congruence closure as well as conditional congruence
closure are now infinite even though it suffices to consider the restrictions of them on subterms
of terms appearing in the input S. We will continue to abuse the terminology of calling these
restrictions to be CC(S) and CCC(S) since they suffice to decided membership in CC(S) and
CCC(S) respectively.

The steps of the extension to ground Horn equations, emphasizing key points and any
differences from congruence closure on constants, are:

Step 1 Flattening Same as in Subsection 2.2.2.
Step 2 Conditional constant equivalence closure This was discussed in Subsection 3.1.
Step 3 Implied constant equalities from f-equations This is the same as in Subsec-

tion 2.2.3. We emphasize that implied equalities generated from f -equations with identical left
sides can generate additional implied equalities from constant Horn equations.

The result of the algorithm is a forest of trees representing congruence closure on constants,
a finite set of constant Horn equations on the roots of the trees and a finite set of f -equations
on the roots with distinct left sides. Thus, CCCP (S) = CC(SC) ∪HS ∪ FES , where CC(SC)
is the forest of trees representing congruence closure on constants (original as well as new), HS

are constant Horn equations and FES are f equations relating flat terms to constants. Recall
that CCP (S) = CC(SC) ∪ FES .

The overall complexity of the algorithm remains the same as in the case of conditional
congruence closure of constant Horn equations; including nonconstant symbols only increases

332 KAPUR DEEPAK

the complexity by the log(n) factor on the size of the input.

3.4 Deciding a Horn Conjecture

Given CCCP (S) of a finite set S of Horn equations as computed above, the membership of
a Horn conjecture C = (

∧
ti1 = ti2 ⇒ s1 = s2) in CCC(S) is decided as follows.

1) Compute Canonical Forms of Terms in C: Let s be the canonical form of a term s by
CCP (S). Check if s1, s2 are identical, then C follows from S. Otherwise for each equality
ti1 = ti2 in its hypothesis, compute their canonical forms t1

i
, t2

i; if identical, that equality is
deleted from C. Let C = (

∧
t1

i = t2
i ⇒ s1 = s2) stand for the normalized form of C on the

roots of CC(SC).

To avoid cumbersome notation, without any loss of generality, from now onwards, C is
assumed to be already in canonical form.

2) Flatten the normalized conjecture: Let Flatten({t11 = t12, · · · , tk1 = tk2}) give a set H

of f -equations and constant equations, standing for the hypothesis. Let Flatten({s1 = s2})
also give a set C of f -equations and constants. Then, the flattened form of the conjecture is:
(
∧

ci
1 = ci

2)⇒ d = e, where a constant equality ci
1 = ci

2 stands for ti1 = ti2, and d = e is the
constant equality corresponding to s1 = s2 with H∪C. It is only necessary to introduce new
symbols for function terms whose subterms do not appear in S; this minimizes the number
of new symbols. This step is linear in the size k, say, of the Horn conjecture; the size of
H ∪ C of the flattened Horn conjecture is O(k).

3) Compute CCC(CCCP (S) ∪H ∪ C ∪ {c1
1 = c1

2, · · · ck
1 = ck

2}): The provisional conditional
congruence closure is computed using CCCP (S) and new equations in H ∪ C ∪ {c1

1 =
c1
2, · · · , ck

1 = ck
2}. Update constant congruence CC(SC) first with new constant equations;

then updating the representatives of constants appearing in f -equations, possibly generating
new implied equalities and also from Horn equations HES . The complexity of this step is
O((n + k) ∗ log(n + k)) (which is the complexity of CCCP on a problem of size n + k), but
it can be amortized over various conjectures decided from the same CS .

4) Check d = e: If Find(d) and Find(e) are the same, then the conjecture follows from S;
otherwise, it does not. The complexity of this step is log(n + k); since this is an addition, it
gets absorbed in the overall complexity.

It follows from the proofs of Subsections 2.2.4 and 3.1.1, that:

Theorem 3.7 Membership in conditional congruence closure CCC(S) can be decided in
O((n + k) ∗ log(n + k)) steps where k is the size of the query and |S| = n.

The above complexity is the same as that of computing membership in CCC(S∪H) because
of the use of Deduction theorem, in contrast to O(k) when the invocation of Deduction theorem
is avoided.

CONDITIONAL CONGRUENCE CLOSURE 333

To summarize, CCP (S) = CC(SC) ∪ FES ; CCCP (S) = CC(SC) ∪ FES ∪HES .
As was proved above in Subsection 3.1, CCP (S) is a decision procedure for CCC(S) with-

out having to invoke the Deduction theorem if S does not have any nontrivial Horn equations
(since CCC(S) = CC(S)). However, in the presence of nonconstant function symbols, Deduc-
tion Theorem has to be invoked to decide membership in CCC(S) even if S does not have
any nontrivial Horn equations. Consider S = {f(a) = c, f(b) = d}. The Horn conjecture
a = b ⇒ c = d ∈ CCC(S); obviously, it is not in CCP (S). The hypothesis a = b causes
an implied equality from the f -equations. Using Horn closure as defined below, this can be
remedied somewhat if S has no nontrivial Horn equations but may have ground equations with
nonconstant function symbols.

3.4.1 Horn Closure

Horn closure HC(S) of CCC(S) is defined as follows: (i) CCC(S) ⊆ HC(S), and in
addition, (ii) from every pair of distinct flat equations with the same outermost function symbol,
say h(a, b) = c, h(a′, b′) = c′ ∈ HC(S), the Horn equation (a = a′ ∧ b = b′) ⇒ c = c′ is also
in the Horn closure HC(S). Horn equations so generated are on the representatives, are not
redundant and further do not generate any implied equalities since all flat terms are using
representatives as well§. To generate canonical forms for Horn equations, it becomes necessary
to add such implied Horn equations from f -equations as will be shown in a later subsection.

4 Canonical Forms

Assume a total well-founded ordering
 on the extended signature (original and new con-
stants and function symbols); this ordering can extend to a total wellfounded ordering on ground
terms in many different ways[13].

A unique representative (canonical form) can be associated with constant, ground term,
equation, constrained term as well as a Horn equation for a given S. We first consider the case
when there are only constant symbols, and then we include function symbols.

4.1 Constant Equivalence, Tarjan’s Union-Find and Canonical Forms

For a finite set S of constant equations, the canonical form of a constant a with respect to

is the least constant equivalent, say a, to a in CC(S). Tarjan’s Union Find algorithm generates
canonical forms where the ordering is dynamically built based on the input and structure of
equivalences; the root of a tree in a forest representing constant equivalence is the canonical
form associated with the equivalence class of constants in the tree. Canonical forms (hence the
ordering on constants) dynamically change depending upon some measure of the size of the
equivalence classes during the Union (merging) step.

§Membership of such Horn equations in the conditional congruence closure can be decided invoking the

Deduction Theorem, but cannot be decided by simplification.

334 KAPUR DEEPAK

4.1.1 Canonical Rewrite System Associated with Tarjan’s Union-Find

Consider a forest of trees representing an equivalence relation on constants, as generated
in Tarjan’s Union-Find data structure. The rewrite system associated with the forest is: For
every tree, if there is an up arrow (toward the root of its tree) from a node corresponding to
a constant c (henceforth also called node c) to a node d, a rule c → d is included. From the
construction of trees, there is at most one rule for every constant appearing on its left side since
there is at most one up arrow from a node to another node.

Find(c) computes the representative of c by traversing up from the node c to the root of its
tree, keeping track of all the intermediate nodes. That is equivalent to rewriting c, keeping track
of all intermediate results unless the result cannot be rewritten any more. The final result is
the root, the canonical form of c and of all other nodes on the path from c to its root. The path
compression step in Tarjan’s algorithm connects all nodes encountered by up arrows to the root;
that is equivalent to replacing all intermediate constants in rewriting directly to the root and
deleting all rules used in rewriting. If c0 → c1 → c2 · · · → ck (hence, Find(c0) = ck) because of
rules c0 → c1, c1 → c2, · · · , ck−1 → ck, they are all changed to c0 → ck, c1 → ck, · · · , ck−1 → ck

in the path compression step.
Since Union(c, d) involves computing Find(c) and Find(d), checking whether the results

are different or not. In that case, the root with the “smaller” tree puts an up arrow to the
root with the “larger” tree, where the ordering on trees could be based on their size, height or
some combination. In the associated rewrite system, a new rule is added with the new root as
its right side (since it is the canonical form of the merged tree) and the other root as its left
side. Computation of Find(c) and Find(d) also results in processing of existing rewrite rules
as discussed above.

It is easy to see the resulting rewrite system is indeed canonical and generates canonical
forms which are the roots of the trees. However, it is not reduced as the left and right sides
of a rule can be further reduced if the respective node on the left is not directly below a root
and/or the respective node on the right is not a root.

Even when a prior total ordering
 on constants is given, the above construction can be
employed ignoring the ordering except for an additional flag with every root indicating whether
the root is the least element in its tree along with keeping track of the positions of the least
elements. As a final step, for every root, if its flag indicates it is not the least element, then the
least element in the equivalence class is identified using Finds on the least element and making
it the root. This final step can be done without sacrificing efficiency. Upon termination, the
least element in every equivalence class is the root of the corresponding tree.

Lemma 4.1 For a constant equivalence relation CC(S) with a total ordering
 on con-
stants, the rewrite system R using the above construction represents a forest of trees (with each
tree representing an equivalence class) in which the root is the least element in the equivalence
class. Further, {ci → Find(ci)}, for every non-root constant ci, is canonical and the least
among all rewrite systems representing CC(S).

CONDITIONAL CONGRUENCE CLOSURE 335

Proof Suppose there is another rewrite system R′ smaller than R. Consider the least rule
l → r in R not in R′; similarly, l′ → r′ be the least rule in R′ that is not in R. Either l = l′

implying that they differ in r, r′, or l �= l′. Consider the representatives of l and l′ in CC(S). If
l = l′, then Find(r) = Find(r′) but r
 r′ implies that r �= Find(r), a contradiction. Consider
the case of l �= l′; if l′
 l, then l′ → r′
 l→ r but l′ → r′ is the least rule of R′ not in R implying
l → r ∈ R′, which is a contradiction to l → r being the least rule in R not in R′. If l
 l′, then
R must include a rule to simplify l′ which is smaller than l → r and its right side is Find(l′)
by construction. l′ → Find(l′) ∈ R is smaller or equal to l′ → r′, which is a contradiction to
the assumption that l′ → r′ is the least rule in R′ not in R.

4.2 Canonical Forms of Constant Horn Equations

Given CC(S), which also induces a partition on constants in S, the canonical form of a
Horn equation H ⇒ a = b is either (i) True, (ii) an equation a′ = b′ if each equality in H has
canonical form True in CC(S), and a′, b′ are respectively canonical forms of a, b in CC(S), or
(iii) a normalized Horn equation H ′ ⇒ a′ = b′, i.e., N ′(H ′ ⇒ a′ = b′) = H ′ ⇒ a′ = b′, and
H ′ is the conjunction of equalities in canonical forms including using equalities within H ′ to
reduce each other and a′, b′ are canonical forms of a, b using CC(S) as well as H ′. For example
(a = b ∧ b = c) ⇒ a = d, where each a
 b
 c
 d are in their own distinct equivalence
classes in CC(S), has its canonical form to be (a = c ∧ b = c) ⇒ c = d obtained by using
H to bring canonical forms to each of its equalities with respect to other equalities in H ; for
the concluding equality, the equalities in H are also used. Similarly, the canonical form of a
constrained constant H ⇒ a is H ′ ⇒ a′, where H ′ is the canonical form of H in CC(S) and a′

is the canonical form of a in CC(S ∪H).
Given a set S of Horn equations, the canonical form of a constant a is the least constant in

the ordering in the equivalence class of a in CC(S). Similarly, the canonical form of an equality
a = b is True or a′ = b′, where a′, b′ are the canonical forms of a, b, respectively in CC(S).

The canonical form of a constrained constant H ⇒ a is H ′ ⇒ a′, where a′ is the canonical
form a in of CC(S ∪ H) and for each c = d ∈ H , c′ = d′ is the canonical form of c = d in
CC(S ∪H − {c = d}). This captures the condition that equalities in H are normalized with
respect to each other as well as that the concluding equality is normalized with respect to H .
The canonical form of H ⇒ a = b is then H ′ ⇒ a′ = b′ where H ′ ⇒ a′ and H ′ ⇒ b′ are
respectively the canonical forms of H ⇒ a and H ⇒ b.

For an S with constant Horn equations, we have:

Theorem 4.2 H ⇒ u = v ∈ CCC(S) iff the canonical form of H ⇒ u and H ⇒ v are
identical, i.e., u = v ∈ CCC(S ∪H).

Two different Horn equation are thus equivalent even when they are not necessarily identical
but they have the same canonical form. This could be because the same congruence relation
can be presented in multiple ways. For example, (a = b ∧ a = c) ⇒ (a = d) and (a = b ∧ b =
c)⇒ b = d have the same canonical form (a = c ∧ b = c)⇒ c = d when S = ∅.

336 KAPUR DEEPAK

4.3 Extension to Horn Equations with Nonconstant Function Symbols

When S has uninterpreted symbols but no Horn equations, the congruence closure algorithm
with extended signature outputs two components: (i) Constant equivalence represented as a
forest of trees (equivalently a rewrite system as constructed in the previous section) and (ii)
f -equations with distinct left side.

If the rewrite rules relating constants are reduced and used to rewrite those constants in
f -equations and Horn equations, then the whole rewrite system is also reduced. Using a related
Lemma 4.1 for constant equivalence, it follows that

Lemma 4.3 Corresponding to a set S of ground equations and a total ordering
 on the
extended signature, the above construction produces a canonical rewrite system that is reduced
and the least among the presentations of the associated congruence closure relation.

The canonical form of a flat term f(c1, · · · , ck) in CCC(S) is the canonical form of the flat
term f(c1, · · · , ck), where ci is the canonical form of ci in CCC(S); it is either a constant if the
flat term is in its congruence class, otherwise, it is itself.

A simple example of a trivial Horn equation is: (f(f(f(a)) = f(f(f(f(f(a))))) ∧ f(f(a)) =
a) ⇒ f(f(f(f(a)))) = f(f(a)) where S is ∅. Using flattening and introducing new symbols
gives A = {f(a) = u1, f(u1) = u2, f(u2) = u3, f(u3) = u4, f(u4) = u5} and conjecture is the
Horn equation (u3 = u5 ∧ u2 = a)⇒ u4 = u2. Its Horn closure HC(A) = A ∪ {a = u1 ⇒ u1 =
u2, a = u2 ⇒ u1 = u3, a = u3 ⇒ u1 = u4, a = u4 ⇒ u1 = u5, u1 = u2 ⇒ u2 = u3, u1 = u3 ⇒
u2 = u4, u1 = u4 ⇒ u2 = u5, u2 = u3 ⇒ u3 = u4, u2 = u4 ⇒ u3 = u5, u3 = u4 ⇒ u4 = u5}. It
is easy to see that the condition u2 = a has a cascading effect making u1 = u3 = u5, u2 = u4 = a

from which the conclusion of the conjecture follows.
For CCC(S), the canonical form of a Horn equation (

∧
j sj

1 = sj
2)⇒ s = t is defined similar

to that of a constant Horn equation discussed in the previous subsection. Let H = {sj
1 = sj

2|1 ≤
j ≤ k} be the finite set of equalities in the hypothesis. The canonical form of an equality sj

1 = sj
2

is sj
1 = sj

2 where sj
1, s

j
2 are canonical forms of CCC(S ∪H − {sj

1 = sj
2}) of sj

1, s
j
2, respectively.

The canonical form of H ⇒ s is {∧ s1
j = s2

j} ⇒ s, where s is the canonical form of s in
CCC(S ∪H). The canonical form of (

∧
j sj

1 = sj
2) ⇒ s = t is True iff the canonical forms of

H ⇒ s and H ⇒ t are identical; otherwise, it is (
∧

s1
j = s2

j)⇒ s = t.
In the next subsection, rewriting of a constrained constant using Horn equations is defined

so that it is terminating. A completion procedure is designed that checks whether Horn rules
are locally confluent, and if not, add new Horn rules until a locally confluent system with the
same CCC(S) is generated. Such a canonical Horn rewrite system is a decision procedure for
CCC(S) by generating canonical forms for constrained constants as well as Horn equations.

CONDITIONAL CONGRUENCE CLOSURE 337

5 Canonical Conditional Constant Rewrite System

We design a completion algorithm for generating a canonical conditional ground rewrite
system from a finite set S of ground Horn equations. The canonical system serves as a decision
procedure for membership of Horn equations in CCC(S) as well as generating canonical forms
for constrained terms and Horn equations. For this also, we first consider the case of constants
only and later we extend the algorithm to the case when S also has function symbols, in the
same way the above conditional congruence closure algorithm on ground Horn equations was
generated from conditional constant closure algorithm.

There are multiple objectives for designing this algorithm beside generation of a canonical
rewrite system, which is of independent interest: (i) Deleting redundant Horn equations, (ii)
having a canonical representation for conditional congruence relation given a total ordering
on function symbols and constants, and (iii) eliminating symbols, a construction that can be
helpful in generating interpolants based on quantifier elimination[25, 27]. Further, associating
a unique reduced canonical rewrite system with a conditional congruence closure of S for a
fixed ordering would enable an easy linear time check for equivalence of conditional congruence
relations presented by their respective reduced canonical rewrite systems.

5.1 Rewriting Using Conditional Rewrite Rules on Constants

We first define a rewrite relation on a constrained constant and then give an algorithm for
generating a canonical rewrite system for CCC(S) for a system of constant Horn equations.

Let S be a disjoint union of a finite set of equations, SE , and Horn equations SH on
constants. We will start with a canonical rewrite system from SE as defined in Subsection 4.1.1.
This canonical system normalizes Horn equations in SH by replacing each constant in it by the
associated canonical form. Each Horn equation in SH is also normalized after deleting True,

False from a Horn equation; trivial Horn equations are deleted.
Recall that a normalized Horn equation is:

∧
j(u

j
1 = vj ∧ · · · ∧ uj

kj
= vj)⇒ (a = b), where

j ranges over equivalence classes generated by the hypotheses, vj is the least constant among
all other constants in its equivalence class. a and b are distinct and are in canonical forms and
are the least constants in equivalence classes generated after extending SE with the constant
equations in its hypothesis. The associated rewrite system with the above normalized Horn
equation has its conclusion as a rewrite rule a→ b if a
 b (b→ a if b
 a).

A conditional rewrite rule can apply at the term part of a constrained term and/or its
constraints.

Definition 5.1 A normalized conditional rewrite rule Hi ⇒ ai → bi rewrites a normalized
constrained term H ⇒ a at a, denoted by →m, to N(H ⇒ bi) = H ⇒ b if (i) PHi ⊆ PH and
(ii) ai = a, b = bi ∈ PH .

A normalized conditional rewrite rule Hi ⇒ ai → bi rewrites normalized H ⇒ a at H ,
denoted by→h, to N(H ′ ⇒ a) if (i) PHi ⊆ PH and (ii) ai is equivalent to some other constants
different from itself in PH . This ensures that PH′ �= PH where H ′ = H |bi

ai
modifies the equiv-

338 KAPUR DEEPAK

alence relation (partition) induced by H by replacing a everywhere by b thus capturing the
equality of distinct constants. I.e., if a appears in H , then H |ba does not have any occurrence
of a and is an equivalence relation on fewer or smaller constants.

The rewrite relation → is then the union of →m and →h.
Given that H is a conjunction of equalities, H on a single constant is the condition True,

making H ⇒ a = b to be unconditional equality a = b.
For example, consider the rewrite rules 1.a = b ⇒ c → d and 2.c = d ⇒ u → v where c
 d

and u
 v. A constrained term (a = u ∧ c = d) → u rewrites by the second rewrite rule (→m)
where u
 v to (a = u ∧ c = d) ⇒ v at the conclusion. This can be further rewritten at the
hypothesis to give (a = v ∧ c = d)⇒ v.

A constrained term (a = b ∧ c = d)⇒ d is rewritten (→h) by rule 1 to a = b⇒ d since c in
the hypothesis reduces to d making c = d to be trivial. A constrained term (a = b∧ c = e)⇒ e

assuming c
 d
 e, rewrites (→h) by rule 1 to (a = b ∧ d = e) ⇒ e. However, if c
 e
 d, the
result is (a = b ∧ e = d)⇒ d.

The following properties about H |ba, where a
 b, and H are used in the proofs later.

Lemma 5.2 Let H1 = H |ba, a
 b, where H, H1 are partitions induced by equivalence rela-
tions.

1) a does not appear in H1.

2) H − {a} ⊆ H, where H − {a} is the subpartition in which a has been deleted from its
equivalence class (equivalently, the partition H on the set of constants excluding a).

3) If a does not appear in Hi, then Hi ⊆ H ⇒ Hi ⊆ H1.

4) If c = d ∈ H but c = d /∈ H1, then either c or d is a. In other words, if c = d ∈ H and
neither c or d is a, then c = d ∈ H1 also.

5) H1|da = H1. If c �= b, c �= a H1|dc = (H |dc)|ba. (H |ba)|db = (H |da)|db .

A total ordering
 on constants extends to constrained constants as well as finite sets of
constant equations, Horn equations and the associated rewrite rules. Two multisets of constants
M1
M2 iff for each y ∈ M2 −M1, there is an x ∈ M1 −M2 such that x
 y (∀y ∈ M2 −
M1∃x ∈ M1 −M2, x
 y). An equation a′ = b′
 a = b iff the multisets {{a′, b′}}
{{(a, b}}.
H ⇒ a
H ′ ⇒ a′ iff (i) a
 a′ or (ii) a = a′ ∧H
H ′, where H, H ′ are respectively equivalence
classes represented as equations. Similarly, H ⇒ a = b
H ′ ⇒ a′ = b′ iff a = b
 a′ = b′ or
(a = b) = (a′ = b′) ∧H
H ′.

Lemma 5.3 → is terminating.

Proof (H ⇒ a)→ (H ′ ⇒ a′) using Hi ⇒ ai → bi gives that either (i) H = H ′ or H
H |bi
ai

and a = ai ∈ PH ∧ a′ = bi ∈ PH′ implying a
 a′, or (ii) a = a′ ∧H
H |bi
ai

. Since normalization
of a constrained term and a Horn equation perserve
 , → is terminating.

CONDITIONAL CONGRUENCE CLOSURE 339

Lemma 5.4 Soundness: If Hi ⇒ ai → bi rewrites Hj ⇒ aj to H ′
j ⇒ bj, then Hj ⇒

aj = bj as well as H ′
j ⇒ aj = bj are in CCC({Hi ⇒ ai → bi}).

Proof Consider the case H ′
j ⇒ aj = bj ∈ CCC({Hi ⇒ ai ⇒ bi}); the proof of the other

case is similar. H ′
j = N(Hj |bj

aj) is either PHj = PH′
j

or PH′
j

= P
Hj |bj

aj

; we also have PHi ⊆ PHj

implying that aj = bj ∈ CCC({Hi ⇒ ai → bi} ∪H ′
j).

The definition of rewriting → extends to a finite set S of conditional rules: H ⇒ a →
H ′ ⇒ a′ rewrites in one step by S iff there exists a rule Hi ⇒ ai → bi ∈ S such that
H ⇒ a→ H ′ ⇒ a′ using the rule. Let the rewrite relations →∗,→+ be the reflexive, transitive
closure and transitive closure, respectively, of→. H ⇒ a is in normal form iff there is no rule
in S which can rewrite it, i.e., for every rule of the form Hi ⇒ ai → bi ∈ S, either (i) PHi �⊆ PH ,
or (ii) PHi ⊆ PH but either ai = a /∈ PH or ai does not appear in H .

For example, consider S = {1. a = b ⇒ c → d, 2. c = d ⇒ u → v}. (a = b ∧ c =
d) ⇒ u →h (a = b) ⇒ u using rule 1 (the normalization of (a = b ∧ d = d) ⇒ u); using rule
2, (a = b ∧ c = d) ⇒ u →m (a = b ∧ c = d) ⇒ v which rewrites further using rule 1 to:
a = b ⇒ v. Both a = b ⇒ u as well as a = b ⇒ v are in normal form. This establishes that
a = b⇒ u = v ∈ CCC(S).

H ⇒ a = b is rewritten in one step by S iff S rewrites either H ⇒ a or H ⇒ b. H ⇒ a = b

is in normal form iff both H ⇒ a and H ⇒ b are in normal form. If H ⇒ a = b is rewritten in
many steps by S to a trivial Horn equation then H ⇒ a = b is in CCC(S).

Similarly, it easily follows that if Hi ⇒ ai → bi rewrites Hj ⇒ aj = bj to Hk ⇒ ak = bk,
then either aj is rewritten to ak with bj = bk or bj is rewritten to bk with aj = ak. This is just
to capture that the conclusion in an H-equation can be rewritten on its left side or right side.

Theorem 5.5 The reflexive symmetric transitive closure of → induced by S is CCC(S).

Before presenting a proof, we illustrate using a simple example: Let S = {1. a = b ⇒ c →
d, 2. c = d ⇒ u → v}. It is easy to see that a = b ⇒ u = v ∈ CCC(S). A proof using ↔
(the symmetric closure of →) is: (a = b ∧ c = d) ⇒ u → a = b ⇒ u using rule 1 as well as
to (a = b ∧ c = d) ⇒ v using rule 2 which further rewrites using rule 1 to a = b ⇒ v. The
crucial observation is the use of equalities in the hypotheses of constrained terms in a proof,
they are rewritten using rules used in deriving additional equalities in CCC(S ∪H), where H

is the hypothesis of a conjecture being decided.

Proof In the forward direction, i.e., the reflexive symmetric transitive closure, ↔∗ of →
induced by S is contained in CCC(S), is easier and follows from the soundness of rewriting and
by induction in the number of steps relating two constrained terms in ↔∗.

In the other direction, consider two constrained terms H1 ⇒ a1, H2 ⇒ a2 such that using
CC(S ∪ H1), PH1 = PH2 as well as a1 = a2, a two sided rewriting sequence needs to be
constructed using →. H1 makes hypotheses of conditional rewrite rules in S valid generating
additional equalities in CC(S∪H1) that are not in H1 or CC(S). If H1 (or H2) are extended to
include such additional equalities, called Ha, rewrite rules needed in proofs PH1 = PH2 as well

340 KAPUR DEEPAK

as a1 = a2 become applicable. Thus H1 ∪Ha ⇒ a1 can be rewritten using bi-directed rewriting
at H1, H2, a1, a2 to H2 ∪Ha ⇒ a2 and then from both H1 ∪Ha ⇒ a1 as well as H2 ∪Ha ⇒ a2,
Ha can be deleted using the rewrite rules that generated Ha from H1, H2, a1, a2.

This is illustrated in an example above where a = b⇒ u↔∗ a = b⇒ v using S = {a = b⇒
c = d, c = d ⇒ u = v}; equality c = d is not in CC(S) but is in CC(S ∪ {a = b}). As shown
above, (a = b ∧ c = d) ⇒ u can be rewritten both to a = b ⇒ u as well as a = b ⇒ v. From
this, a = b⇒ u = v is deduced.

5.2 Local Confluence, Critical Pairs, and Completion

One way to ensure the confluence of a rewrite relation is to check whether it is locally
confluent assuming it is terminating. The local confluence of a rewrite relation can be checked
by generating superpositions among pairs of rewrite rules on which both rules are applicable
and rewrite them in two possibly different ways (see [13] for more details).

There are three possible types of critical pairs among a pair of distinct normalized rules
Hi ⇒ ai → bi and Hj ⇒ aj → bj in S due to interaction between →h and →m.

A critical pair is called nontrivial iff it has a nontrivial Horn equation as a normal form; a
critical pair is trivial if its normal form is a trivial Horn equation. A trivial critical pair is also
called joinable.

If (ai, aj) ∈ PHi∪Hj , then the superposition is: N(Hi ∪ Hj ⇒ min(ai, aj)) to enable the
application of the two rules in possibly different ways: 〈N((Hi∪Hj)⇒ bi), N((Hi∪Hj)⇒ bj)〉
is a critical pair due to interaction between →m and →m. For example, from a = b ⇒ b → u

and a = c ⇒ c → v, where a
 b
u, b
 c, a
 c
 v, the superposition is N((a = b ∧ a = c) ⇒
min(b, c)) and the critical pair is: (a = c ∧ b = c) ⇒ u, (a = c ∧ b = c) ⇒ v assuming
u
 v, b
 c. The critical pair is not in normal form since both rules are applicable at their
hypotheses.

If ai occurs in Hj , then the superposition is: N((Hj ∪Hi) ⇒ aj) and the critical pair is:
〈N((Hj |bi

ai
∪ Hi) ⇒ aj , N((Hi ∪ Hj) ⇒ bj)〉, due to interaction between →h and →m. For

example, from a = b ⇒ c → d and c = d ⇒ u → v, we have: N((a = b ∧ c = d) ⇒ u) as the
superposition giving the critical pair: 〈N((a = b∧ d = d)⇒ u), N((a = b∧ c = d)⇒ v)〉. The
second component can be further reduced using a = b⇒ c→ d to give a = b⇒ v. It generates
a new rule a = b→ u→ v.

The third case about interaction between →h of Hi ⇒ ai → bi and →h of Hj ⇒ aj → bj

gives trivial critical pairs even when i �= j. The superposition is: N(Hi ∪ Hj ⇒ ai) and the
critical pair is: 〈N(Hi|bi

ai
∪Hj ⇒ ai), N(Hi ∪Hj |bj

aj ⇒ ai)〉, which is trivial.
It is easy to check that the critical pairs are in the CCC(S), which guarantees soundness.

Theorem 5.6 A set S of Horn equations is locally confluent iff each pair of Horn equa-
tions has only trivial critical pairs.

Proof Consider a constrained term A⇒ u which can possibly be rewritten in one step in
two different ways: A1 ⇒ u1 using Hi ⇒ a→ b as well as to A2 ⇒ u2 using Hj ⇒ c→ d.

CONDITIONAL CONGRUENCE CLOSURE 341

There are multiple cases because of interactions between →m and →h.

1) Both Hi ⇒ a → b and Hj ⇒ c → d rewrite u, which means PHi∪Hj ⊆ PA = PA1 = PA2 ,
(a, u), (c, u), (u1, b), (u2, d) ∈ PA.

The first way to construct a critical pair corresponding to this pair of rules is: N(PHi∪Hj ⇒
b = d) which is joinable. Rewrites used to show their joinability can be applied on 〈A1 ⇒
u1, A2 ⇒ u2〉 as they are for the joinability of the critical pair since A = A1 = A2 which
includes Hi ∪Hj and further u1 = b, u2 = d ∈ A.

2) Hi ⇒ a → b rewrites A whereas Hj ⇒ c → d rewrites u: We have Hi ∪ Hj ⊆ A, PA1 =
PA|ba , PA2 = PA and (u, u1) ∈ PA1 and (u, c), (u2, d) ∈ PA. Hi ⇒ a → b is applicable on
A2 ⇒ u2.

For H2 ⇒ c→ d to be applicable to PA1 ⇒ u1, it must be shown that PHj ⊆ PA1 as well as
(c, u1) ∈ PA1 .

There are two possibilities: (i) a /∈ Hj : The joinability of the critical pair trivially follows
since the second rule can still be applied on A1 ⇒ u1 and the first rule can be applied
on A2 ⇒ u2 (using properties of the above lemma about relationship between A1 and
A). (ii) a ∈ Hj : Joinability of the second construction of the critical pair of these rules,
〈N((Hj |ba∪Hi)⇒ c), N((Hi∪Hj)⇒ d)〉 is used to show the joinability of 〈A1 → u1, A2 →
u2〉 since (Hj |ba ∪Hi) ⊆ A1, Hi ∪Hj ⊆ A2; so all the rewrites can be repeated.

Another way is to do case analysis on Hj ⊆ A1. If Hj ⊆ A1, then Hj ⇒ c→ d is applicable
if (c, u1) ∈ PA1 , in which case the joinability follows. If (c, u1) /∈ PA1 , then by the lemma,
a = c ∈ PA ∨ u = c ∈ PA; in either case, the joinability follows from the joinability of the
critical pairs.

If Hj �⊆ A1, then a ∈ Hj ; the joinability follows from the joinability of critical pairs.

3) Both Hi ⇒ a → b and Hj ⇒ c → d rewrite A: Hi ∪ Hj ⊆ A and a, c ∈ A. Further
N(A|ba) = A1, N(A|dc) = A2, (u, u1) ∈ A1, (u, u2) ∈ A2. u1 is the same as u unless (u, a) ∈ A1

in which case u1 = b; similarly, u2 is the same as u unless (u, c) ∈ A2 in which case u2 = d.

A1 does not have a so unless c = a, c ∈ A1. The case of c = a is considered later. If a /∈ Hj ,
then Hj ⊆ A1. Hj∪{c→ d} can be applied in that case on A1 ⇒ u1 in its hypothesis, giving
N(A1|dc ⇒ u1). Similarly, Hi ∪ {a→ b} can be applied on A2 ⇒ u2 assuming a �= c, c /∈ Hi

to give A2|ba ⇒ u2, which gives the joinability.

If a ∈ Hj , then the joinability of critical pair gives the joinability of 〈N(HJ |ba ∪ Hi ⇒
c), N(Hi ∪Hj ⇒ d)〉, from which joinability of the two sides follows. This argument works
also if c ∈ Hi.

In case a = c, then, the joinability of the critical pairs is used to show the joinability.

342 KAPUR DEEPAK

If S is not locally confluent implying that there is at least one critical pair that has a non-
trivial normal form, then its normal form is added as an additional Horn equation to S. This
process continues until the resulting Horn rewrite rules have only trivial critical pairs. Upon
termination, this completion algorithm generates a locally confluent Horn constant rewrite sys-
tem. The completion procedure terminates since there are only finitely many constants and
hence only finitely many new Horn equations can be generated. The result of the comple-
tion procedure is a finite set of locally normalized conditional rules which generate the same
congruence relation as the input.

Theorem 5.7 Given a canonical rewrite system R that is reduced (i.e., no left side of a
rewrite rule can be further reduced using other rules), where U
 NU , let RNU be the subset
of R which does not include any constants from U . Then, RNU is a canonical rewrite system
for CCC(RNU), the subset of conditional congruence closure of CCC(R) in which conditional
equations do not have a symbol from U .

Proof It is first proved that RNU is canonical and then that RNU is a decision procedure
for CCC(R)NU .

Since every rule in RNU is from a terminating set R of rules, it is terminating. Every
critical pair from pair of rules in RNU is also a critical pair from the same pair of rules in R.
Its joinability follows from the fact that all uncommon symbols in U are bigger in the ordering
that other symbols, so no rule from R−RNU is used to show joinability using R.

To show that RNU is a decision procedure for CCC(R)NU , consider a Horn equation that
cannot be decided in the same way using RNU as using R. That would imply that there is a
rule from R − RNU needed to show its decidability but such a rule cannot be applied since it
includes a symbol from U which is bigger than all symbols appearing in the conjecture. Hence
a contradiction.

The above theorem is particularly useful in interpolant generation based on quantifier elim-
ination since uncommon symbols needed to be eliminated[27, 31].

5.3 Examples

Consider, for example, two Horn equations 1. a = b⇒ c = d and 2. c = d⇒ a = b. Consider
an ordering a
 b
 c
 d. Local normalization does not change the Horn equations which
are oriented as 1. a = b ⇒ c → d, 2. c = d ⇒ a → b. Both 1 and 2 are already in normal
forms. A possible critical pair between 1 and 2 that rewrites a in the hypothesis of rule 1 is
〈N((c = d ∧ b = b) ⇒ c), N((a = b ∧ c = d) ⇒ d)〉; its second component further reduces by
rule 2 to N((b = b ∧ c = d) ⇒ d) giving N(c = d ⇒ c = d) which is trivial. Similarly, rule 1
rewrites c in the hypothesis of 2 also giving a trivial critical pair. Since all critical pairs are
trivial, 1, 2 constitutes a canonical rewrite system.

Suppose we slightly modify the second H-equation to 3. b = d⇒ a = b. Local normalization
gives 3′. b = d ⇒ a = d giving the rule 3′. b = d ⇒ a → d. The critical pair construction
that rewrites a in 1 gives 4. b = d ⇒ c = d which is oriented as 4. b = d ⇒ c → d. It can be

CONDITIONAL CONGRUENCE CLOSURE 343

proved that b = d⇒ c = d ∈ CCC({1, 3}). Critical pairs among 1, 3′, 4 are all trivial declaring
{1′, 3, 4} as a canonical Horn rewrite system. A Horn-equation b = d ⇒ a = c can be easily
proved by rewriting it using 4 and 3′.

Consider a Horn equation b = c ⇒ a = b which locally normalizes and orients as a rewrite
rule 5. b = c ⇒ a → c. A critical pair between 5 and 1 gives 6. b = c ⇒ c → d. 6 rewrites 5
to 5′. b = c ⇒ a → d. A critical pair between 1 and 5’ gives (b = c ∧ b = d) ⇒ c = d which is
trivial. Thus {1, 5′, 6} is a canonical rewrite system.

The conjecture a = c⇒ b = d does not follow from {1, 5′, 6} (it is already in normal form).

5.4 Termination and Complexity

Termination of the completion algorithm trivially follows from the fact that there can be
only be finitely many normalized Horn equations and hence Horn rewrite rules on a finite
number of constants.

During the completion algorithm, all Horn rules are kept in normal form, which implies a
new rule is added only after it has been normalized, i.e., for a new rule H ⇒ a = b to be
added, no other rule can have a as the left side of a conclusion unless H is a refined partition
of existing rules with a as the left side of their conclusions. Thus, for any pair appearing as
the left side of a Horn rule, other Horn rules with the same pair or a pair sharing constants
in their conclusions, must have noncomparable (using subset ordering) or smaller partitions as
conditions.

A very crude bound on the size of a canonical Horn rewrite system can be obtained by
considering all possible Horn equations that can be constructed using n constants in the input
to the completion algorithm. There cannot be more than O(n2) unconditional rewrite rules on
n constants. However, this bound can be substantially improved by analyzing partitions on n

and finding the one with the biggest size (i.e., number of equivalences classes) by optimizing the
product of number of elements in an equivalence class times the number of equivalence classes.

Corresponding to an unconditional rewrite rule, there can be multiple nonredundant Horn
rules with the same concluding equality but different hypotheses. The number of such rules
can be bounded by the maximum number of partitions, the Bell numbers with the generating
function e(en−1), where n is the number of nonequivalent constants on which Horn rules are
being expressed. However, it suffices to consider partitions that cannot be compared with each
other, i.e., for a set with {a, b, c}, for example, there are 5 possible partitions but noncomparable
by subset ordering are only 3—{{[a, b], [c]}, {[a, c], [b]}, {[a], [b, c]}; the other two {[a], [b], [c]} and
{[a, b, c]} are respectively the subset and superset of each of the above partitions. Thus, only 3
nonredundant Horn rules are possible: a = b⇒ u→ v, a = c⇒ u→ v, b = c⇒ u→ v, neither
of which can rewrite the other. The worst case complexity of completion on Horn constant
rewrite systems needs further detailed investigation.

344 KAPUR DEEPAK

5.5 Deciding Membership in CCC(S)

If S has an associated canonical rewrite system R, then H ⇒ a = b can be decided by
computing its normal form using R. If the canonical form H ⇒ a = b normalizes to True, then
it is in CCC(S), i.e., follows from S; otherwise it does not. Recall that a single step rewrites
either the constant pair (a, b) in the conclusion to smaller constants, or if the conclusion does
not change, then H is rewritten to a smaller partition with a constant rewritten to a smaller
constant. The canonical form can be computed in O(k2) steps, where k is the number of
equivalence classes in CC(S).

If a canonical rewrite system for S is not available, then deciding membership in CCC(S)
by generating a canonical system from S is expensive unless the cost of generating the canonical
rewrite system is amortized over several membership queries. It is better in that case to avoid
generating a canonical system and use the Deduction theorem to provisionally extend CCC(S)
with H and checking for equivalence of a and b in the extended system.

5.6 A Canonical System for Ground Horn Equations with Function Symbols

Given a set S of Horn equations expressed using function symbols, a completion procedure
for generating a canonical rewrite system is in two stages: (i) Given a finite set S of Horn
equations H ⇒ s = t, all ground terms in S are flattened using new constant symbols to stand
for subterms appearing in S. This step gives a finite set FES of f -equations f(c1, · · · , ck) = d,
a finite set CC(SC) of constant equations on the extended signature, and a finite set HES of
Horn equations purely expressed using constant symbols. FES is the only set of equations with
nonconstant function symbols which are managed using function signatures as in [2].

The above completion algorithm is applied on CC(SC) ∪HES giving priority to constant
equations since normalized Horn equations are expressed using canonical forms generated from
constant equivalence closure. The result is a canonical Horn constant rewrite rules.

The f -equations in FES are rewritten, replacing constants in them by their canonical forms.
If the left sides of two f -equations become identical, implied constant equalities are generated
and a new rewrite rule corresponding to it is added. There is thus interplay between the two
stages.

From two different f -equations but with identical outermost symbol, new constant Horn
equations are also generated. A data structure keeping track of constants appearing in Horn
equations updates them as canonical forms of constants dynamically change. If the hypothesis of
a Horn equation becomes True, then an implied equality is generated which is eagerly processed
to update the constant congruence relation.

The result of the algorithm is a finite set of RS of rewrite rules which is partitioned as:
(i) RF , a finite set of distinct rules (equations) in which the left side is a flat term and the
right side is a constant such that all constants are in canonical forms and no two left sides
are identical, (ii) CC(SC), a finite set of constant rules abstractly specifying the forest of trees
representing equivalence classes; there is a rule for every nonroot constant to its root, and (iii)

CONDITIONAL CONGRUENCE CLOSURE 345

RHE , a finite set of normalized Horn equations specified using root constants (canonical forms)
which is locally confluent.

A completion procedure so designed is easier to understand, implement as well as efficient
in contrast to the one directly on ground conditional Horn equations with function symbols.
Furthermore, its termination follows from the termination of the completion of constant Horn
rewrite rules. The interaction with f -equations is factored out; the equality of two f -equation
with identical left sides is managed through the signature computation data structure that
ensures uniqueness of the signature of all equivalent function terms.

The output of the completion procedure is on the extended signature and is a terminating,
confluent rewrite system. If desired, new constants not in the input S can be replaced by the
function terms they stand for, leading to a locally confluent Horn rewrite system since the result
need not be terminating any more.

Theorem 5.8 RS is a canonical rewrite system such that Orig(CCC(RS)) = CCC(S),
where Orig replaces all new constants by their corresponding flat terms to obtain Horn equations
in the original function symbols of S.

RS is a decision procedure for S to determine whether a Horn equation is in CCC(S).
Given a Horn query H ⇒ s = t, constants in it are replaced by their canonical forms first,

then Rf is applied to generate a pure Horn equation in constants or a Horn equations with
function symbols which cannot be eliminated; remaining function terms are flattened giving
rise to the conjecture flattened to be a Horn constant equation. The Horn equation is then
normalized using RH ; if its normal form is True, then it is in CCC(S); otherwise it is not.

5.7 Example

We illustrate the above procedure first on a simple example on constants only.
Example 5.1 Let S = {1. a = e, 2. (a = b ∧ c = e) ⇒ c = d}; assume a total ordering

a
 b
 c
 d
 e. Congruence relation induced by constant equations generates one nontrivial
congruence class {a, e} with e as its canonical form; all other constants are their own canonical
forms. Normalization of H-equation generates 2′. (b = e ∧ c = e)⇒ (d = e).

To check whether the rules from S are locally confluent, they are oriented as: {1. a →
e, 2′. (b = e ∧ c = e) ⇒ d → e}. There is no critical pair since the left hand side of the
unconditional rule does not appear in 2′ and the left side of the conclusion in 2′ does not
appear in 1. This implies that the above two rules constitute a canonical rewrite system.
Neither of the equations d = e and a = d follows from S. A Horn equation a = b ⇒ b = e

reduces using 1 to b = e⇒ b = e which normalizes to True.
Consider a Horn equation with function symbols, (f(a) = f(b) ∧ g(f(d), c) = g(f(a), b))⇒

h(u, v) = h(v, u). Flattening it gives: {f(a) = c1, f(b) = c2, f(d) = c3, g(c3, c) = c4, g(c1, b) =
c5, h(u, v) = c6, h(v, u) = c7} with subscripted c’s as new constants. The original Horn equation
becomes constant Horn equation (c1 = c2 ∧ c4 = c5) ⇒ c6 = c7. Consider a total ordering on
constants: a
 b
 c
 d
 u
 v
 c1
 c2
 c3
 c4
 c5
 c6
 c7. There are no constant

346 KAPUR DEEPAK

equivalences; so completion on Horn constant equations gives: (c1 = c2 ∧ c4 = c5)⇒ c6 → c7.
From f -equations, Horn equations are generated; from equations with f as the outermost

symbol, {1. a = b ⇒ c1 → c2, 2. a = d ⇒ c1 → c3, 3. b = d ⇒ c2 → c3}, and similarly from
equations with the outermost symbol g, h: 4. (c1 = c3∧b = c)⇒ c4 → c5, 5. (u = v)⇒ c6 → c7.

Completion is used to generate additional Horn rules. Rules 1 and 2 give a trivial critical
pair: a = b = d⇒ c2 = c3 since it rewrites to True by rule 3. But rules 1 and 2 with rule 4 give
additional rules: {6. (a = b = c ∧ c2 = c3)⇒ c4 → c5, 7. (a = d ∧ b = c)⇒ c4 → c5} whereas
rules 3 and 6 generate a trivial critical pair. Rules 1–7 constitute a canonical Horn system.

The Horn equation (c1 = c2 ∧ c4 = c5) ⇒ c6 = c7 does not reduce to True, implies that
the original Horn equation by itself is not valid. And, the above result is a canonical rewrite
system generated from the input Horn equation.

6 Functions with Properties

In the preceding sections, all function symbols are assumed to be uninterpreted, i.e., they
are assumed to have no properties or even if they have properties, such properties are not
considered in computing conditional congruence closure or generating a canonical Horn rewrite
system.

The proposed framework further generalizes to conditional equations with interpreted sym-
bols with properties. Such properties may include a combination of commutativity, nilpotency,
identity, idempotency, and other permutative properties. This framework also generalizes to a
larger family of interpreted symbols including those having both associativity and commuta-
tivity properties as well as the case when interpreted symbols are characterized more generally
by a first-order quantifier-free theory with a decision procedure; this will be subject of another
paper.

A crucial property employed in the congruence closure proposed in [12] is that every ground
term has a canonical form (this is equivalent to the requirement that ground terms have a
unique signature which is common across all ground terms in the same congruence class). The
unique signature requirement is adapted below to consider equivalences due to the properties
of interpreted symbols.

The proposed framework elegantly factors out four separate parts of the algorithms: (i) Con-
stant equivalence closure, (ii) Horn equations leading to implied equalities and their interplay
with step (i) to generate the conditional constant equivalence closure, (iii) ground equations
relating (a) flat uninterpreted term to a constant, and/or (b) interpreted terms belonging to a
common theory that may involve a single function symbol or a collection of function symbols.
The critical step in the generalization is generating canonical forms of signatures with respect
to a finite set of equations relating interpreted terms. Unlike [23, 28], these extensions turn out
to be quite simple, easy to understand and prove correct.

Let Fi be the subset of interpreted symbols in F . Let T (Fi∪C) be the ground terms gener-
ated using all constants in C, both from the original input as well as any new constants intro-

CONDITIONAL CONGRUENCE CLOSURE 347

duced during purification and flattening both for uninterpreted as well as interpreted ground
terms. A nonconstant term with an interpreted function symbols is called interpreted. A term
with an uninterpreted symbol is called uninterpreted. Nonflat mixed terms are purified by
introducing new constants for interpreted subterms belonging to a single theory.

The input to the algorithms below consists of (i) equations on constants, represented by a
forest of trees implying that constant equivalence closure algorithm has already been applied,
(ii) normalized Horn equations on canonical constants from (i), (iii) f -equations with flat terms
for uninterpreted function symbols such that no two f -terms are identical thus assuming that
implied equalities have already been generated from uninterpreted terms and processed, and
(iv) f -equations relating interpreted terms belonging to each subtheory. Let the total size of
the input (sum of the size of all terms in the input) be n.

As in the case of congruence closure, canonical forms and the associated rewrite systems are
generated by imposing a total ordering on symbols. Nonconstant function symbols are bigger
in the ordering than constant symbols. New constants are bigger in the ordering than original
constants and interpreted constant symbols.

Below, we discuss interpreted symbols with simple theories for which signature computation
can incorporate the properties of interpreted symbols. Richer theories including associative-
commutativity, associativity and an arbitrary equational theory with an associated rewrite
system will be subject of another paper because of lack of space.

6.1 Conditional Congruence Closure with Commutative Functions

Let FC be a nonempty subset of binary function symbols in Fi which are commutative:
f(x, y) = f(y, x), f ∈ FC for every x, y. Thus any two distinct flat terms with f as the outer-
most symbol but the same arguments in different order, say f(c, d) and f(d, c), are equivalent.
Using a total ordering on constants, a unique signature is associated with flat terms with com-
mutative functions by sorting its constants using the ordering: Signature of both f(c, d) and
f(d, c) is f(c, d) if d
 c is in the total ordering, for instance. While processing the input for flat-
tening, interpreted subterms are put in normal form using the ordering on constant arguments,
thus avoiding having to introduce unnecessary new constants. Canonical forms are generated as
before except that for flat terms with commutative function symbol, constants are sorted. That
is the only change in the signature computation. The rest of the algorithm does not change.

From complexity perspective, keeping signatures of interpreted terms in their normal form
takes at worst n additional steps where n is the input size since the arguments to a commutative
symbol may need swapping. Thus, conditional congruence closure with commutative function
symbols is of the same complexity as that for uninterpreted symbols since flat terms are always
kept in their normal forms with arguments in ascending order. If an argument to a flat term
changes due to additional constant equalities, it needs to be brought to normal form again;
however that does not add to the complexity since every such normalization takes constant
time and the number of such operations is bounded by the input size. Further, this additional

348 KAPUR DEEPAK

cost gets absorbed in the overall complexity.

6.1.1 Horn Closure

For generating Horn equations from a pair of flat commutative terms in normal form:
f(c, d) = u, f(e, f) = v, generate two Horn equations (c = e ∧ d = f) ⇒ u = v, (c =
f ∧ d = e) ⇒ u = v. Equivalently an f -equation f(c, d) = u with commutative f also gives
another equivalent f -equation f(d, c) = u on which the HC closure for the uninterpreted case
gives equivalent results.

6.1.2 Generating a Canonical Rewrite System for CCC(S)

Completion algorithm for conditional congruence closure discussed in Subsection 5.2 extends
in a straightforward way by keeping interpreted flat terms in normal forms.

6.2 Conditional Congruence Closure with Idempotent Functions

Let FI be a subset of binary function symbols in Fi that have idempotency property, i.e, a
universal property f(x, x) = x, f ∈ FI for every x. Signatures are normalized by replacing flat
terms with identical arguments, e.g., replace f(a, a) by a.

From complexity perspective, keeping signatures of interpreted terms in their normal form
requires n additional steps, where n is the input size. So the overall complexity of the congruence
closure algorithm does not change.

6.2.1 Horn Closure

For idempotent function symbols, the Horn closure generates an additional Horn equation
from each interpreted flat term equation f(c, d) = u with idempotent f : c = d ⇒ d = u. The
rest of the construction is similar as in the uninterpreted case.

The above construction of Horn closure can be viewed as a special kind of critical pair
generation from flat interpreted ground terms if the universal properties of an interpreted
symbol(s) can be oriented into a canonical rewrite system. In general, given an interpreted
ground equality: g1 = g2 oriented from left to right, it generate a Horn conjecture from a
universal property L → R expressed as a rewrite rule iff conditional matching, expressed
as constant equality conditions, of a subterm of L with g1 instantiates all variables in R. The
resulting Horn equation is: H ⇒ σ(L)[g1 ← g2] = σ(R), where σ is a substitution for variables
in L so that g1 is a subterm in σ(L) under the conditions in H .

To apply this construction on f(c, d) → u with f(x, x) → x, σ = {x ← d}, H = {c = d}
leading to c = d⇒ d = u.

6.2.2 Generating a Canonical Rewrite System for CCC(S)

Completion algorithm for conditional congruence closure discussed in Subsection 5.2 ex-
tends in a straightforward way by keeping interpreted flat terms in normal forms (equivalently
rewriting using a meta nonground rule f(x, x)→ x for idempotent symbol f).

Consider a simple example: S = {a = b⇒ u = 0, f(a, b) = u} with idempotent f . Without
the second equation, the first Horn equation is a canonical rewrite system as there are no critical
pairs.

CONDITIONAL CONGRUENCE CLOSURE 349

Horn closure generates from the second equation: a = b ⇒ u = b assuming u
 a
 b
 0.
The result is CCC(S) = {a = b ⇒ u → 0, f(a, b) → u, a = b ⇒ u → b}. A Horn equation
a = b⇒ a = u in CCC(S): It is proved directly by rewriting it using the third rule. The Horn
equation a = b ⇒ b = 0 is also in CCC(S) but it cannot be directly proved. However, using
a canonical rewrite system generated from CCC(S), it can be proved directly by rewriting. In
fact, a = b⇒ b = 0 is obtained by the critical pair between the first and third rules.

From CCC(S): {1. a = b ⇒ u → 0 2. f(a, b) → u, 3. a = b ⇒ u → b}, the third rule
rewrites to give: 3′. a = b⇒ b = 0 which replaces 3. {1, 2, 3′} is a canonical system.

6.3 Conditional Congruence Closure with Functions with f(x, x) = e

Let FN be a subset of binary function symbols in F that have nilpotency property, i.e.,
f(x, x) = e, f ∈ FN for all x where e is the identity. Much like interpreted symbols with the
idempotency property, signature computation of these interpreted function symbols is straight-
forward and efficient. An interpreted flat term with a nilpotent function symbol having identical
arguments, say f(c, c) is replaced by e. This step on a single f -equation can be performed in
constant time (by maintaining a data structure in which the two arguments of f in different flat
terms are maintained as a (hash) table). The overall complexity thus increases only by O(n)
steps, where n is the input size.

6.3.1 Horn Closure

From f(x, x) → e and a ground equality f(c, d) → u, Horn closure construction using
conditional matching gives a Horn equation c = d⇒ u = e using σ(x) = {x← d}, H = {c = d}.
This construction is applied on every f -equation with a nilpotent symbol.

6.3.2 Generating a Canonical Rewrite System for CCC(S)

Completion algorithm for conditional congruence closure also extends in a straightforward
way by keeping interpreted flat terms in normal form and generating additional Horn equations
as was done earlier for idempotent functions and functions with identities.

In the example in the previous subsection, assume f is also nilpotent along with being
idempotent. An additional Horn equation is generated by Horn closure, giving CCC(S) =
{a = b ⇒ u = 0, f(a, b) = u, a = b ⇒ u = b, a = b ⇒ b = 0}. A canonical rewrite system
generated from it first rewrites rules using other rules giving: S ′ = {a = b⇒ u→ 0, f(a, b)→
u, a = b ⇒ b → 0}. Nilpotency property does not give any additional rule in the canonical
system. It is easy to verify that CCC(S) = CCC(S − {a = b⇒ u = 0}) if f is both nilpotent
as well as idempotent.

6.4 Conditional Congruence Closure with Functions with Identity

Let F0 be a subset of binary function symbols in Fi with identities, i.e, f(x, re) = x, f ∈ F0
for all x in case of f having a right identity re. Similarly f(le, x) = x, f ∈ F0 in case f has
a left identity le. As in the case of idempotent or nilpotent function symbols, signatures of
interpreted terms are normalized using the above identities as rewrite-rules. The rest of the

350 KAPUR DEEPAK

algorithm remains the same. Keeping signatures of interpreted terms in their normal form takes
at worst O(n) additional operations, where n is the input size.
6.4.1 Horn Closure

Horn closure is constructed using conditional matching of interpreted terms with the rules for
identities. From f(c, d)→ u and an identity rule f(x, re)→ x, a Horn equation d = re⇒ c = u

is generated; similarly, from an identity rule f(le, x)→ x, a Horn equation c = le⇒ d = u.
6.4.2 Generating a Canonical Rewrite System for CCC(S)

Completion algorithm for conditional congruence closure also extends in a straightforward
way by keeping interpreted flat terms in normal form and generating additional Horn equations.
The complexity thus does not change.

Consider S = {a = b ⇒ u = 0, f(a, b) = u}, where 0 is both the left and right identity
of f (without f being idempotent or nilpotent). Without the second equation, the first Horn
equation is a canonical rewrite system as there are no critical pairs. Two Horn equations are
generated from f(a, b) = u: {a = 0 ⇒ u = b, b = 0 ⇒ u = a}. Running completion on the
three Horn rules gives trivial critical pairs {(a = b∧ a = 0)⇒ b = 0, (a = b∧ b = 0)⇒ a = 0}.
So, the rewrite system consisting of three Horn rules and one unconditional rule is a canonical
rewrite system: RS = {a = b ⇒ u → 0, f(a, b) → u, a = 0 ⇒ u → b, b = 0 ⇒ u → a} under
the ordering u
 a as well as u
 b.

Is u = 0⇒ a = b in CCC(S)? The answer is no: Assuming the hypothesis u = 0 simplifies
S to {f(a, b) = 0, u = 0} from which a = b does not follow. Adding the hypothesis to RS also
does not help: {a = b ⇒ 0 = 0, f(a, b) → 0, a = 0 ⇒ b → 0, b = 0 ⇒ a → 0} and a = b

cannot be proved unconditionally. Using RS , it is easy to see that the conjecture is in normal
form since it cannot be rewritten by any rule because of its condition u = 0.

If the second equation in S is replaced by f(a, b) = b to give S′, then, Horn equations
b = 0 ⇒ a = 0 as well as a = 0 ⇒ b = b are generated from f(a, b) = b in its Horn
closure; the second Horn equation is deleted since it is trivial. Critical pair computation on
a = b ⇒ u → 0, b = 0 ⇒ a → 0 gives a new rule b = 0 ⇒ u = 0. The set {a = b ⇒ u → 0, b =
0 ⇒ u → 0, b = 0 ⇒ a → 0, f(a, b) → b} is a canonical rewrite system. It is easy to double
check that both b = 0 ⇒ u = 0, b = 0 ⇒ a = 0 are in CCC(S′). Further, b = 0 ⇒ a = u is
also in CCC(S): Adding the hypothesis b = 0 to S′ generates a = 0⇒ u = 0, a = 0 leading to
u = 0, a = 0. By rewriting b = 0⇒ a = u using the canonical rewrite system of S′, both sides
of the conclusion rewrite to 0.

As the reader would have noticed, a canonical rewrite system for interpreted terms with the
above properties is expressed using Horn equations on existing constants. No additional new
constants need to be introduced. This changes however for richer theories including interpreted
symbols with both associative and commutative symbols where new constant symbols have to
be introduced to stand for new interpreted terms generated.

To conclude, consider two f -equations f(a, b) = c and f(b, a) = d in which f is commutative,
idempotent, nilpotent as well as has both left and right identity. Because of commutativity,

CONDITIONAL CONGRUENCE CLOSURE 351

a constant equality c = d is generated. Assuming a
 b and c
 d in the ordering, the above
equations are brought into normal form resulting in f(a, b) = d, c → d. Horn closure gives
a = b ⇒ b = d due to idempotency, a = b ⇒ d = e due to nilpotency where e is the left and
right identity of f , a = e ⇒ b = d as well as b = e ⇒ a = d due to the identity. The rewrite
system is {f(a, b)→ d, c → d, a = b⇒ b→ e, a = b⇒ d→ e, a = e⇒ b→ d, b = e⇒ a → d}.
Equivalent Horn equations with some redundancy would have been generated separately from
f(a, b) = c and f(b, a) = d without considering the commutativity of f but after identifying
c = d due to the commutativity of f would result in simplifying those Horn equations to the
set of Horn equations discussed earlier.

7 Conclusion

The framework first presented in [12] for generating congruence closure using flattening and
abstracting congruence closure problems on constants is generalized to generating conditional
congruence closure both in case of uninterpreted symbols as well as interpreted symbols with
properties including commutativity, idempotency, identity and nilpotency and their combina-
tion. The conditional congruence closure algorithm for uninterpreted symbols is shown to be
O(n ∗ log(n)), where n is the input size, the same complexity as the unconditional congruence
closure. Further, for interpreted symbols that are commutative, idempotent, nilpotent, and
with identities, the congruence closure algorithms are also of the same complexity.

A completion algorithm for generating a canonical (conditional) Horn rewrite system from
a finite set of ground conditional equations is also presented. The complexity of generating
a canonical rewrite system for conditional ground equations is however much higher than that
of generating conditional congruence closure. This is in contrast to the congruence closure
algorithm in [12] which also generates a canonical rewrite system on the extended signature
for free. Consequently, deciding membership in a congruence closure is of the same complexity
whether it is checked using normalization of a query (without having to do flattening) or
flattening and extended signatures. In case the rewrite system on the original signature is also
terminating, there is one to one correspondence between the two methods. If a total ordering
on extended signature is already determined, then termination is not ensured as illustrated
above, in which case, normalization must be performed using cycle checking which may be
more expensive than using the extended signature.

Deciding membership in a conditional congruence closure is likely to be of much lower com-
plexity if the hypotheses in a query are first used to extend the conditional congruence closure
and then checking whether the conclusion follows in the provisional conditional congruence clo-
sure. In contrast, completion based approach for deciding membership is of higher complexity
because a canonical rewrite system can be much larger than the original system, This additional
complexity can be justified if numerous Horn equations need to be decided; this tradeoff is not
different from trade off observed when using completion to generate a decision procedure versus
directly deciding a few queries.

352 KAPUR DEEPAK

We believe the proposed framework which can deal with interpreted symbols, predicates
as well as uninterpreted symbols has considerable promise for developing algorithms for other
inference problems expressed using ground terms. The perspective presented in the paper is
also likely to be useful in developing decision procedure for non-Horn ground clauses using
instantiation based approaches to first-order theorem proving.

Acknowledgements I would like to thank Jose Castellanos Joo for comments and im-
plementing parts of the algorithm in the context of interpolant generation. I also thank the
referees for numerous suggestions for improving the presentation.

References

[1] Kozen D, Complexity of Finitely Presented Algebras, Technical Report TR 76–294, Dept. of

Computer Science, Cornell Univ., Ithaca, NY, 1976.

[2] Downey P J, Sethi R, and Tarjan R E, Variations on the common subexpression problem, JACM,

1980, 27(4): 758–771.

[3] Shostak R E, An algorithm for reasoning about equality, Communications of ACM, 1978, 21(7):

583–585.

[4] Nelson G and Oppen D C, Fast decision procedures based on congruence closure, JACM, 1980,

27(2): 356–364.

[5] Craigen D, Kromodimoelijo S, Meisels I, et al., Eves system description, Proc. Automated De-

duction - CADE 11, LNAI 607, Ed. Kapur, Springer Verlag, 1992, 771–775.

[6] Kapur D and Subramaniam M, Mechanically verifying a family of multiplier circuits, Proc. Com-

puter Aided Verification (CAV), New Jersey, Springer LNCS 1102 (Eds. by Alur R and Henzinger

T A), 1996, 135–146.

[7] Kapur D and Zhang H, An overview of rewrite rule laboratory (RRL), Computers and Math.

with Applications, 1995, 29(2): 91–114.

[8] Zhang H, Implementing contextual rewriting, Proc. Third International Workshop on Conditional

Term Rewriting Systems, Springer LNCS 656 (Eds. by Remy J L and Rusinowitch M), 1992, 363–

377.

[9] Rybalchenko A and Sofronie-Stokkermans V, Constraint solving for interpolation, J. Symb. Com-

put., 2010, 45(11): 1212–1233.

[10] Gallier J H, Fast algorithms for testing unatisfiability of ground Horn clauses with equations, J.

Symb. Comput., 1987, 4(2): 233–254.

[11] Dowling W F and Gallier J H, Linear-time algorithms for testing the satisfiability of propositional

Horn formulae, J. Log. Program., 1984, 1(3): 267–284.

[12] Kapur D, Shostak’s congruence closure as completion, Proc. Rewriting Techniques and Applica-

tions, 8th Intl. Conf. (RTA-97), (Ed. by Comon H) Sitges, Spain, Springer LNCS 1231, June,

1997, 23–37.

[13] Baader F and Nipkow T, Term Rewriting and All That, Cambridge University Press, Cambridge,

1998.

CONDITIONAL CONGRUENCE CLOSURE 353

[14] Tarjan R E, Efficiency of a good but not linear set union algorithm, Journal of ACM, 1975, 22:

215–225.

[15] Galler B A and Fisher M J, An improved equivalence algorithm, C. ACM, 1964, 7(5): 301–303.

[16] Cocke J and Schwartz J T, Programming Languages and Their Compilers: Preliminary Notes,

Second Revised Version, Courant Institute of Mathematical Sciences, NY, 1970.

[17] Nieuwenhuis R and Oliveras A, Fast congruence closure and extensions, Information and Com-

putation, 2007, 205(4): 557–580.

[18] Peterson G E and Stickel M E, Complete set of reductions for some equational theories, J. ACM,

1981, 28(2): 233–264.

[19] Zhang H and Kapur D, First order theorem proving using conditional rewrite rules, Proc. 9th Intl.

Conf. on Automated Deduction (CADE), Springer LNCS 310, (Eds. by Lusk E W and Overbeek

R A), Argonne, USA, May, 1988, 1–20.

[20] Bachmair L, Ganzinger H, Lynch C, et al., Basic paramodulation and superposition, Proc. Au-

tomated Deduction — CADE 12, LNAI 607 (Ed. by Kapur), Springer Verlag, 1992, 462–476.

[21] Jouannaud J P and Kirchner H, Completion of a set of rules modulo a set of equations, SIAM

J. of Computing, 1986, 15(4): 1155–1194.

[22] Knuth D and Bendix P, Simple word problems in universal algebras, Computational Problems in

Abstract Algebra (Ed. by Leech), Pergamon Press, 1970, 263–297.

[23] Bachmair L, Tiwari A, and Vigneron L, Abstract Congruence Closure, Springer-Verlag, New York,

2003.

[24] Dershowitz N, Canonical sets of Horn clauses, Proc. 18th ICALP, LNCS 510, 1991, 267–278.

[25] Bonacina M P and Dershowitz N, Canonical ground Horn theories, Ganzinger Festchrift, LNCS

7797, 2013, 39–69.

[26] Cyrluk D, Lincoln P, and Shankar N, On Shostak’s decision procedures for combination of the-

ories, Proc. Automated Deduction - CADE 13, LNAI 1104 (Eds. by McRobbie and Slaney),

Springer Verlag, 1996, 463–477.

[27] Kapur D, Efficient Interpolant generation algorithms based on quantifier elimination: EUF, Oc-

tagons, · · · , Proc. Dagstuhl Seminar 17371–Deduction beyond First-order Logic, Wadern, Ger-

many, Sep. 2017, A journal version is under preparation; a draft can be obtained from the author.

[28] Bachmair L, Ramakrishnan I V, Tiwari A, et al., Congruence closure modulo associativity and

commutativity, Proc. Frontiers of Combining Systems, Third International Workshop (FroCoS),

Nancy, France, 2000, 245–259.

[29] Narendran P and Rusinowitch M, Any ground associative-commutative theory has a finite canon-

ical rewrite system, Proc. 4th Intl. Conf. on Rewriting Techniques and Applications (RTA), LNCS

488, Springer, 1991, 423–434.

[30] Kandri-Rody A, Kapur D, and Narendran P, An ideal-theoretic approach for word problems and

unification problems over commutative algebras, Proc. First International Conference on Rewrit-

ing Techniques and Applications (RTA-85), Dijon, France (Eds. by Jouannaud and Musser),

Springer LNCS 202, May 1985, 345–364.

[31] Bonacina M P and Johansson M, On interpolation in automated theorem proving, J. Autom.

Reasoning, 2015, 54(11): 69–97.

[32] Gulwani S and Musuvathi M, Cover algorithms and their combination, Proc. 17th European

Symposium on Programming, ESOP 2008, Springer LNCS, 2008, 193–207.

[33] Le Chenadec P, Canonical forms in the finitely presented algebras, Ph.D. Thesis, U. of Paris 11,

354 KAPUR DEEPAK

1983.

[34] Ballantyne A M and Lankford D, New decision algorithms for finitely presented commutative

semigroups, Computers and Mathematics Applications, 1981, 7: 159–165.

Appendix

Details of the conditional constant congruence closure algorithm, particularly the data struc-
tures used, are provided below. Most data structures are adapted from [10, 11].

Given a set S′ of constant Horn equations, let SE be the subset of S including unconditional
equations. Invoke Tarjan’s Union-Find algorithm with path compression and tree size balancing.
For every constant, there is a distinct node in a graph constructed from SE . The output is a
forest of trees whose roots are nodes corresponding to constants which serve as the canonical
forms of constants corresponding to the nodes in the trees. Let k be the total number of
constants in S. This step’s amortized cost is O(max(k′, |SE |) ∗ α(k′)), where k′ ≤ k is the
number of constants in SE . Let k′′ ≤ k′ be the number of root nodes.

The above step is followed by processing Horn equations in S with nonempty hypotheses.
As a Horn equation is processed, the data structures below are built using Find on each atom in
the Horn equation using path compression. Any trivial equality, after Find, in the hypothesis
is deleted. If its concluding equality becomes trivial, then the Horn equation is deleted since
it is implied by CC(SE). All Horn equations are expressed in terms of root nodes and any
additional constants not in SE .

Three graph structures are maintained and updated: (i) Nodes(S), in which there is a node
for every constant symbol appearing in the input S, (ii) Atoms(S), in which there is a node
for every atom (equality in this case but in general also predicate term), with each node having
pointers labeled L to the node corresponding to the constant on its lhs and R to the node
corresponding to the constant on its rhs, and (iii) Horns(S), in which there is a node for every
Horn equation in S. A node in Horn(S) has three labeled pointers: (i) counter, indicating how
many atoms in its hypothesis are proven True so far, (ii) Hyp, pointing to all the atoms, if any,
in the hypothesis with each pointer having a label True or Unknown indicating the status about
its validity, and (iii) Conc, pointing to the equality (or atom) in its conclusion with status label
True or Unknown.

Initially, the counter is set to 0 for equations in the input and the number of equalities in
the hypothesis of conditional equations. For every node c in Nodes(S), there is also a list of
nodes of equalities in Atoms(S) in which c appears.

For every node e in Atom(S), there are two lists, Hyp and Conc, of nodes from Horn(S)
with first list showing all Horn equations whose hypotheses includes e and second list all Horn
equations in which e appears as a conclusion. These data structures allow fast detection and
processing of implied equalities due to propagation. There is also a list (queue) EQ of uncon-
ditional equations.

The algorithm proceeds as follows:

CONDITIONAL CONGRUENCE CLOSURE 355

Build the above data structures. Initially unmark all nodes in Horn(S). The algorithm
terminates if EQ becomes empty and there is no unmarked node in Horn(S) whose counter is
0. The conditional congruence closure then consists of a forest of trees whose root nodes are
canonical forms, and a finite set of unmarked Horn equations, with a nonzero counter, Hyp
with Unknown status pointers to atoms in Atoms(S) and Conc with an Unknown status pinter
to the atom serving its conclusion.

For every node in EQ, the concluding equality is processed as follows after marking it: (i) If
Find(lhs) = Find(rhs), then mark the node and remove it from EQ. During the computation
of Find, do path compression by linking all constant nodes during Find computation directly
to their root, as in [14]. Data structures are updated for every constant node Node(S) whose
representative changes. If Find(lhs) = a �= b = Find(rhs), then merge nodes a and b using
tree balancing as in [14]; wlog, if b is chosen as the new representative, then a is now linked to
b. From a, pointers to all equality atoms in which a appears, are changed to b, changing the
status of the equality atom to True if it becomes trivial, For the equality atom whose status
is changed, (a) if it appears as a conclusion in some Horn equation, the corresponding Horn
node is deleted and marked as deleted; (b) otherwise, if it appears in the hypothesis of a Horn
equation, its counter is decreased by 1. For every unmarked node in Horn(s) whose counter is
0, put into EQ, its concluding equality.

Nodes in Atoms(S) are marked as deleted if their canonical forms are identical as they are
redundant. Otherwise, the canonical form of an undeleted equality in Atoms(S) is the equality
on its two distinct nodes.

In analyzing the complexity of various steps, the crucial additional step is (iii) where when-
ever canonical forms change (the height of a tree), equalities using that canonical forms must
be checked. So if there are m equality atoms including those in conclusions, then at most
m ∗ log(m) additional steps are needed. Thus, the overall complexity of the algorithm is
k ∗ α(k) + m ∗ log(m) + n where k is the number of constants and m is the number of equality
atoms and n is the size of input.

