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Abstract The idea of envelope of a family of plane curves is an elementary notion in differential

geometry. As such, its implementation in dynamic geometry environments is quite universal (Cabri,

The Geometer’s Sketchpad, Cinderella, GeoGebra, ...). Nevertheless, most of these programs return,

when computing certain envelopes, both some spurious solutions and the curves that truly fit in the

intuitive definition of envelope. The precise distinction between spurious and genuine parts has not been

made before: This paper proposes such distinction in an algorithmic way, ready for its implementation

in interactive geometry systems, allowing a finer classification of the different parts resulting from the

current, advanced approach to envelope computation and, thus, yielding a more precise output, free

from extraneous components.

Keywords Automated deduction in geometry, dynamic geometry, envelopes, parametric polynomial

systems, symbolic computation.

1 Introduction

Recently, different issues on the automated computation of loci and envelopes have been
subject of study within a research line concerning automatic reasoning tools in geometry. In
particular, fostering cooperation between algebraic geometry and dynamic geometry, we pro-
posed in [1] a taxonomy, and its algorithmic counterpart, for the automatic computation of
plane algebraic loci. Customizing such taxonomy for the envelope case was first discussed
in [2]. In this context, a note about the performance of well known dynamic geometry systems
when computing envelopes was developed in [3], where a new symbolic approach for envelope
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computation, implemented in GeoGebra 5.0, was described. This approach, based on directly
applying the locus taxonomy to the case of envelopes, was only partially successful, and so
noted there[3,p.18].

The goal of this short note is to report an improvement - in fact, a complete solution - to the
above mentioned situation. We introduce - through the notion of acceptable special component,
see Subsection 2.3 — a further refinement in the taxonomy in order to deal with the undesirable
and uncontrolled results of the currently implemented algorithm. Next Section shortly recalls
the extension of the locus taxonomy to the envelope case, and describes a new algorithmic test
to accept or discard relevant parts of the resulting curve. A pair of examples of its performance
are extensively discussed, and the involved symbolic computations are shown for the sake of
illustration.

2 A Complete Taxonomy for Envelope Computation

Given a family of curves {Ct : F(x, y, t) = 0} parametrized by t ∈ R we follow [4] for defining
the envelope of the family:

{
(x, y) ∈ R

2 | ∃ t s.t. F(x, y, t) = 0 and
∂F(x, y, t)

∂t
= 0

}
.

It is usual in dynamic geometry to consider the dependence of the family on a moving point
(t1, t2), rather than on a scalar magnitude t. Bearing this observation in mind, we can consider
that the given family is {CP : F(x, y, t1, t2) = 0}, with P (t1, t2) constrained to lie on the curve
{g(t1, t2) = 0}, and its envelope is the set of points (x, y) coming from the elimination of t1, t2

in the system

F(x, y, t1, t2) = 0,

g(t1, t2) = 0,

∂F(x, y, t1, t2)
∂t1

∂g(t1, t2)
∂t2

− ∂F(x, y, t1, t2)
∂t2

∂g(t1, t2)
∂t1

= 0.

Other variants for the formulation of the envelopes computation problem include the case in
which the dependence on the parameters is masked through other objects in the geometric con-
struction. That is, if the family is multi-parametric, F(t1, t2, · · · , tn, x, y), with n > 2, where the
parameters are bounded by n− 1 constraints, {g1(t1, t2, · · · , tn) = 0, · · · , gn−1(t1, t2, · · · , tn) =
0}, the above conditions are replaced by F = g1 = · · · = gn−1 = 0 and

∣∣∣∣∣∣∣∣

∂F/∂t1 · · · ∂F/∂tn

∂g1/∂t1 · · · ∂g1/∂tn

∂gn−1/∂t1 · · · ∂gn−1/∂tn

∣∣∣∣∣∣∣∣
= 0.

What is relevant here is to remark that, in general, computing the envelope of a family of
curves is an elimination problem, and, thus, it is obviously quite similar to the more general
issue of loci determination. As done for the loci case, we restrict the base field to Q and
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are aware that solutions will be found in C. It is well known that generic elimination for
computing envelopes could include extra branches due to degeneration and extra parts due to
Zariski closures. In this respect we shortly recall the proposal of a taxonomy for envelopes,
fully described in [2].

2.1 Classifying Envelopes

In our approach, an envelope problem in dynamic geometry is translated into a system of
parametric polynomial equations F ⊆ Q[u, t] where u = (x, y) are the variables representing
the coordinates of the envelope points and t = (t1, t2, · · · , tn) are the parameters. The solution
variety is

V (F ) = {(u, t) ⊂ C
2+n : ∀f ∈ F, f(u, t) = 0},

and we denote by π1 and π2 the projections onto the variable and parameter spaces, respectively:

π1 : C
2+n −→ C

2 π2 : C
2+n −→ C

n

(u, t) 	→ u (u, t) 	→ t

By definition, the envelope associated to the parametric polynomial system F (u, t) is the set
E = π1(V (F )) ⊂ C

2. The set E is split into two disjoint parts, concerning the normality of its
elements. In fact, normal points are the points u ∈ C

2 of the envelope for which dim(π2(V (F ) ∩
π−1

1 (u))) = 0. The points u of the envelope for which dim(π2(V (F ) ∩ π−1
1 (u))) > 0 are called

non-normal. The set of all normal points is called the normal envelope and the set of all non-
normal points is called the non-normal envelope. Both parts of the envelope are constructible
sets, see [1, Proposition 3.5]. A further subdivision of the envelope can be introduced by
considering the components associated to the canonical representation of the normal and non-
normal envelope as constructible sets.

A locally closed set L is a difference of algebraic varieties L = V (E) \ V (N). For a locally
closed set, a canonical P -representation expressed in terms of prime ideals can be obtained[5]:

PREP (L) = {(pi, {pij : 1 ≤ j ≤ ri}) : 1 ≤ j ≤ r}

so that

L =
r⋃

i=1

(
V (pi) \

( ri⋃
j=1

V (pij)
))

.

Each element V (pi) \
( ⋃ri

j=1 V (pij)
)

is called a component of L.
A component Cs of the normal envelope is special if dim(Cs) > 0 and dim(π2(V (F ) ∩

π−1
1 (Cs))) = 0. The remaining components of the normal envelope are normal.

The components Cd of the non-normal envelope of dimension greater than 0 are considered
degenerate components, whereas the zero-dimensional components are accumulation points of
the envelope.

Let us recall that all of these objects can be algorithmically computed and have been already
implemented in different programs, see [1].
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Although in the case of loci we proposed in [1] accepting normal components and accumu-
lation points as parts of the sought loci, this proposal, for envelopes, is not well adapted to
our intuition, since there are constructions where it seems special components should be clearly
included, and other cases where they should not, as we will show in the next examples.

2.2 Two Examples Dealing with Special Components

Consider, as a first case, the construction depicted in Figure 1. Given the circle centered at
the origin and passing through B(1, 0), we want to find the envelope of perpendicular lines to
lines BC when C moves along the circle. The involved polynomials are

F = t21 + t22 − 1, t2y + (t1 − 1) (x + 1) , t1y − t2 (x − 1) ,

and the solution of the parametric system returns two components: (−1, 0), as an accumulation
point (thus being part of the non-normal envelope), and the constructible set V (y)−V (x+1, y).
Note that the points of this component are, by definition, normal envelope points, and the whole
component is thus labeled as special. But, of course, it should not to be considered as part of
the envelope, as it arises from a degeneracy in the family when B and C coincide.

Figure 1 The envelope is just the accumulation point (−1, 0)

As a contradictory case, we study the envelope of horizontal lines passing through a point
in the unit circle centered at the origin. The construction is described as

F = t21 + t22 − 1, y − t2, 2t1,

and the elimination returns two components y = ±1. Both are classified as special since their
dimension is 1 and they derive from the parametric points (0,±1). But, instead of dropping
them as suggested by the taxonomy, these lines are the sought envelope (Figure 2), following
its standard definition[4].
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Figure 2 The envelope of horizontal lines through points in the unit circle

2.3 Distinguishing Between Special Components

As the above examples illustrate, special envelope components should be accepted as part
of the envelope, but only provided that they do not come from degeneration. Thus, we propose
an algorithmic test to detect the non existence of a curve of the family.

Recall that given an envelope construction described by a set of polynomials F (where the
Jacobi polynomial(s), related to the partial derivatives of the involved equations, are included), a
component Cs of the normal envelope is special if dim(Cs) > 0 and dim(π2(V (F ) ∩ π−1

1 (Cs))) =
0. Since the dimension of the corresponding set of parametric points is 0, our idea consists on
detecting the eventual degeneration of the family curve by studying the dimension of the poly-
nomial construction for such values of the parameters. Thus, we declare a special component
Cs as acceptable if

∀(x, y) ∈ Cs, ∃t ∈ π2(π−1
1 (Cs)) s.t. dim(π−1

2 (t) ∩ V (F ∗)) ≤ 1,

where F ∗ is the polynomial set without the Jacobi polynomials. It is easy to deduce that, as
shown in the examples below, there is an algorithmic way to decide about the “acceptability”
of a component.

The idea behind such condition is to study, for each point in the special component, the
existence of the corresponding curve of the family. To this end, we look for at least a value
of the parameters such that the dimension of the curve is at most 1. Then, our new protocol,
namely:

• to apply the taxonomy in [1] to the case of envelopes, except in the case of special com-
ponents,

• considering in this case only those that are acceptable, as defined above,
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states that an acceptable special component of an envelope is part of the true envelope (i.e.,
one that meets the standard definition and our protocol requirements). Otherwise, it is not.

In what follows, we review the above examples under the new light of the acceptability of a
special component. We include the Maple computations for the sake of clarity.

The construction described in Figure 1 involves the computation of the family of straight
lines that are perpendicular to lines BC, where B(1, 0) is a fixed point on the unit circle centered
at the origin, and C moves along it. Thus, the family of straight lines is implicitly defined by

f = (y − t2)t2 − (x − t1)(1 − t1),

where the parameter relation is
g = t21 + t22 − 1,

and the Jacobi polynomial is

h =
∂f

∂t1

∂g

∂t2
− ∂f

∂t2

∂g

∂t1
= t2 + t2x − t1y.

In Maple, we define the set of polynomials and, projecting on x, y, we get the envelope candi-
dates:

> with(PolynomialIdeals):F:=<f,g,h>:EliminationIdeal(F,{x,y});

<y^2>

Note that the double line y = 0 is the Zariski closure of the projection while the envelope, as
defined in Section 2, is the constructible projection. But, in this case, both sets coincide since
for each value of x with y = 0, there exist t1, t2 values satisfying F = 0:

> solve(subs(y=0,{t2+t2*x-t1*y, t1^2+t2^2-1, (y-t2)*t2-(x-t1)*(1-

t1)}),{t1,t2,x});

{t1 = 1,t2 = 0,x = x}, {t1 = -1,t2 = 0,x = -1},

{t1 = RootOf(_Z^2+t2^2-1,t2=t2,x=-1}

The above computation is also useful to study the normality of the envelope points. Taking
a point (x, 0), we lift it up to F = 0, and after projecting this lifting on t1, t2, we check the
finite character of this projection. So, all points (x, 0) are normal points except (−1, 0), that
is a non-normal point. The envelope has two components: The accumulation point {(−1, 0)},
a non-normal one, and the constructible set V (y) − V (x + 1, y), that is a normal component.
Furthermore, it is special since for all point (x, 0) with x �= −1 the solutions of t1, t2 in F are
just (1, 0).

The last step consists of studying its acceptability. To this end, choosing t1 = 1, t2 = 0, we
lift to the family of curves without the Jacobi polynomial, and we check the dimension:
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> HilbertDimension(<t1^2+t2^2-1, (y-t2)*t2-(x-t1)*(1-t1), t1-1,

t2>,{x,y,t1,t2});

2

concluding that this component is not acceptable as part of the sought envelope.
The second example illustrates the opposite case, one where the special components are

part of the true envelope. Recall that in this case the family of curves are the horizontal lines
through a point moving along the unit circle centered at the origin (Figure 2). Thus, the family
is implicitly defined by f = y − t2, and the parametric point is constrained by g = t21 + t22 − 1.
The Jacobi polynomial is h = 2t1.

The envelope candidates are the lines y = ±1:

> restart:with(PolynomialIdeals):F:=<f,g,h>:

EliminationIdeal(F,{x,y});

<-1+y^2>

As in the previous problem, the elimination variety, y2 = 1, is the Zariski closure of the projec-
tion instead the constructible projection. The discussion of such issue is solved simultaneously
with the study about normality of points. Taking a point (x, 1) (resp. (x,−1)), the lifting to
F = 0 is projected on t1, t2. Both cases return a finite number of solutions, thus being all points
normal:

> solve(subs(y=1,{t1^2+t2^2-1, t1, y-t2}),{t1,t2,x});

{t1 = 0, t2 = 1, x = x}

> solve(subs(y=-1,{t1^2+t2^2-1, t1, y-t2}),{t1,t2,x});

{t1 = 0, x = x, t2 = -1}

Thus, y = ±1 are components of the normal envelope, and they are also special since their
solutions for t1, t2 in F are (0, 1) (resp. (0,−1)). Finally, we check if y = 1 (resp. y = −1) is
acceptable, taking t1 = 0, t2 = 1 (resp. t1 = 0, t2 = −1) and lifting it up to the polynomial set
F without the Jacobi polynomial:

> HilbertDimension(<t1^2+t2^2-1, y-t2,t1,t2-1>,{x,y,t1,t2});

1

> HilbertDimension(<t1^2+t2^2-1, y-t2,t1,t2+1>,{x,y,t1,t2});

1

concluding that both components are acceptable, and the envelope is the expected one.
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3 Conclusion

In this note we have motivated, proposed and exemplified a new algorithmic test, allowing
a finer classification of the different parts of the curve resulting from the standard envelope
computation and, thus, yielding a more precise output, free from extraneous components.

We think the proposal is well fitted into the intuitive idea of envelope, and deserves its im-
plementation in interactive geometry systems, in order to be automatically tested and analyzed
over suitable benchmark collections.
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