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Abstract This paper studies the identification of linear systems with quantized output observations.

Recursive estimates for the linear system and the quantization thresholds are derived by the stochastic

approximation algorithms with expanding truncations (SAAWET). Under suitable conditions, it is

shown that the estimates converge to the true values almost surely.
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1 Introduction

Systems with binary or quantized observations have been studied a lot in the recent years
for their extensive applications in practical fields, e.g., the networked control systems, bio-
logical networks, and automotive systems[1]. Due to the limited system output information,
identification of quantized systems is difficult.

To date, many different types of quantized systems have been explored. In [1–8] the
FIR/IIR/ARMA systems with known thresholds of binary sensors or quantized sensors are
considered. In [9, 10] the FIR/ARMA systems with designed adaptive quantized sensor are
dealt with. And the FIR/ARMA systems with unknown threshold of binary sensor are studied
in [11–13].

In this paper we consider the identification of the ARMA systems followed by a general
quantized sensor with unknown thresholds. Under reasonable conditions, the strongly consis-
tent estimates for the parameters of the linear system and the thresholds are obtained by the
SAAWET (see [14] or Appendix). While in order to guarantee the identification algorithms
strong consistency, the thresholds are required to be known in [3, 5, 7], and suitable adaptive
quantizers need to be designed in [9, 10].

As in [11], iid Gaussian inputs are applied to identify the underlying system, the almost
surely convergence rates are also derived. Compared to the systems with binary sensor, the
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thresholds of the general quantizer are more difficult to be estimated. With the help of the
SAAWET, the thresholds could be separated and identified gradually.

The rest of the paper is organized as follows. In Section 2, the quantized system is formulated
and the recursive identification algorithms are presented. In Section 3, the strong consistency
of the estimates is proved. A simulation example is given in Section 4, and some concluding
remarks are provided in Section 5.

2 System and Identification Algorithms

2.1 System and Estimates for the ARMA System

As shown in Figure 1, the system is given as follows

C(q−1)vk+1 = D(q−1)uk, (1)

yk = vk + ηk, (2)

zk =

⎧
⎪⎪⎨

⎪⎪⎩

a1, yk ≥ S1,

a2, S2 ≤ yk < S1,

0, yk < S2,

(3)

where q−1 is the backward-shift operator: q−1uk = uk−1, uk and zk are the system input and
output, respectively, (3) represents the quantized sensor with the thresholds S2 < S1 and the
different output values a1, a2, 0. The signals vk and yk are not directly observed. ηk is the
additive noise, which is an ARMA process:

F (q−1)ηk = G(q−1)εk, (4)

F (q−1) = 1 + f1q
−1 + · · · + flq

−l, (5)

G(q−1) = 1 + g1q
−1 + · · · + gmq−m (6)

with unknown orders l, m ≥ 1 and with unknown coefficients {fi, gj}. Our problem is to
recursively estimate {c1, · · · , cp, d1, · · · , dr} in the following polynomials of the linear part

C(q−1) = 1 + c1q
−1 + · · · + cpq

−p, (7)

D(q−1) = 1 + d1q
−1 + · · · + drq

−r (8)

with known orders p, r ≥ 1 and the thresholds S1, S2 of the quantized sensor on the basis of
the observed signals {uk, zk}.

Figure 1 ARMA systems with quantized outputs and noises
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Remark 2.1 The structure of the quantized sensor (3) is known. Recursive estimates and
convergence analysis can be obtained similarly for the general quantized sensors, i.e.,

zk =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a1, yk ≥ S1,

a2, S2 ≤ yk < S1,

a3, S3 ≤ yk < S2,
...

an, Sn ≤ yk < Sn−1,

an+1, yk < Sn

with Sn < Sn−1 < · · · < S2 < S1 and different values a1, a2, · · · , an+1, ∀n ≥ 1. For the case
an+1 �= 0, {zk − an+1} could be regarded as the new output observations.

Assumptions imposed on the system (1)–(8) are as follows:
A1 C(q−1) and D(q−1) are coprime, cp �= 0, dr �= 0, and C(q−1) is stable (i.e., all roots of

qpC(q−1) = 0 are inside the open unit disk).
A2 F (q−1) and G(q−1) are coprime, and F (q−1) is stable.
A3 {εk} is a sequence of zero mean iid Gaussian random variables with unknown variance

σ2
ε . {uk} and {εk} are mutually independent, and uk = 0, εk = 0 for k < 0.

A4 The input sequence {uk} is a sequence of iid random variables and uk ∼ N (0, 1).
By A1 we have

vk+1 = C−1(q−1)D(q−1)uk =
k∑

i=0

hiuk−i, (9)

where {hi} are impulse responses with h0 = 1, and |hi| is of the same order as e−μi, i.e., |hi| =
O(e−μi), μ > 0, ∀i ≥ 1. By A4 and (9), it is clear that vk ∼ N (0, σ2

v,k), where σ2
v,k =

∑k−1
i=0 h2

i

and

Eukvk+i+1 = hi, i = 0, 1, · · · , k ≥ 0, (10)

in which E denotes the expectation operator. By (4), A2 and A3 it follows that {uk} and {ηk}
are mutually independent, which together with (2) and (10) implies

Eukyk+i+1 = hi, i = 0, 1, · · · , k ≥ 0. (11)

Let σ2
y,k � Ey2

k and σ2
η,k � Eη2

k. It is clear that yk ∼ N (0, σ2
y,k) with σ2

y,k = σ2
v,k + σ2

η,k. By the
correlation analysis as in [11], it follows that

E[uk|yk+i+1] =
hi

σ2
y,k+i+1

yk+i+1, a.s., (12)



988 XIAO JIANMING · SONG QIJIANG

∀i ≥ 0, k ≥ 0. By (3) and (12) we have

Eukzk+i+1 = E[zk+i+1E[uk|yk+i+1]]

=
hi

σ2
y,k+i+1

Ezk+i+1yk+i+1

=
hi

σy,k+i+1

(

(a1 − a2)
∫ ∞

S1
σy,k+i+1

xϕ0(x)dx + a2

∫ ∞

S2
σy,k+i+1

xϕ0(x)dx

)

−−−−→
k→∞

hi√
2πσy

(

(a1 − a2) exp
{

− S2
1

2σ2
y

}

+ a2 exp
{

− S2
2

2σ2
y

})

, ∀i ≥ 0, (13)

where ϕ0(x) = 1√
2π

exp{−x2

2 }, σ2
y � σ2

v + σ2
η with σ2

v � limk→∞ σ2
v,k =

∑∞
i=0 h2

i and σ2
η �

limk→∞ σ2
η,k.

Let ρ � 1√
2πσy

(
(a1 − a2) exp{− S2

1
2σ2

y
} + a2 exp{− S2

2
2σ2

y
}
)
. By (13) we obtain

Eukzk+i+1 −−−−→
k→∞

ρhi, ∀i ≥ 0. (14)

The following additional assumption needs to be imposed on the system:
A5 ρ = 1√

2πσy

(
(a1 − a2) exp{− S2

1
2σ2

y
} + a2 exp{− S2

2
2σ2

y
}
)
�= 0.

As in [11], by setting hi = 0 for i < 0, we derive the Yule-Walker equations:

H

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

c1

c2

...

cp

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

−hr+1

−hr+2

...

−hr+p

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (15)

hi = −
p∑

j=1

cjhi−j + di, i = 1, 2, · · · , r, (16)

where H is the Hankel matrix defined as follows

H �

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

hr hr−1 · · · hr+1−p

hr+1 hr · · · hr+2−p

...
...

. . .
...

hr+p−1 hr+p−2 · · · hr

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

By A1 the Hankel matrix H is nonsingular[15]. Thus, for estimating {ci, di}, it suffices to
estimate {hi, i = 1, 2, · · · , p + r}.

Let hi,k be the estimate for hi at time k, and let hi,k = 0 for i < 0. Define

Hk �

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

hr,k hr−1,k · · · hr+1−p,k

hr+1,k hr,k · · · hr+2−p,k

...
...

. . .
...

hr+p−1,k hr+p−2,k · · · hr,k

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (17)
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Then the estimates for {ci, di} are given as follows

[c1,k · · · cp,k]T =

⎧
⎪⎨

⎪⎩

−H−1
k [hr+1,k · · · hr+p,k]T, if det(Hk) �= 0,

[0 · · · 0︸ ︷︷ ︸
p

]T, otherwise, (18)

di,k = hi,k +
p∑

l=1

cl,khi−l,k, i = 1, 2, · · · , r. (19)

Since h0 = 1 and ρ �= 0, for estimating {hi, i = 1, 2, · · · , p + r}, it suffices to estimate
{ρhi, i = 0, 1, · · · , p + r}. Let I[·] be the indicator function of the set [·] and {Mk} be a
sequence nondecreasing positive numbers diverging to infinity. Then by the SAAWET, {θi,k}
are recursively defined as follows

θi,k+1 =
[
θi,k − 1

k + 1
(θi,k − ukzk+i+1)

]
· I[|θi,k− 1

k+1 (θi,k−ukzk+i+1)|≤Mδi,k
], (20)

δi,k =
k−1∑

j=1

I[|θi,j− 1
j+1 (θi,j−ujzj+i+1)|>Mδi,j

] (21)

with δi,0 = 0 and an arbitrary initial value θi,0. And the estimates for hi, i ≥ 1, at time k are
given by

hi,k �

⎧
⎨

⎩

θi,k/θ0,k, if θ0,k �= 0,

0, otherwise.
(22)

2.2 Estimation of the Thresholds

Since yk is Gaussian and yk ∼ N(0, σ2
y,k), by (3) we have

EI[zk=a1] = P{yk ≥ S1} =
∫ ∞

S1
σy,k

ϕ0(x)dx

−−−−→
k→∞

∫ ∞

S1
σy

ϕ0(x)dx = 1 − φ0(S1/σy), (23)

EI[zk=a2] = P{S2 ≤ yk < S1}
= P{yk ≥ S2} − P{yk ≥ S1}
−−−−→
k→∞

(
1 − φ0(S2/σy)

)− (1 − φ0(S1/σy)
)

(24)

with φ0(t) �
∫ t

−∞ ϕ0(x)dx.
Let γ(i) � 1 − φ0(Si/σy), i = 1, 2. Then by the SAAWET, the estimates for γ(1), γ(2) are

given as follows:

γ
(1)
k+1 =

[
γ

(1)
k − 1

k + 1
(γ(1)

k − I[zk=a1])
]
· I

[|γ(1)
k − 1

k+1 (γ
(1)
k −I[zk=a1])|≤M

δ
(1)
k

]
, (25)

δ
(1)
k =

k−1∑

j=1

I
[|γ(1)

j − 1
j+1 (γ

(1)
j −I[zj=a1])|>M

δ
(1)
j

]
(26)
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with δ
(1)
0 = 0 and an arbitrary initial value γ

(1)
0 , and

γ
(2)
k+1 =

[
γ

(2)
k − 1

k + 1
(γ(2)

k − γ
(1)
k − I[zk=a2])

]
· I

[|γ(2)
k − 1

k+1 (γ
(2)
k −γ

(1)
k −I[zk=a2])|≤M

δ
(2)
k

]
, (27)

δ
(2)
k =

k−1∑

j=1

I
[|γ(2)

j − 1
j+1 (γ

(2)
j −γ

(1)
j −I[zj=a2])|>M

δ
(2)
j

]
(28)

with δ
(2)
0 = 0 and an arbitrary initial value γ

(2)
0 .

By noticing that Si/σy is the single root of the equation 1 − φ0(x) − γ(i) = 0, i = 1, 2, the
SAAWET can be applied to estimate Si/σy as follows:

Θ (i)
k+1 =

[
Θ (i)

k +
1

k + 1
(1 − φ0(Θ

(i)
k ) − γ

(i)
k )
]
· I

[|Θ(i)
k + 1

k+1 (1−φ0(Θ
(i)
k )−γ

(i)
k )|≤M

Δ(i)
k

]
, (29)

Δ(i)
k =

k−1∑

j=1

I
[|Θ(i)

j + 1
j+1 (1−φ0(Θ

(i)
j )−γ

(i)
j )|>M

Δ(i)
j

]
(30)

with Δ(i)
0 = 0 and an arbitrary initial value Θ (i)

0 , i = 1, 2.
By A5 and the estimations of ρ and Si/σy, the estimate for Si at time k is given as follows

s
(i)
k �

⎧
⎨

⎩

Θ (i)
k

(a1−a2) exp
{
− 1

2

(
Θ

(1)
k

)2}
+a2 exp

{
− 1

2

(
Θ

(2)
k

)2}

√
2πθ0,k

, if θ0,k �= 0,

0, if θ0,k = 0,
(31)

i = 1, 2.

3 Consistency of Estimates

As in [11], let a � max{p, r + 1}, b � max{l, m + 1}, ci � 0 if p < i ≤ a, dj � 0 if r < j ≤ a,
fk � 0 if l < k ≤ b, and gn � 0 if m < n ≤ b. Define

Vk � [vk · · · vk−a+1 uk · · · uk−a+1 ηk · · · ηk−b+1 εk+1 · · · εk−b+2]T ∈ R2(a+b).

Lemma 3.1 (see [11]) Assume A1–A4 hold. Then {Vk} is a zero mean α-mixing process
with the mixing coefficients αk exponentially decay to zero: αk ≤ dλk for some d > 0 and
λ ∈ (0, 1), ∀k ≥ 1.

Remark 3.1 The definition of the α-mixing process please refer to [16]. It is well known that
the mixing property is hereditary, i.e., the process {h(Xk)} for any Borel measurable function
h(·) possesses the same mixing property as {Xk} does. By Lemma 3.1 and the hereditary prop-
erty of α-mixing, the processes {I[zk=ai]−EI[zk=ai]}, i = 1, 2, and {ukzk+i+1−Eukzk+i+1}, ∀i ≥
0, are all α-mixing processes with the mixing coefficients exponentially decay to zero (under
Conditions A1–A4).

Lemma 3.2 (see [15]) Let {Xk} be a zero mean α-mixing process with the mixing coefficients
αk exponentially decay to zero: αk ≤ dλk for some d > 0 and λ ∈ (0, 1), ∀k ≥ 1. If there exists
a constant ε > 0 such that

∑∞
k=1(E|Xk|2+ε)

2
2+ε < ∞, then

∑∞
k=1 Xk < ∞ a.s.
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Lemma 3.3 Assume A1–A4 hold. Then, ∀ν ∈ (0, 1
2 ),

∞∑

k=1

1
k1−ν

(I[zk=ai] − EI[zk=ai]) < ∞ a.s., i = 1, 2, (32)

∞∑

k=1

1
k1−ν

(ukzk+i+1 − Eukzk+i+1) < ∞ a.s., ∀i ≥ 0. (33)

Proof By Remark 3.1 and Lemma 3.2, it suffices to prove

∞∑

k=1

1
k2−2ν

(E|I[zk=ai] − EI[zk=ai]|2+ε)
2

2+ε < ∞, i = 1, 2, (34)

∞∑

k=1

1
k2−2ν

(E|ukzk+i+1 − Eukzk+i+1|2+ε)
2

2+ε < ∞, ∀i ≥ 0 (35)

for any ν ∈ (0, 1
2 ) and some ε > 0, respectively.

Since |I[zk=ai] − EI[zk=ai]| ≤ 2, it is clear that

∞∑

k=1

1
k2−2ν

(E|I[zk=ai] − EI[zk=ai]|2+ε)
2

2+ε < ∞, ∀ε > 0, ∀ν ∈
(

0,
1
2

)

.

On the other hand, by (3) we have |ukzk+i+1 − Eukzk+i+1| ≤ max{|a1|, |a2|}(|uk| + E|uk|).
Then by the Cr-inequality and the Jesen inequality, for any ε > 0 we obtain

E|ukzk+i+1 − Eukzk+i+1|2+ε ≤ (2 max{|a1|, |a2|})2+ε
E|uk|2+ε < ∞, (36)

which implies (35).
Lemma 3.4 Assume A1–A4 hold. Then, ∀ν ∈ (0, 1

2 ),

|EI[zk=a1] − γ(1)| = o

(
1
kν

)

, (37)

|EI[zk=a2] + γ(1) − γ(2)| = o

(
1
kν

)

, (38)

|Eukzk+i+1 − ρhi| = o

(
1
kν

)

. (39)

Proof Since σ2
v − σ2

v,k =
∑∞

i=k h2
i with |hi| = O(e−μi), μ > 0, i ≥ 1, for any ν ∈ (0, 1

2 ) we
have

σ2
v − σ2

v,k = o

(
1
kν

)

. (40)

And similarly by A3 we obtain

σ2
η − σ2

η,k = o

(
1
kν

)

(41)
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for any ν ∈ (0, 1
2 ).

By noticing σy,k −−−−→
k→∞

σy , it follows that

∣
∣
∣
∣

1
σy

− 1
σy,k

∣
∣
∣
∣ =

σy − σy,k

σyσy,k
=

σ2
y − σ2

y,k

σyσy,k(σy + σy,k)

=
(σ2

v − σ2
v,k) + (σ2

η − σ2
η,k)

σyσy,k(σy + σy,k)

= o

(
1
kν

)

(42)

for any ν ∈ (0, 1
2 ).

By (23) and (24) we have

|EI[zk=a1] − γ(1)| =
∣
∣
∣
∣

∫ S1
σy

S1
σy,k

ϕ0(x)dx

∣
∣
∣
∣ ≤ |S1| ·

∣
∣
∣
∣

1
σy

− 1
σy,k

∣
∣
∣
∣ = o

(
1
kν

)

, (43)

|EI[zk=a2] + γ(1) − γ(2)| ≤
∣
∣
∣
∣

∫ S1
σy

S1
σy,k

ϕ0(x)dx

∣
∣
∣
∣ +

∣
∣
∣
∣

∫ S2
σy

S2
σy,k

ϕ0(x)dx

∣
∣
∣
∣

≤ (|S1| + |S2|) ·
∣
∣
∣
∣

1
σy

− 1
σy,k

∣
∣
∣
∣ = o

(
1
kν

)

(44)

for any ν ∈ (0, 1
2 ).

On the other hand, by (13) it follows that

|Eukzk+i+1 − ρhi| ≤ |hi|
(|a1 − a2|F1 + |a2|F2

)
(45)

with

Fj � 1
σy,k+i+1

∣
∣
∣
∣

∫ Sj
σy

Sj
σy,k+i+1

xϕ0(x)dx

∣
∣
∣
∣ +

∣
∣
∣
∣

1
σy,k+i+1

− 1
σy

∣
∣
∣
∣ ·
∣
∣
∣
∣

∫ ∞

Sj
σy

xϕ0(x)dx

∣
∣
∣
∣

= O

(∣
∣
∣
∣

1
σy,k+i+1

− 1
σy

∣
∣
∣
∣

)

, j = 1, 2. (46)

Combing (42), (45) and (46) we have (39).
Noticing ζi,k � ukzk+i+1−ρhi = (ukzk+i+1−Eukzk+i+1)+(Eukzk+i+1−ρhi), by (33), (39)

and Proposition 1 we derive the following convergence results for the linear system.
Theorem 3.1 Assume A1–A5 hold. Then, θi,k, defined by (20) and (21), are strongly

consistent with following convergence rate:

|θ0,k − ρ| = o

(
1
kν

)

, and |θi,k − ρhi| = o

(
1
kν

)

a.s., i = 1, 2, · · · , p + r (47)

for any ν ∈ (0, 1
2 ). And consequently, hi,k, defined by (22), are also strongly consistent:

|hi,k − hi| = o

(
1
kν

)

a.s., i = 1, 2, · · · , p + r (48)
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for any ν ∈ (0, 1
2 ).

Theorem 3.2 Assume A1–A5 hold. Then, for any ν ∈ (0, 1
2 ),

|ci,k − ci| = o

(
1
kν

)

, and |dj,k − dj | = o

(
1
kν

)

a.s.,

i = 1, 2, · · · , p, j = 1, 2, · · · , r, (49)

where ci,k and dj,k are given by (18) and (19), respectively.
For the thresholds of the quantizer, the convergence results are presented in the following

theorems.
Theorem 3.3 Assume A1–A5 hold. Then

|γ(1)
k − γ(1)| = o

(
1
kν

)

a.s., ∀ν ∈
(

0,
1
2

)

, (50)

|γ(2)
k − γ(2)| = o

(
1
kν

)

a.s., ∀ν ∈
(

0,
1
2

)

, (51)

|Θ (i)
k − Si/σy| = o

(
1
kτ

)

a.s., ∃τ ∈
(

0,
1
2

)

(52)

with γ
(i)
k ,Θ (i)

k being defined by (25)–(30).

Proof Let ζ
(1)
k = I[zk=a1] − γ(1) = (I[zk=a1] − EI[zk=a1]) + (EI[zk=a1] − γ(1)), by (32), (37)

and Proposition 1 we obtain (50).
Also let ζ

(2)
k = I[zk=a2] + γ

(1)
k − γ(2) = (I[zk=a2] − EI[zk=a2]) + (EI[zk=a2] + γ(1) − γ(2)) +

(γ(1)
k − γ(1)). By (32), (38), (50) and Proposition 1 we have (51).
By Theorem 3 in [11], (52) holds.
Theorem 3.4 Assume A1–A5 hold. Then, s

(i)
k defined by (31) converges to Si almost surely:

For some τ ∈ (0, 1
2 ),

|s(i)
k − Si| = o

(
1
kτ

)

a.s., (53)

i = 1, 2.

Proof Let

�k �

⎧
⎪⎨

⎪⎩

(a1 − a2) exp
{− 1

2

(
Θ (1)

k

)2}+ a2 exp
{− 1

2

(
Θ (2)

k

)2}

√
2πθ0,k

, if θ0,k �= 0,

0, if θ0,k = 0.

By (52) and proceed a similar proof as Theorem 4 in [11], we have

|�k − σy| = o

(
1
kτ

)

a.s. (54)

with the same constant τ ∈ (0, 1
2 ) as in (52).
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By A5 and (31), it follows that

|s(i)
k − Si| = |�kΘ

(i)
k − Si|

= |�kΘ
(i)
k − σyΘ

(i)
k + σyΘ

(i)
k − Si|

≤ |�k − σy| · |Θ (i)
k | + |σyΘ

(i)
k − Si|, i = 1, 2. (55)

Thus, by combing (52), (54) and (55), we obtain (53).

4 Simulation Examples

Let the quantized system be considered as follows

vk+1 + 0.2vk + 0.6vk−1 = uk − 0.3uk−1 + 1.2uk−2,

yk = vk + ηk,

zk =

⎧
⎪⎪⎨

⎪⎪⎩

−0.6, yk ≥ 0.2,

0.8, −0.5 ≤ yk < 0.2,

0, yk < −0.5,

ηk − 0.7ηk−1 = εk + 0.5εk−1,

in which the input {uk} and the driven noise {εk} are mutually independent, and {uk} and
{εk} are both iid Gaussian: uk ∼ N (0, 1) and εk ∼ N (0, 0.32). It is noticed that c1 = 0.2, c2 =
0.6, d1 = −0.3, d2 = 1.2, S1 = 0.2, and S2 = −0.5. Take Mk = 6k.

It is clear that A1–A5 hold. The estimates for {c1, c2, d1, d2} and {S1, S2} are plotted at
different time steps in Figure 2, in which the solid lines denote the true values of the parameters,
while the dashed lines denote the estimates. It is shown that the estimates converge to the true
parameters as the time steps increase.
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Figure 2 Estimates for the parameters of the system

5 Concluding Remarks

This paper is focused on the identification of quantized ARMA systems and with ARMA
noises. By the SAAWET, the recursive estimates for the linear system and the thresholds of the
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quantizer are presented. Under reasonable conditions, the estimates are proved to be strongly
consistent. The almost surely convergence rates are also obtained for the parameters of the
ARMA system and the thresholds of the quantizer.

For further research, it is of interest to remove the Gaussian restriction of the noise, and to
consider quantized Wiener systems.
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Appendix

Let g(·) be an R −→ R function with only one root x0, and let the observation at time k

be yk = g(xk) + ζk, where ζk is the observation noise, and xk is the estimate for x0 generated
by SAAWET:

xk+1 =
[
xk +

1
k + 1

yk

]
· I[|xk+ 1

k+1yk|≤Mδk
], (56)

δk =
k−1∑

j=1

I[|xj+
1

j+1 yj |>Mδj
], δ0 = 0 (57)

with an arbitrary initial value x0, where {Mk} is a sequence of nondecreasing positive numbers
diverging to infinity.

For convergence analysis of the SAAWET, we need the following propositions[14].
Proposition 1 Let g(x) = −(x − x0). If the observation noise ζk can be decomposed into

two parts ζk = ζ
(1)
k + ζ

(2)
k such that

∞∑

k=1

1
k1−ν

ζ
(1)
k < ∞ a.s., and ζ

(2)
k = O

(
1
kν

)

a.s.

for some ν ∈ (0, 1
2 ), then xk defined by (56)–(57) converges to x0 a.s. with the following

convergence rate: |xk − x0| = o( 1
kν ) a.s.


