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Abstract The issues of event-triggered exponential L1 filtering are studied for a class of networked

linear switched systems. An event-triggered mechanism is proposed to enhance resource utilization in

transmission, and save the communication cost of systems as well. Then, the filtering error system is

reconstructed as a switched delay system with bounded disturbance through the input delay system

approach. By resorting to the Lyapunov-Krasovskii functional approach and the average dwell time

(ADT) technique, some interesting results are derived to guarantee the exponential stability with a

prescribed L1 disturbance rejection level. Further, an event-triggered exponential L1 filter is designed

via solving a set of feasible linear matrix inequalities (LMIs). Finally, the efficiency of the proposed

results is verified through a numerical example and a PWM-driven boost converter circuit system.

Keywords Exponential L1 filtering, exponential stability, event-triggered mechanism, networked lin-

ear switched systems.

1 Introduction

As a special class of hybrid dynamical system, switched systems consist of certain subsystems
and a rule orchestrating the switching among them. As it is pointed out that the study of
switching signals is crucial in the stability analysis and stabilization of switched systems. For
instance, appropriate switching signals can ensure the stability for the switched systems even
though all subsystems are unstable[1, 2]. As the most widely used method, the ADT technique is
first proposed in [2], which means that the switched system is stable if all subsystems are stable
and each subsystem is satisfied with the ADT condition. Plenty of theoretical results in stability
analysis and stabilization of switched systems have been reported under ADT switching[3–6].
However, few results on L1 disturbance rejection performance analysis for switched systems
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are reported. As pointed out in [7], when the switching signals meet the ADT conditions, the
time-varying delay switched system is exponentially stable with L1-gain performance.

Generally, the state information may not be completely available in practice due to the
limitations of the devices. Therefore, filter design has received extensive attention, since filtering
is considered one of the most prevailing state estimation methods for switched systems. There
are quite a few types of filters being studied, such as H∞ filter and L2 − L∞ filter. In [8], the
issues of l2−l∞ filtering and h∞ filtering for the discrete-time switched systems are investigated,
respectively. Based on the derived results in [8], the problems of robust L2 − L∞ filtering
for linear networked control systems are further investigated in [9]. In [10, 11], the event-
triggered H∞ filtering for continuous-time switched linear systems and discrete-time switched
linear systems are considered, with an event-triggered scheme utilized to enhance the usage rate
of communication resources.

As we all know, the external disturbances for many practical switched systems are sustained
and amplitude bounded signals. For instance, sea wave clutter interference signals and unit step
signal. In this scenario, the H∞ filtering method and L2 − L∞ filtering method are no longer
viable. In this case, it may be meaningful to study the L1 filtering problem; which can minimize
the peak value of filtering error outputs in the worst case. In [12], a robust L1 filter is designed
to analyze the L1 gain for a kind of nonlinear networked control system. The L1 fixed-order
filtering problem is addressed in [13] for switched linear parameter-varying systems.

Owing to the extremely rapid development of computer, microelectronics and communica-
tion networks, networked control systems receive wide attention. Many methods are introduced
to study the problem of energy consumption in networked control systems, of which period sam-
pling is the simplest one. Under discrete sampling conditions, there are three commonly used
methods to analyze networked systems: Time-delay approach[14, 15], impulsive/hybrid system
approach[16–18] and discrete-time approach[19, 20]. The time-delay approach is applicable to
diverse types of systems, such as uncertain systems, networked control systems and sampled
systems. In [21], the time-delay approach is extended to the event-triggered networked switched
systems. Under an event-triggered communication scheme, the networked switched system is
modeled as a kind of switched time-delay systems. By invoking a time-delay approach, the
issues of non-parallel distribution compensation control for observer-based fuzzy systems are
considered in [22], with an event-triggered scheme utilized to improve the use ratio of commu-
nication resources.

Whereas, the traditional time-triggered scheme may generate excessive redundant signals,
and usually increases the network load and communication costs of the system[23–25]. In order
to overcome the weakness of time-triggered scheme, the event-triggered mechanism is pro-
posed, that is, only when the sampled date satisfies a prescribed event-triggered condition,
they will be sent to the filter. Hence, in comparison with the time-triggered mechanism, event-
triggered mechanism can significantly reduce the consumption of communication resources and
improve the control performance of the system. Many reports on the event-triggered scheme
are available[26–30]. By proposing a new scheme, an event-triggered control system is used for
approximating the behavior of a continuous state-feedback system in [26].
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For switched nonlinear multi-agent systems, the issue of leader-following consensus is stud-
ied in [27] through event-triggered protocols. Further, the problem of containment control is
investigated in [29] for second-order nonlinear multi-agent systems. Under redesigned event-
triggered protocols, all followers converged to the convex hull spanned asymptotically and the
Zeno behavior was excluded. The event-triggered filtering problem for neural networked system
is dealt with in [30], in which, some sufficient conditions of the generalized dissipativity for the
filtering error system are presented. But until now, the use of event-triggered scheme in the
switched systems is not common, especially the L1 filtering problem.

In this paper, we pay close attention to the issues of event-triggered L1 filtering for networked
linear switched systems. Our target is to develop an event-triggered L1 filter such that the
filtering error systems are exponentially stable with a required L1 disturbance rejection level.
The main contributions are fourfold: (i) Different from the existing literatures[28, 29], a discrete
time event-triggered detector is designed which can be used to monitor the event-triggered
conditions periodically. Here, the discrete time event detector can reduce monitoring time and
save communication costs. (ii) Under an event-triggered sampling scheme, a viable L1 filter is
designed which minimizes peak value of filtering error outputs in the worst case. (iii) Sufficient
conditions are obtained to ensure the exponential stability and a given L1 disturbance rejection
performance. (iv) By means of the L1 filter technique, the exponential stability problem of the
PWM-driven boost converter circuit system is introduced, which verifies that the conclusions
obtained in this paper are effective in practical application.

Notations Throughout this paper, N stands for the set of natural numbers. Rn represents
the n-dimensional Euclidean space. For a matrix P ∈ Rn×n, the superscript T represents its
transpose. P > 0 means P is a symmetric matrix and positive definite matrix, the symmetric
terms are represented by ∗ , and diag{·} means a block-diagonal matrix.

2 Problem Formulation and Preliminaries

2.1 Networked Linear Switched Systems

Consider the networked linear switched system as follows
⎧
⎪⎪⎨

⎪⎪⎩

ẋ(t) = Aσ(t)x(t) + Dσ(t)ω(t),

y(t) = Cσ(t)x(t),

z(t) = Lσ(t)x(t),

(1)

where x(t) ∈ Rn, ω(t) ∈ L∞[0,∞), y(t) ∈ Rp, z(t) ∈ Rp are the state vector, the disturbance
input, the measured output vector, and the output signal to be estimated, respectively. Aσ(t),
Cσ(t), Dσ(t), Lσ(t) are known real matrices. The function σ(t) : [0,∞) → I = {1, 2, · · · , N}, is
a piecewise constant switching signal and continuous from the right everywhere. The switching
sequence associated with switching signal σ(t) is given below:

M = {(t0, σ(t0)), (t1, σ(t1)), (t2, σ(t2)), · · · (tk, σ(tk))|σ(tk) ∈ I, k ∈ N},
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where t0, x(t0) are the initial time and initial state, respectively. The switching points satisfy
t0 < t1 < · · · < tk < · · · . When t ∈ [tk, tk+1), the σ(tk)-th subsystem will be activated.

In order to save communication costs, we will design an appropriate filter to estimate the
output z(t) of System (1) through an event-triggered scheme. Moreover, Figure 1 is the frame-
work of the event-triggered filtering.

Figure 1 The framework of the event-triggered filtering

In Figure 1, the measured outputs y(t) are sampled at a constant period h > 0, i.e., periodic
sampling. And the set of sampled instants is given by H = {�h|� ∈ N}. Here, the event-triggered
condition is critical in the event generator, since it can decide whether the sampled signal should
be transferred to zero-order hoder (ZOH) or not. In other words, only those sampled signals
that gratify the predetermined event-triggered condition are transferred through a network
channel. This is vital from the perspective of improving the utilization ratio of communication
resources and saving communication costs. The ZOH is event-driven, which is utilised to hold
the signal generated from the event generator until a new signal generated.

Our aim is to design event-triggered L1 filters to estimate the system output z(t) based on
the measured output vector y(t) in order to enhance the network resource utility.

2.2 Event-Triggered Communication Mechanism

Here, the event-triggered condition is defined as follows:

tν+1h = tνh + min
�
{�h|eT((tν + �)h)Φie((tν + �)h) ≥ δiy

T((tν + �)h)Φiy((tν + �)h), � ∈ N}, (2)

where e((tν + �)h) = y((tν + �)h) − y(tνh), δi > 0 is the coefficient of the threshold, Φi > 0 is
a weighting matrix, (tν + �)h and tν denote the sampling point and triggering point of events,
respectively.

Remark 2.1 In most existing literatures, event-triggered conditions are monitored con-
tinuously, or partially continuously, which may increase the computational burden. Meanwhile,
the time interval between the two trigger events may tend to zero under the continuous event-
trigger mechanism. It is highly undesirable since it may lead to the sensors sample infinitely
fast. In order to reduce resource consumption in monitoring, and avoid the Zeno-sampling,
here the event-trigger conditions are verified only periodically. The main difference compared
with the conventional event monitoring mechanism, is that the event-triggered conditions are
only verified at discrete sampling instants. In this scenario, the time interval between the two
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trigger events is greater than zero obviously, because it is equal to or greater than the verifying
period. Therefore, the periodic event-triggered control used in this paper combines the advan-
tages of periodic sampling and continuous event-triggered control. The event-trigger conditions
are detected periodically, and the output signals are transmitted only when necessary.

2.3 Event-Triggered L1 Filtering

In this subsection, for each value σ(t) = i ∈ I, we take into account an event-triggered
mode-dependent filter for System (1) described by the following form

⎧
⎨

⎩

ẋf (t) = Afixf (t) + Bfi ŷ(t),

zf (t) = Lfixf (t),
(3)

where xf (t) ∈ Rn, zf (t) ∈ Rp are the filter state vector and filter output vector, respectively.
Afi , Bfi , Lfi are the parameter matrices to be determined later. It is worth pointing out that
ŷ(t) is the input vector of the filter instead of the measured output vector.

Remark 2.2 For H∞ filters and L2−L∞ filters, the external disturbance must be energy-
bounded. However, the disturbance of many practical control systems is not satisfied with that
requirement. For instance, sea wave clutter interference signals and unit step signal. In this
sense, the H∞ filtering method and L2 − L∞ filtering method are no longer workable. In this
case, the L1 filtering is better suited for engineering applications since the external disturbance
of L1 filtering is persistent and amplitude-bounded.

Defining q(t) = t − tν,�, tν,� = (tν + �)h, we can see that q(t) meet with 0 ≤ q(t) ≤ h.
Suppose delay q(t) satisfies with the condition q̇(t) ≤ q̃ < 1. φ(t) is an initial vector function
in interval [−h, 0]. By utilizing the input delay system approach, for t ∈ [tνh, tν+�h), we get
ŷ(t) = y(tνh) = y(t − q(t)) − e(tν,�). In conclusion, the filtering error system is obtained as
following

⎧
⎪⎪⎨

⎪⎪⎩

˙̌x(t) = Ǎσ(t)x̌(t) + Čσ(t)x̌(t − q(t)) + Ďσ(t)w(t) + B̌σ(t)e(tν,�),

ž(t) = Ľσ(t)x̌(t),

x̌(t) = [φT(t) 0]T, t ∈ [−h, 0],

(4)

where

Ǎσ(t) =

⎡

⎣
Aσ(t) 0

0 Afσ(t)

⎤

⎦ , Čσ(t) =

⎡

⎣
0 0

Bfσ(t)Cσ(t) 0

⎤

⎦ ,

Ďσ(t) =

⎡

⎣
Dσ(t)

0

⎤

⎦ , B̌σ(t) =

⎡

⎣
0

−Bfσ(t)

⎤

⎦ , Ľσ(t) =
[

Lσ(t) − Lfσ(t)

]
,

x̌(t) = [xT(t) xT
f (t)]T, x̌(t − q(t)) = [xT(t − q(t)) xT

f (t − q(t))]T, ž(t) = z(t) − zf (t).

(5)

Remark 2.3 Combining (1) with (3), the filtering error system is reconstructed into a
switched system with time-varying delay applying the input delay system approach. Further,
some delay-dependent inequalities shall be established for the problems of exponential stability
and L1 disturbance rejection performance.
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Definition 2.4 (see [31]) If the solution x(t) of the filtering error system (4) satisfies

‖x(t)‖ ≤ k ‖ x(t0) ‖h e−λ(t−t0), ∀t ≥ t0, (6)

for constants k ≥ 1 and λ > 0, where

‖x(t0)‖h = sup
−h≤θ≤0

{‖ x(t + θ) ‖, ‖ ẋ(t + θ) ‖}, (7)

then the equilibrium x∗ = 0 of the filtering error system (4) is said to be exponentially stable
under switching signal σ(t).

Definition 2.5 (see [13]) The event-triggered filtering error system is called exponentially
stable with a given L1 disturbance rejection performance if the following conditions are satisfied:

(i) The event-triggered filtering error system is exponentially stable with ω(t) = 0.
(ii) Under the zero initial condition, ∀ω(t) ∈ L∞[0,∞), ω(t) 
= 0, the following condition

hold

sup
ω(t)∈L∞[0,∞)

‖ z(t) ‖L∞

‖ ω(t) ‖L∞
< γ.

Lemma 2.6 (see [28]) For any matrix P > 0, we have

∫ t

t−q

∫ t

τ

xT(ν)Px(ν)dνdτ ≤ q

∫ t

t−q

xT(τ)Px(τ)dτ. (8)

3 Main Results

In this section, some sufficient conditions are obtained by Lyapunov-Krasovskii functional
approach and the ADT technique, which can make the filtering error system exponentially
stable with a given L1 disturbance rejection level.

Theorem 3.1 For given scalars α > 0, β > 0, μ > 1, γ > 0, δi > 0, ρ1 > 0, ρ2 > 0,
ρ3 > 0, ρ4 > 0, ρ5 > 0, the event-triggered filtering error system (4) is exponentially stable
with a prescribed L1 disturbance rejection level, if there exist an event-triggered filter (3) and
positive definite matrices Pi > 0, Qi > 0, Zi > 0, Ri > 0, ∀(i, j) ∈ I × I, i 
= j such that

⎡

⎢
⎢
⎣

−βPi 0 ĽT
i

∗ −(γ − β)I 0

∗ ∗ −γI

⎤

⎥
⎥
⎦ < 0, (9)

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Ψ11 PiČi PiĎi PiB̌i hǍT
i

∗ Ψ22 0 0 hČT
i

∗ ∗ −βI 0 hĎT
i

∗ ∗ ∗ −Φi hB̌T
i

∗ ∗ ∗ ∗ −R−1
i

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

< 0, (10)
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Pi ≤ μPj , Qi ≤ μQj , Zi ≤ μZj , Ri ≤ μRj , (11)

Pi ≥ ρ5I, Pi ≤ ρ1I, Qi ≤ ρ2I, Zi ≤ ρ3I, Ri ≤ ρ4I, (12)

τa > τ∗
a =

ln μ

α
, βQi + (βh − 1)Zi < 0, βQi + (βh − 1)Ri < 0, (13)

where

Ψ11 = PiǍi + ǍT
i Pi + (α + β)Pi + Qi + hZi,

Ψ22 = δiĈi − (1 − q̃)e−αhQi.

Proof Choose the following mode-dependent Lyapunov-Krasovskii functional

Vi(x̌(t)) = V1,i(x̌(t)) + x̌2,i(x̌(t)) + V3,i(x̌(t)) + V4,i(x̌(t)), (14)

where

V1,i(x̌(t)) = x̌T(t)Pix̌(t), V3,i(x̌(t)) =
∫ t

t−h

∫ t

s

e−α(t−ϑ)x̌T(ϑ)Zix̌(ϑ)dϑds,

V2,i(x̌(t)) =
∫ t

t−q(t)

e−α(t−s)x̌T(s)Qix̌(s)ds,V4,i(x̌(t)) = h

∫ t

t−h

∫ t

s

e−α(t−ϑ) ˙̌xT(ϑ)Ri ˙̌x(ϑ)dϑds.

Taking the time derivative of Lyapunov-Krasovskii functional Vi(x̌(t)) along solutions of Sys-
tem (4), we get

V̇i(x̌(t)) ≤ ˙̌xT(t)Pix̌(t) + x̌T(t)Pi ˙̌x(t) − α

∫ t

t−q(t)

e−α(t−s)x̌T(s)Qix̌(s)ds + x̌T(t)Qix̌(t)

−e−αq(t)x̌T(t − q(t))Qix̌(t − q(t))(1 − q̃) − α

∫ t

t−h

∫ t

s

e−α(t−ϑ)x̌T(ϑ)Zix̌(ϑ)dϑds

+
∫ t

t−h

x̌T(t)Zix̌(t)ds −
∫ t

t−h

e−α(t−ϑ)x̌T(ϑ)Zix̌(ϑ)dϑ + h

∫ t

t−h

˙̌xT(t)Ri ˙̌x(t)ds

−αh

∫ t

t−h

∫ t

s

e−α(t−ϑ) ˙̌xT(ϑ)Ri ˙̌x(ϑ)dϑds − h

∫ t

t−h

e−α(t−ϑ) ˙̌xT(ϑ)Ri ˙̌x(ϑ)dϑ. (15)

Considering Lemma 2.6 and βQi + (βh − 1)Zi < 0, βQi + (βh − 1)Ri < 0, we have

−
∫ t

t−h

e−α(t−ϑ)x̌T(ϑ)Zix̌(ϑ)dϑ

≤ −β

∫ t

t−h

e−α(t−ϑ)x̌T(ϑ)Qix̌(ϑ)dϑ − βh

∫ t

t−h

e−α(t−ϑ)x̌T(ϑ)Zix̌(ϑ)dϑ

≤ −β

∫ t

t−q(t)

e−α(t−ϑ)x̌T(ϑ)Qix̌(ϑ)dϑ − β

∫ t

t−h

∫ t

ϑ

e−α(t−ϑ)x̌T(ϑ)Zix̌(ϑ)dϑds

= −βV2i(x̌(t)) − βV3i(x̌(t)), (16)
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−h

∫ t

t−h

e−α(t−ϑ) ˙̌xT(ϑ)Ri ˙̌x(ϑ)dϑ

≤ −βh

∫ t

t−h

e−α(t−ϑ) ˙̌xT(ϑ)Qi ˙̌x(ϑ)dϑ − βh2

∫ t

t−h

e−α(t−ϑ) ˙̌xT(ϑ)Ri ˙̌x(ϑ)dϑ

≤ −βh

∫ t

t−h

∫ t

s

e−α(t−ϑ) ˙̌xT(ϑ)Ri ˙̌x(ϑ)dϑds

= −βV4i(x̌(t)). (17)

From the event-triggered condition (2), it is clear that

δix̌
T(t − q(t))Ĉx̌(t − q(t)) − eT(tν,�)Φie(tν,�) > 0, ∀t ∈ [tνh, tν+1h), (18)

where Ĉ =
[

CT
i ΦiCi 0
0 0

]
.

Substituting (16) and (17) into (15), and combining (18) implies

V̇i(x̌(t))

≤x̌T(t)[PiǍi + ǍT
i Pi + (α + β)Pi + Qi + hZi]x̌(t) + h2 ˙̌xT(t)Ri ˙̌x(t) − βx̌T(t)Pix̌(t)

− h

∫ t

t−h

e−α(t−ϑ) ˙̌xT(ϑ)Ri ˙̌x(ϑ)dϑ + δix̌
T(t − q(t))Ĉix̌(t − q(t)) + 2x̌T(t)PiB̌ie(tν,�)

+ 2x̌T(t)PiĎiω(t) − e−αhx̌T(t − q(t))Qix̌(t − q(t))(1 − q̃) + 2x̌T(t)PiČix̌(t − q(t))

+ βωT(t)ω(t) − βωT(t)ω(t) −
∫ t

t−h

e−α(t−ϑ)x̌T(ϑ)Zix̌(ϑ)dϑ − eT(tν,�)Φie(tν,�) − αVi(x̌(t)).

Defining ξT(t) = [x̌T(t) x̌T(t − q(t)) ωT(t) eT(tν,�)], we get

V̇i(x̌(t)) ≤ x̌T(t)[PiǍi + ǍT
i Pi + (α + β)Pi + Qi + hZi]x̌(t) + 2x̌T(t)PiČix̌(t − q(t))

+2x̌T(t)PiB̌ie(tν,�) + 2x̌T(t)PiĎiω(t) − e−αhx̌T(t − q(t))Qix̌(t − q(t))(1 − x̌)

−(α + β)Vi(x̌(t)) + δix̌
T(t − q(t))Ĉix̌(t − q(t)) − eT(tν,�)Φie(tν,�) + βωT(t)ω(t)

−βωT(t)ω(t) + h2ξT(t)
[

ǍT
i ČT

i ĎT
i B̌T

i

]T

Ri

[

Ǎi Či Ďi B̌i

]
ξ(t)

= ξT(t)Ěiξ(t) + βωT(t)ω(t) − (α + β)Vi(x̌(t)).

If (10) is satisfied, then there holds

V̇i(x̌(t)) ≤ βωT(t)ω(t) − (α + β)Vi(x̌(t)). (19)

In the sequel, we will prove from two aspects: (I) When ω(t) 
= 0, System (4) is exponentially
stable. (II) Under zero initial condition, System (4) has L1 disturbance rejection performance
when ω(t) 
= 0.

Case I For all ξ(t) 
= 0 and ω(t) = 0, (19) implies

V̇i(x̌(t)) + αVi(x̌(t)) ≤ −βVi(x̌(t)) ≤ 0,
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which together with the inequality conditions (11), for ∀t ∈ [tk, tk+1) yields

Vσ(t)(x̌(t)) ≤ e−α(t−tk)Vσ(tk)(x̌(tk)) ≤ μe−α(t−tk)e−α(t−tk−1)Vσ(tk−1)(x̌(tk−1))

≤ μ2e−α(t−tk−2)Vσ(tk−2)(x̌(tk−2)) ≤ · · ·

≤ μke−α(t−t0)Vσ(t0)(x̌(t0)) ≤ e−(t−t0)(α− ln μ
τa

)Vσ(t0)(x̌(t0)).

From (12), we get

Vσ(t0)(x̌(t0)) ≤ λmax(Pσ(t0))‖x̌(t0)‖2 + hλmax(Qσ(t0))‖x̌(t0)‖2 +
1
2
h2λmax(Zσ(t0))‖x̌(t0)‖2

+
1
2
h3λmax(Rσ(t0))‖ ˙̌x(t0)‖2

�
(

ρ1 + hρ2 +
1
2
h2ρ3 +

1
2
h3ρ4

)

‖x̌t0‖2
h, (20)

Vσ(t)(x̌(t)) ≥ λmin(Pσ(t))‖x̌(t)‖2 � ρ5‖x̌(t)‖2, (21)

where ‖x̌(t0)‖h = sup−h≤ϑ≤0{‖ x̌(t + ϑ) ‖, ‖ ˙̌x(t + ϑ) ‖}. From (20) and (21), for t ≥ t0 the
following inequalities are obtained

‖x̌(t)‖2 ≤ M0‖x̌t0‖2
he−ε(t−t0),

where M0 = 1
ρ5

(ρ1 + hρ2 + 1
2h2ρ3 + 1

2h3ρ4), ε = α − ln μ
τa

. By Definition 2.4, the filtering error
system (4) is exponentially stable under the event-triggered filter (3).

Case II Further, under the zero initial condition, we shall demonstrate that the filtering
error system (4) has a given L1 disturbance rejection level γ for all nonzero ‖ω(t)‖L∞ ≤ 1. The
inequality (19) will be discussed under Cases (i) and (ii).

(i) For V̇σ(t)(x̌(t)) ≥ 0, there holds

Vσ(t)(x̌(t)) ≤ β

α + β
ωT(t)ω(t) ≤ β

α + β
≤ 1.

(ii) For V̇σ(t)(x̌(t)) < 0 and Vσ(t0)(x̌(t0)) |t0=0= 0, t > 0, we can get

Vσ(t)(x̌(t+)) < Vσ(t)(x̌(t)),

obviously, Vσ(t)(x̌(t)) ≤ 1. Hence, according to the conditions above in cases (i) and (ii), we
conclude that Vσ(t)(x̌(t)) ≤ 1. Define

J = γ−1žT(t)ž(t) − (γ − β)ωT(t)ω(t) − βx̌T(t)Pix̌(t)

=
[

x̌T(t) ωT(t)
]
⎡

⎣
γ−1ĽT

i Ľi − βPi 0

0 −(γ − β)I

⎤

⎦

⎡

⎣
x̌(t)

ω(t)

⎤

⎦ .

From (9), we get J < 0 and

žT(t)ž(t) < γ[βx̌T(t)Pix̌(t) + (γ − β)ωT(t)ω(t)].

Since x̌T(t)Pix̌(t) ≤ 1 is implied by Vσ(t)(x̌(t)) ≤ 1, we further have sup‖ω(t)‖L∞≤1
‖ž(t)‖L∞ <

γ. The proof is completed.
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Remark 3.2 From the above derivation process, the event-triggered L1 filter makes the
following property hold:

1) The event-triggered filtering error system (4) is exponentially stable with ω(t) = 0.
2) Under the zero initial condition, the event-triggered filtering error system (4) has a

prescribed L1 disturbance rejection performance for all nonzero ω(t) ∈ L∞[0,∞).

Theorem 3.3 Consider switched systems (1), for given constants ρ1 > 0, ρ2 > 0, ρ3 > 0,
ρ4 > 0, ρ5 > 0, β > 0, μ > 1, γ > 0, δi > 0, α > 0. The event-triggered filtering error
system (4) is exponentially stable with a given L1 disturbance rejection performance, if there
exist an event-triggered filter (3) and positive definite matrices P1i > 0,P2i > 0,Q1i > 0,Q2i >

0,Z1i > 0,Z2i > 0,R1i > 0,R2i > 0, ∀(i, j) ∈ I × I, i 
= j such that
⎡

⎢
⎢
⎢
⎢
⎢
⎣

−βP1i 0 0 LT
i

∗ −βP2i 0 −LT
fi

∗ ∗ −(γ − β)I 0

∗ ∗ ∗ −γI

⎤

⎥
⎥
⎥
⎥
⎥
⎦

< 0, (22)

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Λ11 0 0 0 P1iDi 0 hAT
i 0 0

∗ Λ22 B̂fiCi 0 0 −B̂fi 0 hÂT
fi 0

∗ ∗ Λ33 0 0 0 0 Λ38 CT
i Φi

∗ ∗ ∗ Λ44 0 0 0 0 0

∗ ∗ ∗ ∗ −βI 0 hDT
i 0 0

∗ ∗ ∗ ∗ ∗ −Φi 0 −hB̂T
fi 0

∗ ∗ ∗ ∗ ∗ ∗ Λ77 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ Λ88 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ Λ99

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

< 0, (23)

P1i < μP1j , P2i < μP2j , Q1i < μQ1j , Q2i < μQ2j , (24)

Z1i < μZ1j , Z2i < μZ2j , R1i < μP1j , R2i < μP2j , (25)

Pi ≤ ρ1I, Pi ≥ ρ5I, Qi ≤ ρ2I, Zi ≤ ρ3I, Ri ≤ ρ4I, (26)

βQi + (βh − 1)Zi < 0, βQi + (βh − 1)Ri < 0, τa > τ∗
a =

ln μ

α
, (27)

where

Λ11 = AT
i P1i + P1iAi + (α + β)P1i + Q1i + hZ1i, Λ38 = hCT

i B̂T
fi,

Λ22 = ÂT
fi + Âfi + (α + β)P2i + Q2i + hZ2i, Λ33 = δiCT

i ΦiCi − (1 − q̃)e−αhQ1i,

Λ77 = R1i − 2I, Λ44 = −(1 − q̃)e−αhQ2i, Λ88 = R2i − 2P2i, Λ99 = −δ−1
i Φi.

Moreover, a feasible event-triggered filter can be structured by
⎡

⎣
Afi Bfi

Lfi 0

⎤

⎦ =

⎡

⎣
P−1

2j 0

0 I

⎤

⎦

⎡

⎣
Âfi B̂fi

Lfi 0

⎤

⎦ . (28)
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Proof Assume

Pi =

⎡

⎣
P1i 0

0 P2i

⎤

⎦ , Qi =

⎡

⎣
Q1i 0

0 Q2i

⎤

⎦ , Zi =

⎡

⎣
Z1i 0

0 Z2i

⎤

⎦ , Ri =

⎡

⎣
R1i 0

0 R2i

⎤

⎦ . (29)

Substituting (5) and (29) into (10), and bearing Ĉ =
[

CT
i ΦiCi 0
0 0

]
in mind, we see that (10) can

be rewritten as
⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Π11 0 0 0 P1iDi 0 hAT
i 0

∗ Π22 P2iBfiCi 0 0 −P2iBfi 0 hAT
fi

∗ ∗ Π33 0 0 0 0 hCT
i BT

i

∗ ∗ ∗ Π44 0 0 0 0

∗ ∗ ∗ ∗ −βI 0 hDT
i 0

∗ ∗ ∗ ∗ ∗ −Φi 0 −hBT
fi

∗ ∗ ∗ ∗ ∗ ∗ −R−1
1i 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ −R−1
2i

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

< 0, (30)

where

Π11 = AT
i P1i + P1iAi + (α + β)P1i + Q1i + hZ1i,

Π22 = P2iAfi + AT
fiP2i + (α + β)P2i + Q2i + hZ2i,

Π33 = δiCT
i ΦiCi − (1 − q̃)e−αhQ1i, Π44 = −(1 − q̃)e−αhQ2i.

Noting (P2i −R2i)R−1
2i (P2i −R2i) ≥ 0 and R−1

2i > 0, we can derive

−P2iR−1
2i P2i ≤ R2i − 2P2i, −R−1

1i ≤ R1i − 2I.

Define B̂fi = P2iBfi, Âfi = P2iAfi. Pre- and post-multiplying (30) by diag{I, I, I, I, I, I, I,P2i}
and its transpose, respectively; one can get that Inequality (10) is implied by inequality (23).

In addition, due to Pi =
[ P1i 0

0 P2i

]
and Ľσ(t) = [ Lσ(t) Lfσ(t) ], we can obtain that (9) is

equivalent to (22). We can also verify from (29) that the constraints (11) can be equivalently
rewritten as (24) and (25). Therefore, from (22)–(27), we conclude that the event-triggered
filtering error systems (4) is exponentially stable with a prescribed L1 disturbance rejection
performance. Moreover, the corresponding event-triggered filter gain parameters can be given
in (28). The proof is completed.

Remark 3.4 The L1 filter, compared with H∞ and L2 − L∞ filters, is better able to
address the persistent and amplitude bounded signals that extensive exist in engineering sys-
tems, which by means of minimizing the worst case peak-peak gain of dynamic systems. Under
an event-triggered scheme, output signals of the L1 filter are transmitted only when necessary,
therefore, the event-triggered L1 filter can significantly reduce the consumption of communica-
tion resources while the L1 disturbance rejection level of switched systems is promised.
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4 Simulation Examples

Example 4.1 Consider the switched system (4) with two subsystems, where

A1 =

⎡

⎣
−0.7 −0.2

1 −0.6

⎤

⎦ , D1 =

⎡

⎣
0.1

−0.1

⎤

⎦ , L1 =
[

−0.2 0.1
]
, C1 =

[

−0.1 0.2
]
,

A2 =

⎡

⎣
−0.5 0.2

−0.5 −0.4

⎤

⎦ , D2 =

⎡

⎣
0.2

0.1

⎤

⎦ , L2 =
[

0.1 0.4
]
, C2 =

[

0.1 0.2
]
.

Given μ = 1.1, α = 0.9, β = 0.92, h = 0.03, Φ1 = Φ2 = 1, δ1 = 0.1 and δ2 = 0.06, solving
(22)–(27) through Matlab LMI Toolbox, a set of feasible filter parameters are obtained

Af1 =

⎡

⎣
−9.4260 −0.0986

−0.3009 −9.8031

⎤

⎦ , Bf1 =

⎡

⎣
−0.3638

−0.3303

⎤

⎦ , Lf1 =
[

−0.1689 −0.6751
]
,

Af2 =

⎡

⎣
−3.5948 0.3481

0.0518 −9.5601

⎤

⎦ , Bf2 =

⎡

⎣
−0.5446

−0.2270

⎤

⎦ , Lf2 =
[

−0.3735 −0.8967
]
.

Since τa > τ∗
a = ln μ

α , we get the ADT as τ∗
a = 0.1059. Choose τa = 0.11, the initial state of

system as x̌(t) = [0.5 0.2 0.1 − 0.1]T and γ = 1.025, then we obtain the following Figures 2–5.
From Figure 2, the output signal z(t) of the switched system (1) is successfully estimated by the
event-triggered L1 filter. From Figure 3, we can see that filtering state xf (t) can well estimate
the system state x(t); i.e., the filtering error of System (4) goes to zero exponentially. Figure 4
shows the switching signal under τa = 0.11. Figure 5 depicts the corresponding event-triggered
release intervals of the filtering error system (4); which shows that less information are needed
when the filtering error system enters steady state.
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Figure 2 Signal z(t) and its estimation zf (t)
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Figure 3 State trajectories of x(t) and xf (t)
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Figure 4 The switching signal σ(t)

0 0.5 1 1.5 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Tr
an

sm
it 

in
te

rv
al

Figure 5 Release time intervals

Remark 4.2 By calculating 2
h = 2

0.03 , one can get about 66 sampling points in the time
interval [0, 2). As can be seen from Figure 5, only 13 sampled data are transmitted to the
filter. As a result, the communication resources of the system can be reduced by 80% under the
event-triggered communication scheme. We conclude that the event-triggered filter is efficient
in reducing the frequency of data transmission and saving communication costs.

Example 4.3 In this section, the boost converter example as provided in Figure 6 is
borrowed from [32]. It is PWM (Pulse-Width-Modulation)-driven and can be modelled as a
switched system with two subsystems. L, C, R and es(t) are the inductance, the capacitance,
the load resistance, and the source voltage, respectively.

LiL(t)

C Res(t)

s(t)

ec(t)

Figure 6 A boost converter circuit system

The differential equation of the boost converter circuit system is

ėC(υ) = − 1
RC1

eC(υ) + (1 − s(υ))
1
C1

iL(υ), (31)

i̇L(υ) = −(1 − s(υ))
1
L1

eC(υ) + s(υ)
1
L1

eS(υ), (32)

where υ = t/T , L1 = L/T , and C1 = C/T .
From (31) and (32), we can get

ẋ = AC
σx(t), σ ∈ {1, 2}, (33)
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where x = [eC, iL, 1]T and

AC
1 =

⎡

⎢
⎢
⎣

− 1
RC1

− 1
C1

0

− 1
L1

0 0

0 0 0

⎤

⎥
⎥
⎦ , AC

2 =

⎡

⎢
⎢
⎣

− 1
RC1

0 0

0 0 1
L1

0 0 0

⎤

⎥
⎥
⎦ .

As in [32], it is assumed that the control matrices for (33) to be BC
1 = BC

2 = [−0.1 0.4 0.5]T and
controller gains can be obtained as K1 = [−6.61 − 1.07 − 9.32], K2 = [−5.37 − 12.42 − 10.07].
Accordingly, we can obtain the closed-loop system (33) with matrices

A1 =

⎡

⎢
⎢
⎣

−0.34 1.11 0.93

−3.65 −0.43 −3.73

−3.30 −0.54 −4.66

⎤

⎥
⎥
⎦ , A2 =

⎡

⎢
⎢
⎣

−0.46 1.24 1.00

−2.15 −4.97 −3.03

−2.68 −6.21 −5.03

⎤

⎥
⎥
⎦ .

Suppose that the parameters for the measured output, disturbance input and the output signal
to be estimated are

D1 =
[

−0.300.200.10
]T

, C1 =
[

0.10 −0.10 0.10
]
, L1 =

[

0.70 0 0.30
]
,

D2 =
[

−1.40 − 0.300.20
]T

, C2 =
[

0.30 −0.40 0.10
]
, L2 =

[

0.20 0 0.40
]
.

Then, by giving ρ1 = 2.5, ρ2 = 6, ρ3 = 4, ρ4 = 1.8, ρ5 = 0.18, β = 0.8, γ = 2.95, μ = 1.18,
α = 0.75, h = 0.15 and solving a set of LMIs in Theorem 2, we can get τ∗

a = 0.2207 and filter
gains as

Af1 =

⎡

⎢
⎢
⎣

−2.5492 −0.1377 −0.0079

0.5173 −4.4215 0.3213

−0.4588 0.3216 −6.4559

⎤

⎥
⎥
⎦ , Bf1 =

⎡

⎢
⎢
⎣

−0.4695

−0.3960

−0.0206

⎤

⎥
⎥
⎦ ,

Af2 =

⎡

⎢
⎢
⎣

−6.4493 −0.1369 −0.0078

0.4360 −5.3787 −0.0064

−0.1559 0.0669 −3.1171

⎤

⎥
⎥
⎦ , Bf2 =

⎡

⎢
⎢
⎣

0.1460

0.1319

−0.0595

⎤

⎥
⎥
⎦ ,

Lf1 =
[

0.2183 5.4661 22.8747
]
, Lf2 =

[

−0.2183 −5.4661 −22.8747
]
.

Choose x(0) = [0.1 0.06 0.01 − 0.025 − 0.01 − 0.01]T and τa = 0.25. Given the event-triggered
parameters as Φ1 = Φ2 = 0.8, δ1 = 0.02, δ2 = 0.015, the simulation results show that filtering
error system (4) is exponentially stable with a given L1 disturbance rejection performance. It
is clear from Figure 7 that the L1 filter produces a good estimation zf (t) of the system output
z(t). Figure 8 shows state trajectories of System (1) and filter (3) eventually converge to zero.
Figure 9 presents the switching signal with τa = 0.25. The corresponding release time intervals
are plotted in Figure 10. From Figure 10, we can see that the event-triggered mechanism is
extremely efficient in increasing the utilization rate of networked resources.
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Figure 7 Signal z(t) and its estimation zf (t)
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Figure 8 Responses of x(t) and xf (t)

Remark 4.4 There are 66 sampling points in the time interval [0, 10) by calculating 10
0.15

and the introduction of event-triggered scheme makes only 27 sampled data to be transmitted
to the filter, which takes only 41% of total sampled signals. Obviously, the presented event-
triggered scheme is highly effective in improving the utilization of communication resources.
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Figure 9 The switching signal σ(t)
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Figure 10 Release time intervals

5 Conclusions

In this paper, we have investigated the event-triggered exponential L1 filtering issue for
networked linear switched systems. An event-triggered mechanism has been put forward to
save communication costs and improve the resources utilization ratio. Then, the filtering error
system has been reconstructed as a switched delay system with bounded disturbance. By virtue
of the ADT technique, a stability criterion has been derived such that the filtering error system
is exponentially stable with a given L1 disturbance rejection performance. The event-triggered
L1 filtering parameters are available by solving a set of strict LMIs; for which the filtering
information is updated only when the given event-triggered conditions happen. Eventually, two
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examples have been presented to verify the efficiency of the acquired results.
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