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Abstract This paper considers a class of quaternion-valued Hopfield neural networks with mixed

time-varying delays and leakage delays. By utilizing the exponential dichotomy of linear differential

equations, Banach’s fixed point theorem and differential inequality techniques, the authors obtain some

sufficient conditions to ensure the existence and global exponential stability of almost automorphic

solutions for this class of quaternion-valued neural networks. The results are completely new. Finally,

the authors give an example to illustrate the feasibility of the results.
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1 Introduction

As we know, because the dynamics of neural networks plays a very important role in the
design, realization and application of neural networks, and Hopfield neural networks as a kind
of recurrent neural networks can be applied to the field of artificial intelligence and computer
science related fields, so many scholars have devoted themselves with great interests to the
study of various kinds of dynamics for Hopfield neural networks[1–11]. In addition, in reality,
time delays are unavoidable, so various types of delays have been incorporated into neural
networks during the past few decades[12–18], among them the mixed time delay is more practical.
Moreover, since the delay in the leakage term is difficult to handle, few scholars take the leakage
delay into consideration[8, 19–23]. However, it has a great impact on the dynamical behavior of
the neural network. Therefore, it is significant and necessary to incorporate leakage delays into
Hopfield neural networks.
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On the one hand, the periodicity and the almost periodicity are very important dynamical
behaviours of neural networks that have been intensively investigated by many authors[10, 24–28].
The almost automorphy, which was first introduced by Bochner[29], is more general than the
periodicity and the almost periodicity and plays a very important role in better understanding
the almost periodicity. Over the years, in the study of differential equations, almost automorphic
solutions have aroused the interest of many scholars[30–32]. However, up to now, very few papers
have been published on the almost automorphy of neural networks (see [9, 33–35]).

On the other hand, it is well known that the quaternion as an expansion of real numbers
and complex numbers is composed of real numbers and three imaginary units i, j, k, which obey
the Hamiltonian rules: ij = −ji = k, jk = −kj = i, ki = −ik = j, i2 = j2 = k2 = ijk = −1
and the quaternion has been introduced into the neural network field and quaternion-valued
neural networks (QVNNs) have been proposed for quite a long time. In recent years, the
applications of quaternion-valued neural networks (QVNNs) have been widely investigated. One
practical application of QVNNs is the 3D geometrical affine transformation, especially spatial
rotation, which can be represented by QVNNs efficiently and compactly[36, 37]. Other practical
applications of QVNNs are image impression, color night vision[38], and so on. However, since
quaternion multiplication does not meet the commutative law, the method of dealing with real-
valued neural networks and complex-valued neural networks can not deal with QVNNs directly,
so the analysis for the equation of state becomes difficult. As far as we know, there only few
papers have been published on the dynamics of QVNNs[8–11, 39–45]. But there has been no
paper published on the almost automorphy for QVNNs with with mixed time-varying delays
and leakage delays.

Motivated by the above discussion, in this paper, we propose the following quaternion-valued
Hopfiled neural network with mixed time-varying delays and leakage delays:

z′p(t) = −ap(t)zp(t− δp(t)) +
n∑

q=1

bpq(t)fq(zq(t)) +
n∑

q=1

cpq(t)gq(zq(t− τpq(t)))

+
n∑

q=1

dpq(t)
∫ t

t−σpq(t)

eq(zq(s))ds + up(t), (1)

where p ∈ {1, 2, · · · , n} := Δ, zp(t) = zR
p (t) + izI

p(t) + jzJ
p (t) + kzK

p (t) ∈ Q is the state of
the pth neuron at time t; ap(t) > 0 is the self-feedback connection weight; bpq(t), cpq(t) and
dpq(t) ∈ Q are the connection weights and the delay connection weights from neuron q to neuron
p, respectively; up(t) is an external input on the pth unit at time t; δp(t), τpq(t) and σpq(t) are
the leakage delays and transmission delays, respectively.

The initial values are given by

zp(s) = φp(s), s ∈ [−η, 0], p ∈ Δ,

where ψp = ψR
p +iψI

p +jψJ
p +kψK

p , η = max{δ, τ, σ}, δ = max1≤p≤n{δp}, τ = max1≤p,q≤n{τpq},
σ = max1≤p,q≤n{σpq}, ψl

p ∈ C([−η, 0],R), l ∈ {R, I, J,K} := Λ.
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Remark 1.1 Quaternion-valued system (1) includes real-valued systems and complex-
valued systems as its special cases. In fact, in System (1),

(i) if all the coefficients and delays ap, bpq, cpq, dpq, δp, τpq , σpq, p, q ∈ Δ are functions from R

to R, and all the activation functions fq, gq, eq, q ∈ Δ are functions from R to R, then the state
zp(t) ≡ zR

p (t) ∈ R, in this case, System (1) is a real-valued system;
(ii) if the coefficients bpq, cpq, dpq are functions from R to C, and all the activation functions

fq, gq, eq are functions from C to C, then the state zp(t) ≡ zR
p (t) + izI

p(t) ∈ C, in this case,
system (1) is a complex-valued system.

Our main aim in this paper is to study the existence and global exponential stability of
almost automorphic solutions of (1). To the best of our knowledge, this is the first paper to
study the existence and global exponential stability of almost automorphic solutions of (1) and
even when System (1) is degenerated to complex-valued system, our result remains new. Our
method of this paper can be used to study the almost automorphy for other types of QVNNs.

This paper is organized as follows. In Section 2, we introduce some definitions, make some
preparations for later sections. In Section 3, by utilizing the Banach’s fixed point theorem and
differential inequality techniques, we present some sufficient conditions for the existence and
global exponential stability of almost automorphic solutions of (1). In Section 4, we give an
example to demonstrate the feasibility of our results. Finally, we draw a conclusion in Section 5.

2 Preliminaries

In this section, we shall recall some fundamental definitions and lemmas which are used in
what follows.

Definition 2.1 (see [46]) A continuous function f : R → Rn is said to be almost auto-
morphic if for every sequence of real numbers (s′n)n∈N there exists a subsequence (sn)n∈N such
that

lim
n→∞ f(t+ sn) = g(t)

is well defined for each t ∈ R, and

lim
n→∞ g(t− sn) = f(t)

for each t ∈ R.

Denote by AA(R,Rn) the collection of all almost automorphic functions.

Lemma 2.2 (see [46]) Let f, g ∈ AA(R,Rn). Then we have the following
(i) f + g ∈ AA(R,Rn);
(ii) λf ∈ AA(R,Rn) for any scalar λ ∈ R;
(iii) fα ∈ AA(R,Rn) where f : R → Rn is defined by fα(·) = f(· + α);
(iv) let f ∈ AA(R,Rn); then the range Rf = {f(t), t ∈ R} is relatively compact in Rn, thus

f is bounded in norm;
(v) if ϕ : Rn → X is a continuous function, then the composite function ϕ ◦ f : Rn → X is

almost automorphic.
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(vi) (AA(R,Rn), ‖ · ‖∞) is a Banach space.

Definition 2.3 (see [46]) A function f ∈ C(R×Rn,Rn) is said to be almost automorphic
in t ∈ R for each x ∈ Rn if for every sequence of real numbers (s′n)n∈N there exists a subsequence
(sn)n∈N such that

lim
n→∞ f(t+ sn, x) = g(t, x)

is well defined for each t ∈ R, x ∈ Rn and

lim
n→∞ g(t− sn, x) = f(t, x)

for each t ∈ R, x ∈ Rn. The collection of such functions will be denoted by AA(R × Rn,Rn).

Lemma 2.4 (see [46]) Let f : R × Rn → Rn be an almost automorphic function in t ∈ R

for each x ∈ Rn and assume that f satisfies a Lipschitz condition in x uniformly in t ∈ R. Let
ϕ : R → Rn be an almost automorphic function. Then the function

φ : t �−→ φ(t) = f(t, ϕ(t))

is almost automorphic.

Definition 2.5 A quaternion-valued function z = zR + izI + jzJ + kzK ∈ C(R,Q) is
called an almost automorphic function if zR, zI , zJ and zK are almost automorphic functions.

Definition 2.6 (see [34]) System

x′(t) = A(t)x(t) (2)

is said to admit an exponential dichotomy if there exist a projection P and positive constants
α, β so that the fundamental solution matrix X(t) satisfies

|X(t)PX−1(s)| ≤ βe−α(t−s), t ≥ s,

|X(t)(I − P )X−1(s)| ≤ βe−α(s−t), t ≤ s.

Consider the following almost automorphic system

x′(t) = A(t)x(t) + f(t), (3)

where A(t) is an almost automorphic matrix function, f(t) is an almost automorphic vector
function.

Lemma 2.7 (see [34]) If the linear system (2) admits an exponential dichotomy, then
System (3) has a unique almost automorphic solution that can be expressed as

x(t) =
∫ t

−∞
X(t)PX−1(s)f(s)ds−

∫ +∞

t

X(t)(I − P )X−1(s)f(s)ds,

where X(t) is the fundamental solution matrix of (2).
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Lemma 2.8 (see [34]) Let cp be an almost automorphic function on R and

M [cp] = lim
T→∞

1
T

∫ t+T

t

cp(s)ds > 0, p ∈ Δ.

Then the linear system

x′(t) = diag(−c1(t),−c2(t), · · · ,−cn(t))x(t)

admits an exponential dichotomy on R.

In order to avoid the non-commutativity of the quaternion multiplication, in the following,
we will first decompose system (1) into real-valued system. To this end, we need the following
assumption:

(H1) Let zp = zR
p + izI

p + jzJ
p +kzK

p , zR
p , z

I
p , z

J
p , z

K
p ∈ R, then the activation functions fq(zq),

gq(zq) and eq(zq) of (1) can be expressed as

fq(zq) = fR
q

(
zR

q , z
I
q , z

J
q , z

K
q

)
+ if I

q

(
zR

q , z
I
q , z

J
q , z

K
q

)

+jfJ
q

(
zR

q , z
I
q , z

J
q , z

K
q

)
+ kfK

q

(
zR

q , z
I
q , z

J
q , z

K
q

)
,

gq(zq) = gR
q

(
zR

q , z
I
q , z

J
q , z

K
q

)
+ igI

q

(
zR

q , z
I
q , z

J
q , z

K
q

)

+jgJ
q

(
zR

q , z
I
q , z

J
q , z

K
q

)
+ kgK

q

(
zR

q , z
I
q , z

J
q , z

K
q

)
,

eq(zq) = eR
q

(
zR

q , z
I
q , z

J
q , z

K
q

)
+ ieI

q

(
zR

q , z
I
q , z

J
q , z

K
q

)

+jeJ
q

(
zR

q , z
I
q , z

J
q , z

K
q

)
+ keK

q

(
zR

q , z
I
q , z

J
q , z

K
q

)
,

where f l
q, g

l
q, e

l
q : R4 → R, q ∈ Δ, l ∈ Λ.

Under Assumption (H1), according to Hamilton rules, System (1) can be transformed into
the following system:

(
zR

p

)′(t) = −ap(t)zR
p (t− δp(t)) +

n∑

q=1

(
bRpq(t)f̃

R
q [zq(t)] − bIpq(t)f̃

I
q [zq(t)]

−bJpq(t)f̃
J
q [zq(t)] − bKpq(t)f̃

K
q [zq(t)]

)
+

n∑

q=1

(
cRpq(t)g̃

R
q [zq(t− τpq(t))]

−cIpq(t)g̃
I
q [zq(t− τpq(t))] − cJpq(t)g̃

J
q [zq(t− τpq(t))]

−cKpq(t)g̃
K
q [zq(t− τpq(t))]

)
+

n∑

q=1

(
dR

pq(t)
∫ t

t−σpq(t)

ẽR
q [zq(s)]ds

−dI
pq(t)

∫ t

t−σpq(t)

ẽI
q [zq(s)]ds− dJ

pq(t)
∫ t

t−σpq(t)

ẽJ
q [zq(s)]ds

−dK
pq(t)

∫ t

t−σpq(t)

ẽK
q [zq(s)]ds

)
+ uR

p (t), (4)
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(
zI

p

)′(t) = −ap(t)zI
p(t− δp(t)) +

n∑

q=1

(
bRpq(t)f̃

I
q [zq(t)] + bIpq(t)f̃

R
q [zq(t)]

+bJpq(t)f̃
K
q [zq(t)] − bKpq(t)f̃

J
q [zq(t)]

)
+

n∑

q=1

(
cRpq(t)g̃

I
q [zq(t− τpq(t))]

+cIpq(t)g̃
R
q [zq(t− τpq(t))] + cJpq(t)g̃

K
q [zq(t− τpq(t))]

−cKpq(t)g̃
J
q [zq(t− τpq(t))]

)
+

n∑

q=1

(
dR

pq(t)
∫ t

t−σpq(t)

ẽI
q [zq(s)]ds

+dI
pq(t)

∫ t

t−σpq(t)

ẽR
q [zq(s)]ds+ dJ

pq(t)
∫ t

t−σpq(t)

ẽK
q [zq(s)]ds

−dK
pq(t)

∫ t

t−σpq(t)

ẽJ
q [zq(s)]ds

)
+ uI

p(t), (5)

(
zJ

p

)′(t) = −ap(t)zJ
p (t− δp(t)) +

n∑

q=1

(
bRpq(t)f̃

J
q [zq(t)] + bJpq(t)f̃

R
q [zq(t)]

−bIpq(t)f̃
K
q [zq(t)] + bKpq(t)f̃

I
q [zq(t)]

)
+

n∑

q=1

(
cRpq(t)g̃

J
q [zq(t− τpq(t))]

+cJpq(t)g̃
R
q [zq(t− τpq(t))] − cIpq(t)g̃

K
q [zq(t− τpq(t))]

+cKpq(t)g̃
I
q [zq(t− τpq(t))]

)
+

n∑

q=1

(
dR

pq(t)
∫ t

t−σpq(t)

ẽJ
q [zq(s)]ds

+dJ
pq(t)

∫ t

t−σpq(t)

ẽR
q [zq(s)]ds− dI

pq(t)
∫ t

t−σpq(t)

ẽK
q [zq(s)]ds

+dK
pq(t)

∫ t

t−σpq(t)

ẽI
q [zq(s)]ds

)
+ uJ

p (t), (6)

(
zK

p

)′(t) = −ap(t)zK
p (t− δp(t)) +

n∑

q=1

(
bRpq(t)f̃

K
q [zq(t)] + bKpq(t)f̃

R
q [zq(t)]

+bIpq(t)f̃
J
q [zq(t)] − bJpq(t)f̃

I
q [zq(t)]

)
+

n∑

q=1

(
cRpq(t)g̃

K
q [zq(t− τpq(t))]

+cKpq(t)g̃
R
q [zq(t− τpq(t))] + cIpq(t)g̃

J
q [zq(t− τpq(t))]

−cJpq(t)g̃
I
q [zq(t− τpq(t))]

)
+

n∑

q=1

(
dR

pq(t)
∫ t

t−σpq(t)

ẽK
q [zq(s)]ds

+dK
pq(t)

∫ t

t−σpq(t)

ẽR
q [zq(s)]ds + dI

pq(t)
∫ t

t−σpq(t)

ẽJ
q [zq(s)]ds

−dJ
pq(t)

∫ t

t−σpq(t)

ẽI
q [zq(s)]ds

)
+ uK

p (t), (7)
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where f̃ l
q[zq] = f l

q

(
zR

q , z
I
q , z

J
q , z

K
q

)
, ẽl

q[zq] = el
q

(
zR

q , z
I
q , z

J
q , z

K
q

)
, g̃l

q[zq] = gl
q

(
zR

q , z
I
q , z

J
q , z

K
q

)
, p, q ∈

Δ, l ∈ Λ, and

bpq(t) = bRpq(t) + ibIpq(t) + jbJpq(t) + kbKpq(t),

cpq(t) = cRpq(t) + icIpq(t) + jcJpq(t) + kcKpq(t),

dpq(t) = dR
pq(t) + idI

pq(t) + jdJ
pq(t) + kdK

pq(t),

up(t) = uR
p (t) + iuI

p(t) + juJ
p (t) + kuK

p (t).

According to (4)–(7), one can obtain that

Z ′
p(t) = −ap(t)Zp(t− δp(t)) +

n∑

q=1

Bpq(t)F̃q [zp(t)] +
n∑

q=1

Cpq(t)G̃q[zp(t− τpq(t))]

+
n∑

q=1

Dpq(t)
∫ t

t−σpq(t)

Ẽq[zp(s)]ds+ Up(t), p ∈ Δ, (8)

where

Bpq(t) =

⎛

⎜⎜⎜⎜⎜⎝

bRpq(t) −bIpq(t) −bJpq(t) −bKpq(t)

bIpq(t) bRpq(t) −bKpq(t) bJpq(t)

bJpq(t) bKpq(t) bRpq(t) −bIpq(t)

bKpq(t) −bJpq(t) bIpq(t) bRpq(t)

⎞

⎟⎟⎟⎟⎟⎠
,

Cpq(t) =

⎛

⎜⎜⎜⎜⎜⎝

cRpq(t) −cIpq(t) −cJpq(t) −cKpq(t)

cIpq(t) cRpq(t) −cKpq(t) cJpq(t)

cJpq(t) cKpq(t) cRpq(t) −cIpq(t)

cKpq(t) −cJpq(t) cIpq(t) cRpq(t)

⎞

⎟⎟⎟⎟⎟⎠
,

Dpq(t) =

⎛

⎜⎜⎜⎜⎜⎝

dR
pq(t) −dI

pq(t) −dJ
pq(t) −dK

pq(t)

dI
pq(t) dR

pq(t) −dK
pq(t) dJ

pq(t)

dJ
pq(t) dK

pq(t) dR
pq(t) −dI

pq(t)

dK
pq(t) −dJ

pq(t) dI
pq(t) dR

pq(t)

⎞

⎟⎟⎟⎟⎟⎠
,

Zp(t) =

⎛

⎜⎜⎜⎜⎜⎝

zR
p (t)

zI
p(t)

zJ
p (t)

zK
p (t)

⎞

⎟⎟⎟⎟⎟⎠
, Up(t) =

⎛

⎜⎜⎜⎜⎜⎝

uR
p (t)

uI
p(t)

uJ
p (t)

uK
p (t)

⎞

⎟⎟⎟⎟⎟⎠
, F̃q[zp(t)] =

⎛

⎜⎜⎜⎜⎜⎝

f̃R
q [zp(t)]

f̃ I
q [zp(t)]

f̃J
q [zp(t)]

f̃K
q [zp(t)]

⎞

⎟⎟⎟⎟⎟⎠
,

G̃q[zp(t− τpq(t))] =

⎛

⎜⎜⎜⎜⎜⎝

g̃R
q [zp(t− τpq(t))]

g̃I
q [zp(t− τpq(t))]

g̃J
q [zp(t− τpq(t))]

g̃K
q [zp(t− τpq(t))]

⎞

⎟⎟⎟⎟⎟⎠
, Ẽq[zp(s)] =

⎛

⎜⎜⎜⎜⎜⎝

ẽR
q [zp(s)]

ẽI
q [zp(s)]

ẽJ
q [zp(s)]

ẽK
q [zp(s)]

⎞

⎟⎟⎟⎟⎟⎠
.
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The initial condition associated with (8) is of the form

Zp(s) = Ψp(s), s ∈ [−η, 0],

where Ψp(s) = (ψR
p (s), ψI

p(s), ψJ
p (s), ψK

p (s))T, ψl
p ∈ C([−η, 0],R), p ∈ Δ, l ∈ Λ.

According to Remark 1.1, we have

Remark 2.9 Under Assumption (H1), corresponding to case (i) of Remark 1.1, quaternion-
valued system (1) reduces to (4) and corresponding to case (ii) of Remark 1.1, quaternion-valued
system (1) reduces to (4)–(5).

Remark 2.10 If Z(t) = (zR
1 (t), zI

1(t), zJ
1 (t), zK

1 (t), · · · , zR
n (t), zI

n(t), zJ
n(t), zK

n (t))T is an
almost automorphic solution of System (8), then z(t) = (z1(t), z2(t), · · · , zn(t))T, where zp(t) =
zR

p (t) + izI
p(t) + jzJ

p (t) + kzK
p (t), p ∈ Δ must be an almost automorphic solution of (1). Thus,

the problem of finding an almost automorphic solution for (1) reduces to finding one for the
system of (8). For considering the stability of solution of (1), we just need to consider the
stability of solution of System (8).

3 Main Results

In this section, we will study the existence and global exponential stability of almost auto-
morphic solutions of System (8).

Let B = {φ = (φR
1 , φ

I
1, φ

J
1 , φ

K
1 , φ

R
2 , φ

I
2, φ

J
2 , φ

K
2 , · · · , φR

n , φ
I
n, φ

J
n, φ

K
n )T := (φ1, φ2, · · · , φn)T ∈

C1(R,R4n) | φ, φ′ ∈ AA(R,R4n)} with the norm ‖φ‖B = max
{

supt∈R ‖φ(t)‖, supt∈R ‖φ′(t)‖},
where ‖φ(t)‖ = maxp∈Δ,l∈Λ{|φl

p(t)|}, ‖φ′(t)‖ = maxp∈Δ,l∈Λ{|(φl
p)′(t)|}, then B is a Banach

space. For the convenience, we will introduce the notation: f = supt∈R |f(t)|, f = inft∈R |f(t)|,
where f is a bounded continuous function.

Throughout the rest of the paper, we assume that the following conditions hold:
(H2) There exist positive constants αl

q, βl
q and γl

q such that

∣∣f l
q

(
zR

q , z
I
q , z

J
q , z

K
q

) − f l
q

(
yR

q , y
I
q , y

J
q , y

K
q

)∣∣ ≤ αR
q |zR

q − yR
q | + αI

q |zI
q − yI

q |
+αJ

q |zJ
q − yJ

q | + αK
q |zK

q − yK
q |,

∣∣gl
q

(
zR

q , z
I
q , z

J
q , z

K
q

) − gl
q

(
yR

q , y
I
q , y

J
q , y

K
q

)∣∣ ≤ βR
q |zR

q − yR
q | + βI

q |zI
q − yI

q |
+βJ

q |zJ
q − yJ

q | + βK
q |zK

q − yK
q |,

∣∣el
q

(
zR

q , z
I
q , z

J
q , z

K
q

) − el
q

(
yR

q , y
I
q , y

J
q , y

K
q

)∣∣ ≤ γR
q |zR

q − yR
q | + γI

q |zI
q − yI

q |
+γJ

q |zJ
q − yJ

q | + γK
q |zK

q − yK
q |,

and f l
q(0, 0, 0, 0) = gl

q(0, 0, 0, 0) = el
q(0, 0, 0, 0) = 0, where q ∈ Δ, l ∈ Λ.

(H3) Function ap ∈ C(R,R+) withM [ap] > 0 is almost automorphic, δp, τpq, σpq ∈ C(R,R+),
Up ∈ C(R,R4×1) and Bpq, Cpq, Dpq ∈ C(R,R4×4) are almost automorphic, where p, q ∈ Δ.

(H4) There exists a constant κ such that

max
p∈Δ

{
max
l∈Λ

{
Γpκ+ ul

p

ap

,

(
1 +

ap

ap

)(
Γpκ+ ul

p

)}}
≤ κ
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and

max
p∈Δ

{
Γp

ap

,

(
1 +

ap

ap

)
Γp

}
:= r < 1,

where

Γp = apδp +Bp + Cp +Dp, p ∈ Δ,

Bp =
n∑

q=1

(
b
R

pq + b
I

pq + b
J

pq + b
K

pq

)(
αR

q + αI
q + αJ

q + αK
q

)
, p ∈ Δ,

Cp =
n∑

q=1

(
cRpq + cIpq + cJpq + cKpq

)(
βR

q + βI
q + βJ

q + βK
q

)
, p ∈ Δ,

Dp =
n∑

q=1

σpq

(
d

R

pq + d
I

pq + d
J

pq + d
K

pq

)(
γR

q + γI
q + γJ

q + γK
q

)
, p ∈ Δ.

Theorem 3.1 Let (H1)–(H4) hold. Then System (8) has a unique almost automorphic
solution in the region B∗ = {φ ∈ B | ‖φ‖B ≤ κ}.

Proof For any φ ∈ B∗, p ∈ Δ, we consider the following almost automorphic system:

Z ′
p(t) = −ap(t)Zp(t) + ap(t)

∫ t

t−δp(t)

φ′p(s)ds+
n∑

q=1

Bpq(t)F̃q[φq(t)]

+
n∑

q=1

Cpq(t)G̃q [φq(t− τpq(t))] +
n∑

q=1

Dpq(t)
∫ t

t−σpq(t)

Ẽq[φq(s)]ds + Up(t). (9)

It follows from Lemma 2.8 that the linear system

Z ′
p(t) = −ap(t)Zp(t), p ∈ Δ

admits an exponential dichotomy on R. Thus, by Lemma 2.7, we obtain that System (9) has
exactly one almost automorphic solution that can be expressed as follows

Zφ
p (t) =

∫ t

−∞
e−

∫
t
s

ap(u)du

[
ap(s)

∫ s

s−δp(s)

φ′p(u)du+
n∑

q=1

Bpq(s)F̃q [φq(s)]

+
n∑

q=1

Cpq(s)G̃q[φq(s− τpq(s))] +
n∑

q=1

Dpq(s)
∫ s

s−σpq(s)

Ẽq[φq(u)]du + Up(s)
]
, p ∈ Δ.

From Lemma 2.2, Lemma 2.4 and Definition 2.5, we can obtain (Zφ
1 , Z

φ
2 , · · · , Zφ

n)T ∈ B. Now,
we define a mapping Φ : B∗ → B by setting

Φφ = ((Φφ)1, (Φφ)2, · · · , (Φφ)n)T = (Zφ
1 , Z

φ
2 , · · · , Zφ

n)T, ∀φ ∈ B∗, p ∈ Δ.

First, we show that for any φ ∈ B∗, Φφ ∈ B∗. In fact,
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sup
t∈R

|(Φφ)R
p (t)|

= sup
t∈R

∣∣∣∣
∫ t

−∞
e−

∫
t
s

ap(u)du

[
ap(s)

∫ s

s−δp(s)

(φR
p )′(u)du+

n∑

q=1

(
bRpq(s)f̃

R
q [φq(s)]

−bIpq(s)f̃
I
q [φq(s)] − bJpq(s)f̃

J
q [φq(s)] − bKpq(s)f̃

K
q [φq(s)]

)

+
n∑

q=1

(
cRpq(s)g̃

R
q [φq(s− τpq(s))] − cIpq(s)g̃

I
q [φq(s− τpq(s))]

−cJpq(s)g̃
J
q [φq(s− τpq(s))] − cKpq(s)g̃

K
q [φq(s− τpq(s))]

)

+
n∑

q=1

(
dR

pq(s)
∫ s

s−σpq(s)

ẽR
q [φq(u)]ds− dI

pq(s)
∫ s

s−σpq(s)

ẽI
q [φq(u)]ds

−dJ
pq(s)

∫ s

s−σpq(s)

ẽJ
q [φq(u)]ds− dK

pq(s)
∫ s

s−σpq(s)

ẽK
q [φq(u)]ds

)
+ uR

p (s)
]
ds

∣∣∣∣

≤ sup
t∈R

∫ t

−∞
e−

∫ t
s

ap(u)du

[
apδp‖φ‖B +

n∑

q=1

(
b
R

pq + b
I

pq + b
J

pq + b
K

pq

)(
αR

q + αI
q

+αJ
q + αK

q

)
‖φ‖B +

n∑

q=1

(
cRpq + cIpq + cJpq + cKpq

)(
βR

q + βI
q + βJ

q + βK
q

)
‖φ‖B

+
n∑

q=1

σpq

(
d

R

pq + d
I

pq + d
J

pq + d
K

pq

)(
γR

q + γI
q + γJ

q + γK
q

)
‖φ‖B + uR

p

]
ds

≤ 1
ap

([
apδp +

n∑

q=1

(
b
R

pq + b
I

pq + b
J

pq + b
K

pq

)(
αR

q + αI
q + αJ

q + αK
q

)

+
n∑

q=1

(
cRpq + cIpq + cJpq + cKpq

)(
βR

q + βI
q + βJ

q + βK
q

)

+
n∑

q=1

σpq

(
d

R

pq + d
I

pq + d
J

pq + d
K

pq

)(
γR

q + γI
q + γJ

q + γK
q

)]
κ+ uR

p

)

=
1
ap

((
apδp +Bp + Cp +Dp

)
κ+ uR

p

)
=

Γpκ+ uR
p

ap

, p ∈ Δ. (10)

In a similar way, we have

sup
t∈R

|(Φφ)l
p(t)| ≤ Γpκ+ ul

p

ap

, p ∈ Δ, l = I, J,K. (11)

On the other hand, we have

sup
t∈R

∣∣((Φφ)R
p

)′(t)
∣∣

≤ sup
t∈R

(
apδp

∣∣(φR
p )′(t)

∣∣ +
n∑

q=1

(
b
R

pq + b
I

pq + b
J

pq + b
K

pq

)(
αR

q

∣∣φR
q (t)

∣∣
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+αI
q

∣∣φI
q(t)

∣∣ + αJ
q

∣∣φJ
q (t)

∣∣ + αK
q

∣∣φK
q (t)

∣∣
)

+
n∑

q=1

(
cRpq + cIpq + cJpq + cKpq

)

×
(
βR

q

∣∣φR
q (t− τpq(t))

∣∣ + βI
q

∣∣φI
q(t− τpq(t))

∣∣ + βJ
q

∣∣φJ
q (t− τpq(t))

∣∣

+βK
q

∣∣φK
q (t− τpq(t))

∣∣
)

+
n∑

q=1

σpq

(
d

R

pq + d
I

pq + d
J

pq + d
K

pq

)
+

(
γR

q

∣∣φR
q (t)

∣∣

+γI
q

∣∣φI
q(t)

∣∣ + γJ
q

∣∣φJ
q (t)

∣∣ + γK
q

∣∣φK
q (t)

∣∣
)

+ uR
p

)

+ap

∫ t

−∞
e−

∫
t
s

ap(u)du

[
apδp

∣∣(φR
p )′(t)

∣∣ +
n∑

q=1

(
b
R

pq + b
I

pq + b
J

pq + b
K

pq

)

×
(
αR

q

∣∣φR
q (s)

∣∣ + αI
q

∣∣φI
q(s)

∣∣ + αJ
q

∣∣φJ
q (s)

∣∣ + αK
q

∣∣φK
q (s)

∣∣
)

+
n∑

q=1

(
cRpq + cIpq + cJpq + cKpq

)(
βR

q

∣∣φR
q (s− τpq(s))

∣∣ + βI
q

∣∣φI
q(s− τpq(s))

∣∣

+βJ
q

∣∣φJ
q (s− τpq(s))

∣∣ + βK
q

∣∣φK
q (s− τpq(s))

∣∣
)

+
n∑

q=1

σpq

(
d

R

pq + d
I

pq + d
J

pq

+d
K

pq

)(
γR

q

∣∣φR
q (s)

∣∣ + γI
q

∣∣φI
q(s)

∣∣ + γJ
q

∣∣φJ
q (s)

∣∣ + γK
q

∣∣φK
q (s)

∣∣
)

+ uR
p

]
ds

≤ apδpκ+
n∑

q=1

(
b
R

pq + b
I

pq + b
J

pq + b
K

pq

)(
αR

q + αI
q + αJ

q + αK
q

)
κ

+
n∑

q=1

(
cRpq + cIpq + cJpq + cKpq

)(
βR

q + βI
q + βJ

q + βK
q

)
κ

+
n∑

q=1

σpq

(
d

R

pq + d
I

pq + d
J

pq + d
K

pq

)(
γR

q + γI
q + γJ

q + γK
q

)
κ+ uR

p

+
ap

ap

[
apδpκ+

n∑

q=1

(
b
R

pq + b
I

pq + b
J

pq + b
K

pq

)(
αR

q + αI
q + αJ

q

+αK
q

)
κ+

n∑

q=1

(
cRpq + cIpq + cJpq + cKpq

)(
βR

q + βI
q + βJ

q + βK
q

)
κ

+
n∑

q=1

σpq

(
d

R

pq + d
I

pq + d
J

pq + d
K

pq

)(
γR

q + γI
q + γJ

q + γK
q

)
κ+ uR

p

]

=
(

1 +
ap

ap

)((
apδp +Bp + Cp +Dp

)
κ+ uR

p

)

=
(

1 +
ap

ap

)(
Γpκ+ uR

p

)
, p ∈ Δ. (12)

In a similar way, we have

sup
t∈R

∣∣((Φφ)l
p

)′(t)
∣∣ ≤

(
1 +

ap

ap

)(
Γpκ+ ul

p

)
, p ∈ Δ, l = I, J,K. (13)
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It follows from (10)–(13) and (H3) that

‖Φφ‖B ≤ κ,

which implies that Φφ ∈ B∗. Next, we show that Φ : B∗ → B∗ is a contraction operator. In
fact, for any φ, ψ ∈ B∗, we can get

sup
t∈R

|(Φφ − Φψ)R
p (t)|

≤ sup
t∈R

∫ t

−∞
e−

∫
t
s

ap(u)du

[
apδp

∣∣(φR
p )′(s) − (ψR

p )′(s)
∣∣ +

n∑

q=1

(
b
R

pq + b
I

pq + b
J

pq + b
K

pq

)

×
(
αR

q

∣∣φR
q (s) − ψR

q (s)
∣∣ + αI

q

∣∣φI
q(s) − ψI

q (s)
∣∣ + αJ

q

∣∣φJ
q (s) − ψJ

q (s)
∣∣ + αK

q

∣∣φK
q (s)

−ψK
q (s)

∣∣
)

+
n∑

q=1

(
cRpq + cIpq + cJpq + cKpq

)(
βR

q

∣∣φR
q (s− τpq(s)) − ψR

q (s− τpq(s))
∣∣

+βI
q

∣∣φI
q(s− τpq(s)) − ψI

q (s− τpq(s))
∣∣ + βJ

q

∣∣φJ
q (s− τpq(s)) − ψJ

q (s− τpq(s))
∣∣

+βK
q

∣∣φK
q (s− τpq(s)) − ψK

q (s− τpq(s))
∣∣
)

+
n∑

q=1

σpq

(
d

R

pq + d
I

pq + d
J

pq + d
K

pq

)

×
(
γR

q

∣∣φR
q (s) − ψR

q (s)
∣∣ + γI

q

∣∣φI
q(s) − ψI

q (s)
∣∣ + γJ

q

∣∣φJ
q (s) − ψJ

q (s)
∣∣

+γK
q

∣∣φK
q (s) − ψK

q (s)
∣∣
)]
ds

≤ 1
ap

[
apδp +

n∑

q=1

(
b
R

pq + b
I

pq + b
J

pq + b
K

pq

)(
αR

q + αI
q + αJ

q + αK
q

)

+
n∑

q=1

(
cRpq + cIpq + cJpq + cKpq

)(
βR

q + βI
q + βJ

q + βK
q

)

+
n∑

q=1

σpq

(
d

R

pq + d
I

pq + d
J

pq + d
K

pq

)(
γR

q + γI
q + γJ

q + γK
q

)]
‖φ− ψ‖B

=
Γp

ap

‖φ− ψ‖B, p ∈ Δ. (14)

In a similar way, we have

sup
t∈R

|(Φφ− Φψ)l
p(t)| ≤

Γp

ap

‖φ− ψ‖B, p ∈ Δ, l = I, J,K. (15)

On the other hand, we can obtain

sup
t∈R

∣∣((Φφ− Φψ)R
p

)′(t)
∣∣ ≤

(
1 +

ap

ap

)(
apδp +Bp + Cp +Dp

)
‖φ− ψ‖B

=
(

1 +
ap

ap

)
Γp‖φ− ψ‖B, p ∈ Δ. (16)

In a similar way, we have

sup
t∈R

∣∣((Φφ − Φψ)l
p

)′(t)
∣∣ ≤

(
1 +

ap

ap

)
Γp‖φ− ψ‖B, p ∈ Δ, l = I, J,K. (17)
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By (14)–(17), we have
‖Φ(φ) − Φ(ψ)‖B ≤ r‖φ− ψ‖B.

In view of (H4), we see that Φ is a contraction mapping from B∗ to B∗. Therefore, Φ has a
unique fixed point in B∗, that is, (8) has a unique almost automorphic solution in B∗. The
proof is complete.

Theorem 3.2 Assume that (H1)–(H4) hold, then System (8) has a unique almost auto-
morphic solution that is globally exponentially stable.

Proof From Theorem 3.1, we see that System (8) has an almost automorphic solution
Z∗(t) = (Z∗

1 (t), Z∗
2 (t), · · · , Z∗

n(t))T with initial value ψ∗(t) = (ψ∗
1(t), ψ∗

2(t), · · · , ψ∗
n(t))T. Sup-

pose that Z(t) = (Z1(t), Z2(t), · · · , Zn(t))T is an arbitrary solution of System (8) with initial
value ψ(t) = (ψ1(t), ψ2(t), · · · , ψn(t))T. Set Y (t) = Z(t) − Z∗(t), then, according to (8), we
have

Y ′
p(t) = −ap(t)Yp(t− δp(t)) +

n∑

q=1

Bpq(t)
(
F̃q[zq(t)] − F̃q[z∗q (t)]

)

+
n∑

q=1

Cpq(t)
(
G̃q[zq(t− τpq(t))] − G̃q(z∗q [(t− τpq(t))]

)

+
n∑

q=1

Dpq(t)
∫ t

t−σpq(t)

(
Ẽq[zq(s)] − Ẽq[z∗q (s)]

)
ds, p ∈ Δ. (18)

For p ∈ Δ, let Πp and Θp be defined as follows:

Πp(ζ) = ap − ζ − (
apδp +Bp + Cpeζτpq +Dp

)
,

Θp(ζ) = ap − ζ − (
ap + ap

)(
apδp +Bp + Cpeζτpq +Dp

)
.

By (H4), we have

Πp(0) = ap − (
apδp +Bp + Cp +Dp

)
> 0, p ∈ Δ,

Θp(0) = ap − (
ap + ap

)(
apδp +Bp + Cp +Dp

)
> 0, p ∈ Δ.

Since Πp and Θp are continuous on [0,+∞) and Πp(ζ),Θp(ζ) → −∞, as ζ → +∞, there
exist ξp, ξ∗p > 0 such that Πp(ξp) = Θp(ξ∗p) = 0 and Πp(ζ) > 0 for ζ ∈ (0, ξp), Θp(ζ) > 0 for
ζ ∈ (0, ξ∗p), p ∈ Δ. Take ϑ = minp∈Δ

{
ξp, ξ

∗
p

}
, we have Πp(ϑ) ≥ 0,Θp(ϑ) ≥ 0. So, we can

choose a positive constant 0 < λ < min
{
ϑ,minp∈Δ{ap}

}
such that

Πp(λ) > 0, Θp(λ) > 0, p ∈ Δ,

which imply that for p ∈ Δ,

1
ap − λ

(
apδp +Bp + Cpeλτpq +Dp

)
< 1

and
(

1 +
ap

ap − λ

)(
apδp +Bp + Cpeλτpq +Dp

)
< 1.



ALMOST AUTOMORPHIC SOLUTIONS 113

Let M = maxp∈Δ

{ ap

Γp

}
, then by (H4) we have M > 1. Thus,

1
M

− min
p∈Δ

{
1

ap − λ

(
apδp +Bp + Cpeλτpq +Dp

)}
< 0.

Let

‖Y (t)‖ = max
p∈Δ

{
max
l∈Λ

{
|zl

p(t) − z∗l
p (t)|, |(zl

p)
′(t) − (z∗l

p )′(t)|
}}

,

‖ϕ‖0 = max
p∈Δ

{
max
l∈Λ

{
sup

s∈[−η,0]

∣∣ψl
p(s) − ψ∗l

p (s)
∣∣, sup

s∈[−η,0]

∣∣(ψl
p)

′(s) − (ψ∗l
p )′(s)

∣∣
}}

.

Hence, for any ε > 0, it is obvious that

‖Y (0)‖ < ‖ϕ‖0 + ε (19)

and

‖Y (t)‖ < (‖ϕ‖0 + ε)e−λt < M(‖ϕ‖0 + ε)e−λt, ∀ t ∈ [−η, 0]. (20)

We claim that

‖Y (t)‖ < M(‖ϕ‖0 + ε)e−λt, ∀ t > 0. (21)

In the contrary case, then there must be some p ∈ {1, 2, · · · , n} and t1 > 0 such that

{ |Yp(t1)| = ‖Y (t1)‖ = M(‖ϕ‖0 + ε)e−λt1 ,

‖Y (t)‖ < M(‖ϕ‖0 + ε)e−λt, t < t1.
(22)

Multiplying both sides of (18) by e
∫ t
0 ap(u)du and integrating over [0, t], we get

Yp(t) =
{
Yp(0)e−

∫ t
0 ap(u)du +

∫ t

0

e−
∫ t

s
ap(u)du

(
ap(s)

∫ s

s−δp(s)

Y ′
p(u)du

+
n∑

q=1

Bpq(s)
(
F̃q[zq(s)] − F̃q [z∗q (s)]

)
+

n∑

q=1

Cpq(s)
(
G̃q[zq(s− τpq(s))]

−G̃q[z∗q (s− τpq(s))]
)

+
n∑

q=1

Dpq(s)
∫ s

s−σpq(s)

(
Ẽq[zq(u)] − Ẽq[z∗q (u)]

)
du

)
ds

}
.

Thus, by M > 1, (19), (20) and (22) imply that

∣∣(z − z∗)R
p (t1)

∣∣

≤ ∣∣zR
p (0) − z∗R

p (0)
∣∣e−

∫ t1
0 ap(u)du +

∫ t1

0

e−
∫ t1

s
ap(u)du

[
apδp

∣∣(zR
p )′(s) − (z∗R

p )′(s)
∣∣

+
n∑

q=1

(
b
R

pq + b
I

pq + b
J

pq + b
K

pq

)(
αR

q

∣∣zR
q (s) − z∗R

q (s)
∣∣ + αI

q

∣∣zI
q (s) − z∗I

q (s)
∣∣
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+αJ
q

∣∣zJ
q (s) − z∗J

q (s)
∣∣ + αK

q

∣∣zK
q (s) − z∗K

q (s)
∣∣
)

+
n∑

q=1

(
cRpq + cIpq + cJpq + cKpq

)

×
(
βR

q

∣∣zR
q (s− τpq(s)) − z∗R

q (s− τpq(s))
∣∣ + βI

q

∣∣zI
q (s− τpq(s)) − z∗I

q (s− τpq(s))
∣∣

+βJ
q

∣∣zJ
q (s− τpq(s)) − z∗J

q (s− τpq(s))
∣∣ + βK

q

∣∣zK
q (s− τpq(s)) − z∗K

q (s− τpq(s))
∣∣
)

+
n∑

q=1

σpq

(
d

R

pq + d
I

pq + d
J

pq + d
K

pq

)(
γR

q

∣∣zR
q (s) − z∗R

q (s)
∣∣ + γI

q

∣∣zI
q (s) − z∗I

q (s)
∣∣

+γJ
q

∣∣zJ
q (s) − z∗J

q (s)
∣∣ + γK

q

∣∣zK
q (s) − z∗K

q (s)
∣∣
)]
ds

≤ (‖ϕ‖0 + ε)e−λt1e−
∫ t1
0 (ap(u)−λ)du +

∫ t1

0

e−
∫

t1
s

(
ap(u)−λ

)
du

(
apδp

+
n∑

q=1

(
b
R

pq + b
I

pq + b
J

pq + b
K

pq

)(
αR

q + αI
q + αJ

q + αK
q

)
+

n∑

q=1

(
cRpq + cIpq

+cJpq + cKpq

)(
βR

q + βI
q + βJ

q + βK
q

)
eλτpq +

n∑

q=1

σpq

(
d

R

pq + d
I

pq + d
J

pq + d
K

pq

)

×
(
γR

q + γI
q + γJ

q + γK
q

))
dsM(‖ϕ‖0 + ε)e−λt1

≤ M(‖ϕ‖0 + ε)e−λt1

(
1
M

− 1
ap − λ

(
apδp +Bp + Cpeλτpq +Dp

))
e(λ−ap(u))t1

< M(‖ϕ‖0 + ε)e−λt1 . (23)

Similarly, we can get

|(z − z∗)l
p(t1)| < M(‖ϕ‖0 + ε)e−λt1 , l = I, J,K. (24)

On the other hand, we have
∣∣((z − z∗)R

p

)′(t1)
∣∣

≤ ap

∣∣zR
p (0) − z∗R

p (0)
∣∣e−

∫ t1
0 ap(u)du + apδp

∣∣(zR
p )′(t) − (z∗R

p )′(t)
∣∣

+
n∑

q=1

(
b
R

pq + b
I

pq + b
J

pq + b
K

pq

)(
αR

q

∣∣zR
q (t) − z∗R

q (t)
∣∣ + αI

q

∣∣zI
q (t) − z∗I

q (t)
∣∣

+αJ
q

∣∣zJ
q (t) − z∗J

q (t)
∣∣ + αK

q

∣∣zK
q (t) − z∗K

q (t)
∣∣
)

+
n∑

q=1

(
cRpq + cIpq + cJpq + cKpq

)

×
(
βR

q

∣∣zR
q (t− τpq(t)) − z∗R

q (t− τpq(t))
∣∣ + βI

q

∣∣zI
q (t− τpq(t)) − z∗I

q (t− τpq(t))
∣∣

+βJ
q

∣∣zJ
q (t− τpq(t)) − z∗J

q (t− τpq(t))
∣∣ + βK

q

∣∣zK
q (t− τpq(t)) − z∗K

q (t− τpq(t))
∣∣
)

+
n∑

q=1

σpq

(
d

R

pq + d
I

pq + d
J

pq + d
K

pq

)(
γR

q

∣∣zR
q (t) − z∗R

q (t)
∣∣ + γI

q

∣∣zI
q (t) − z∗I

q (t)
∣∣

+γJ
q

∣∣zJ
q (t) − z∗J

q (t)
∣∣ + γK

q

∣∣zK
q (t) − z∗K

q (t)
∣∣
)

+ ap

∫ t1

0

e−
∫

t1
s

ap(u)du
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×
[
apδp

∣∣(zR
p )′(s) − (z∗R

p )′(s)
∣∣ +

n∑

q=1

(
b
R

pq + b
I

pq + b
J

pq + b
K

pq

)(
αR

q

∣∣zR
q (s) − z∗R

q (s)
∣∣

+αI
q

∣∣zI
q (s) − z∗I

q (s)
∣∣ + αJ

q

∣∣zJ
q (s) − z∗J

q (s)
∣∣ + αK

q

∣∣zK
q (s) − z∗K

q (s)
∣∣
)

+
n∑

q=1

(
cRpq + cIpq + cJpq + cKpq

)(
βR

q

∣∣zR
q (s− τpq(s)) − z∗R

q (s− τpq(s))
∣∣

+βI
q

∣∣zI
q (s− τpq(s)) − z∗I

q (s− τpq(s))
∣∣ + βJ

q

∣∣zJ
q (s− τpq(s)) − z∗J

q (s− τpq(s))
∣∣

+βK
q

∣∣zK
q (s− τpq(s)) − z∗K

q (s− τpq(s))
∣∣
)

+
n∑

q=1

σpq

(
d

R

pq + d
I

pq + d
J

pq + d
K

pq

)

×
(
γR

q

∣∣zR
q (s) − z∗R

q (s)
∣∣ + γI

q

∣∣zI
q (s) − z∗I

q (s)
∣∣ + γJ

q

∣∣zJ
q (s) − z∗J

q (s)
∣∣

+γK
q

∣∣zK
q (s) − z∗K

q (s)
∣∣
)]
ds

≤ M(‖ϕ‖0 + ε)e−λt1

{(
1
M

− 1
ap − λ

(
apδp +Bp + Cpeλτpq +Dp

)
ape(λ−ap(u))t1

+
(

1 +
ap

ap − λ

)(
apδp +Bp + Cpeλτpq +Dp

)}

< M(‖ϕ‖0 + ε)e−λt1 . (25)

Similarly, we have
∣∣((z − z∗)l

p

)′(t1)
∣∣ < M(‖ϕ‖0 + ε)e−λt1 , l = I, J,K. (26)

It follows from (23)–(26) that

‖Y (t1)‖ < M(‖ϕ‖0 + ε)e−λt1 ,

which contradicts the first equation of (22). Therefore, (21) holds. Letting ε→ 0+ leads to

‖Y (t)‖ ≤M‖ϕ‖0e−λt, ∀ t > 0.

Hence, the almost automorphic solution of System (8) is globally exponentially stable. The
proof is complete.

4 An Example

In this section, we give an example to illustrate the feasibility and effectiveness of our results
obtained in Section 3.

Example 4.1 Consider the following QVNNs with time-varying leakage delays:

z′p(t) = −ap(t)zp(t− δp(t)) +
2∑

q=1

bpq(t)fq(zq(t)) +
2∑

q=1

cpq(t)gq(zq(t− τpq(t)))

+
2∑

q=1

dpq(t)
∫ t

t−σpq(t)

eq(zq(s))ds + up(t), (27)
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where p = 1, 2, zp = zR
p + izI

p + jzJ
p + kzK

p ∈ Q, and the coefficients are as follows:

a1(t) = 1.8 + 0.2| cos(
√

3t)|, a2(t) = 2.6 + 0.4| sin(
√

2t)|,
fq(xq) =

1
15

|xR
q + xK

q | + i
1
20

sin2(xI
q + xJ

q ) + j
1
40

(|xJ
q + 1| − |xJ

q − 1|) + k
1
15

tanhxK
q ,

gq(xq) =
1
32

sin2(xR
q + xJ

q ) + i
1
16

|xI
q | + j

1
16

sin(xJ
q + xK

q ) + k
1
32

(|xK
q − 1| − |xK

q − 1|),

eq(xq) =
1
8

sin2 xR
q + i

1
4
|xR

q + xI
q | + j

1
8
(|xJ

q − 1| − |xJ
q − 1|) + k

1
4

sinxK
q ,

b11(t) = b12(t) = 0.07 sin(
√

2t) − i0.09 cos(
√

2t) + j0.08 cos t− k0.05 sin t,

b21(t) = b22(t) = 0.06 cos(
√

5t) + i0.04 cos(
√

2t) − j0.09 sin(
√

3t) − k0.08 cos(2t),

c11(t) = c12(t) = 0.08 cos t− i0.07 sin(
√

5t) + j0.075 sin t+ k0.055 sin t,

c21(t) = c22(t) = 0.06 cos(2t) − i0.065 sin t+ j0.085 sin(
√

5t) + k0.09 cos t,

d11(t) = d12(t) = 0.18 cos(
√

2t) + i0.16 sin t− j0.24 cos(
√

3t) + k0.3 cos t,

d21(t) = d22(t) = 0.28 cos(
√

5t) + i0.15 cos(
√

2t) − j0.2 sin(
√

3t) − k0.15 cos(2t),

u1(t) = u2(t) = 0.04 sin(
√

3t) − i0.02 cos(
√

2t) + j0.035 sin2 t+ k0.03 sin(2t),

δ1(t) = 0.02 + 0.005 sin t, δ2(t) = 0.02 + 0.05 cos(
√

2t), τ11(t) = τ12(t) = 1 + sin2 t,

τ21(t) = τ22(t) = 2 + sin t, σpq(t) = 0.05 + 0.01 sin t, p, q ∈ Δ.

By a simple calculation, we have

a1 = 1.8, a1 = 2, a2 = 2.6, a2 = 3, αR
q = αK

q =
1
15
,

αI
q = αJ

q =
1
20
, βR

q = βJ
q = βI

q = βK
q =

1
16
, γR

q = γI
q = γJ

q = γK
q =

1
4
,

b
R

11 = b
R

12 = 0.07, b
I

11 = b
I

12 = 0.09, b
J

11 = b
J

12 = 0.08, b
K

11 = b
K

12 = 0.05,

b
R

21 = b
R

22 = 0.06, b
I

21 = b
I

22 = 0.04, b
J

21 = b
J

22 = 0.09, b
K

21 = b
K

22 = 0.08,

cR11 = cR12 = 0.08, cI11 = cI12 = 0.07, cJ11 = cJ12 = 0.075, cK11 = cK12 = 0.055,

cR21 = cR22 = 0.06, cI21 = cI22 = 0.065, cJ21 = cJ22 = 0.085, cK21 = cK22 = 0.09,

d
R

11 = d
R

12 = 0.18, d
I

11 = d
I

12 = 0.16, d
J

11 = d
J

12 = 0.24, d
K

11 = d
K

12 = 0.3,

d
R

21 = d
R

22 = 0.28, d
I

21 = d
I

22 = 0.15, d
J

21 = d
J

22 = 0.2 d
K

21 = d
K

22 = 0.15,

uR
1 = uR

2 = 0.04, uI
1 = uI

2 = 0.02, uJ
1 = uJ

2 = 0.035, uK
1 = uK

2 = 0.03,

δ1 = δ2 = 0.025, τ11 = τ12 = 2, τ21 = τ22 = 3, σpq = 0.06, p, q ∈ Δ.

Then, we have

max
1≤p≤2

{
max
l∈Λ

{
Γpκ+ ul

p

ap

,

(
1 +

ap

ap

)(
Γpκ+ ul

p

)}}
= 1.9978 ≤ κ = 2

and

max
1≤p≤2

{
Γp

ap

,

(
1 +

ap

ap

)
Γp

}
= 0.9559 = r < 1,
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which means that (H4) is satisfied for κ = 2. Obviously, conditions (H1)–(H3) are also satisfied.
Therefore, according to Theorem 3.2, (27) has a unique almost automorphic solution, which is
globally exponentially stable (see Figures 1–3).
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Figure 1 Transient states of four parts of the the QVNNs (27) in Example 4.1
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1 (l ∈ Λ) in 3-dimensional space for stable case
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Figure 3 Curves of zl
2 (l ∈ Λ) in 3-dimensional space for stable case

Remark 4.2 No existing results can directly derive that (27) has a unique almost auto-
morphic solution, which is globally exponentially stable.

5 Conclusion

In this paper, we have investigated QVNNs with time-varying leakage delays. By employing
the Banach’s fixed point theorem and differential inequality techniques, we obtain the existence
and global exponential stability of almost automorphic solutions for QVNNs. An example has
been given to demonstrate the effectiveness of our results. Our results of this paper is new.
Furthermore, the method of this paper can be applied to study the almost automorphic problem
for other types of QVNNs.
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