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Abstract This paper investigates the steady-state availability of a repairable series-parallel system

with redundant dependency. The different types of components and repairmen are taken into account,

the failure rate of the operating component varies as the number of other failed components and the

repair rate of the failed component is constant in each parallel redundant subsystem. To quantify the

redundant dependency, a modified failure dependence function is introduced to determine the failure

rate of the components in each subsystem. Markov theory and matrix analysis method are used to

get the steady-state probability vector of each subsystem and the steady-state availability of the entire

system. A numerical example is presented to illustrate the obtained results and to analyze the effect

of redundant dependency class on the system availability.

Keywords Availability, probability, redundant dependency, repairable system, series-parallel.

1 Introduction

System availability is an important subject in repairable systems. Maintaining a high or
required level of availability is often an essential requisite[1]. Repairable series-parallel sys-
tems consisting of some parallel redundant subsystems in series are frequently used in many
engineering systems, e.g., power systems, manufacturing production systems, and industrial
systems.

In the studies of system optimization design, the availability of the system is a major concern
for the system designers. In general, choosing high reliable components or placing redundant
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components in the system is a common way to improve availability in systems design. System
designers have to consider the tradeoff between system performance and the cost while using
high reliable components or redundancy to improve availability. Redundancy has been recog-
nized as a main option to improve reliability or availability since the option of high reliable
components is usually expensive and beyond the scope of the system designers whose main
duty is selecting standard off-the shelf products from catalogs[2]. The choice of redundancy de-
pends on the systems configuration[3]. The systems with different redundancy strategies have
different reliability or availability analysis methods. Many authors investigated the reliability
or availability assessment and optimization design problems, both as homogeneous and hetero-
geneous redundancy allocation problems, and suggested different reliability analysis methods
and optimization design algorithms. Reliability analysis has shown that the availability of ho-
mogeneous redundant parallel systems consisting of identical components is extremely affected
by common cause failure. In order to reduce the effect of common cause failure and intro-
duce flexibility and diversification into redundant parallel system design, the heterogeneous
redundancy design consisting of the mixture of non-identical components is used to improve
the availability of the whole system. Furthermore, in real world, the non-identical components
with the same functionality might be selected in the market. Compared with homogeneous
systems, availability analysis and optimization design of heterogeneous system are much more
complex. In term of reliability or availability analysis and optimization design of heterogeneous
system, Kim, et al.[4] investigated practical stochastic models for designing and analyzing the
time-dependent reliability of nonrepairable systems with heterogeneous components. Sharma,
et al.[5] handled reliability evaluation and optimal design problems for heterogeneous multi-
state series-parallel systems. Chaaban, et al.[6] studied cost optimization and high available
heterogeneous series-parallel redundant system design by using the universal generating func-
tion method and genetic algorithm. Recently, Mo, et al.[7] proposed a multi-valued decision
diagram (MDD)-based performability analysis approach for multi-state series-parallel systems
with heterogeneous components. Chowdhury and Kundu[8] studied stochastic comparisons of
the lifetimes for two parallel systems having heterogeneous log-Lindley distributed components.

Failure dependencies exist in the real systems widely. Ignoring the failure dependencies
and analyzing the availability of the systems under independent assumption may lead to large
deviation. Different types of failure dependencies are presented by Fricks and Trivedi[9] and
Pecht[10], where the following three types of the failure dependencies: Common-mode failures,
multi-mode failures and other failure dependencies are described. The reliability and the avail-
ability of series-parallel systems with common-mode failures or multi-mode failures have been
investigated by many researchers, see Levitin[11], Ramirez-Marquez and Coit[12], Li, et al.[13],
Boddu and Xing[14], Yamashiro, et al.[15], Pham[16], Levitin[17]. There are many other fail-
ure dependencies such as standby dependencies[9], history dependent states, see Cui, et al.[18],
Wang and Cui[19], sequence-dependent failures, see Xing, et al.[20], load-dependent failures, see
Barros, et al.[21], Blokus[22]. For the series-parallel systems with other failure dependencies,
Levitin and Amari[23] investigated the optimal loading of elements for a series-parallel system
with the dependence of elements failure rates on their load. Nourelfath and Yalaoui[24] studied a
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production series-parallel multi-state system with binary-state components and the dependence
of machines failure rates on their load, and considered the load versus failure rate relationship
while optimizing planning of the production system. Blokus[25] investigated the reliability func-
tion of a series-parallel system with dependent components under the assumption that the load
is distributed equally among all un-failed components of each parallel subsystem.

The redundant dependency is a special type of failure dependencies, which considers the
interactions in the failure process of a system[26]. Yu, et al.[27] pointed out that the failure
dependency of a system is called redundant dependency if any component can be viewed as
a redundancy of another component. In [27], a redundant system of n identical components
with redundant dependency was investigated and a dependency function was introduced to
quantify the redundant dependency. Li[26] dealt with the reliability analysis of a k-out-of-n: G

system with redundant dependency and repairmen having multiple vacations. Wang, et al.[28]

studied a multi-state Markov repairable system with redundant dependency and presented a
two-dimensional vector to describe accurately the performance of the system. Hu, et al.[29]

analyzed the steady-state availability of a repairable series-parallel system with redundant de-
pendency and finite repair teams, and developed an optimal design problem for the system.
Recently, Yu, et al.[30] investigated availability optimization problem for a repairable system
composed of redundant and dependent components. Wang, et al.[31] proposed a new load shar-
ing parallel system model with failure dependency under the assumptions that the repair time
distributions of components are arbitrary and life times are exponential distributions whose
failure rates vary with the number of operating components.

The redundant dependency is an important factor in many repairable redundant systems,
so the influence of the special kind of failure dependencies on the availability of a repairable
redundant system can not be neglected. Moreover, most of the works on availability analysis
for repairable series-parallel system models with failure dependencies are confined to parallel
subsystems with identical components and repairmen. This motives us to develop the repairable
redundant parallel subsystem with redundant dependency and heterogeneous components. In
this paper, a repairable series-parallel system with redundant dependency is considered, and
each parallel redundant subsystem has two different types of components and repairmen. As
we know, availability is not only an important index to measure repairable system reliability,
but also the premise of the system optimization design. The focus of this work is to present the
analysis method of steady-state probability for each subsystem and the steady-state availability
of the entire system. A modified failure dependence function is introduced to determine the
failure rate of the components in each subsystem. Markov theory and matrix analysis method
are used to get the steady-state probability vector of each subsystem and the steady-state
availability of the entire system.

The rest of the paper is organized as follows. In Section 2, we give the description of
the system model. The steady-state probability distribution and redundant dependency for
each parallel redundant subsystem are analyzed in Section 3. Section 4 gives the steady-state
availability of the system. An illustrative example is presented and some numerical results are
discussed in Section 5. Finally, conclusions and future work are given in Section 6.
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2 Problem Description

The repairable system we consider here consists of n parallel redundant subsystems con-
nected in series. Each parallel subsystem works if and only if at least one of its components work,
and the entire system works if and only if all subsystems work. The subsystem i (i = 1, 2, · · · , n)
has two different types of components (say type 1i component and type 2i component) and two
corresponding types of repairmen (say type 1i repairman and type 2i repairman). The subsys-
tem i consists of m1i type 1i components, m2i type 2i components, r1i type 1i repairmen and
r2i type 2i repairmen. Each type of component is assumed to have its own dedicated repair-
man. Here, the failed type 1i component is repaired by the type 1i repairman, the failed type
2i component is repaired by the type 2i repairman.

Furthermore, other assumptions are given as follows:
1) The entire system and the component of each subsystem have two states: Perfect func-

tioning and complete failure.
2) In each parallel redundant subsystem, the redundant dependency is considered. The

failure rate of the operating component increases with the number of other failed components
and the repair rate of the failed components is constant.

3) Whenever an operating component fails, it is immediately sent to a repair facility with
two different types of repairmen where it is repaired in the order of their breakdowns.

4) Each repairman can repair only one failed component at one time. The failed component
must wait for repair in the queue if the all repairmen are busy until a corresponding type of
repairman is available.

5) Once a component is repaired, it is as good as new and goes into operating state.
6) The different subsystems are independent of each other.

3 Analysis of the Subsystem with Redundant Dependency

We first analyze the steady-state probability of the general parallel redundant subsystem
with different components and repairmen.

3.1 Probabilistic Analysis of the Parallel Redundant Subsystem

The parallel redundant subsystem i consists of m1i type 1i components, m2i type 2i compo-
nents, r1i type 1i repairmen and r2i type 2i repairmen. Let K(t) and J(t) denote the numbers
of failed type 1i components and failed type 2i components in the subsystem i (waiting and
in repair) at time t, respectively. We can describe the states of the subsystem i by the pairs
{(K(t), J(t)) , t ≥ 0}. Let P i

k,j(t) = P{K(t) = k, J(t) = j : k = 0, 1, · · · , m1i, j = 0, 1, · · · , m2i}
be the probability of exactly k failed type 1i components and j failed type 2i components in
the subsystem i at time t. Assume steady-state conditions, and let P i

k,j= limt→∞ P i
k,j(t), where

P i
k,j denotes the steady-state probability that there are k failed type 1i components and j failed

type 2i components in the subsystem i. The transition rate from k failed type 1i components
to k + 1 failed type 1i components when there are j failed type 2i components is presented as
λ1i

(k,k+1);j , and μ1i
(k,k−1) denotes the transition rate from k failed type 1i components to k − 1
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failed type 1i components; the transition rate from j failed type 2i components to j + 1 failed
type 2i components when there are k failed type 1i components is presented as λ2i

k;(j,j+1), and
μ2i

(j,j−1) denotes the transition rate from j failed type 2i components to j − 1 failed type 2i

components.
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Figure 1 State transition diagram of the subsystem i with two types of compo-

nents and repairmen (for m1i = 4, r1i = 3, m2i = 3 and r2i = 2)

Markov state transition diagram is helpful in analyzing the steady-state probability distribu-
tion of the subsystem i. In the subsystem i, the Markov model is used to analyze the subsystem
state transition process. The state transition diagram of the parallel redundant subsystem i

with two types of components and repairmen (for m1i = 4, r1i = 3, m2i = 3 and r2i = 2)
is shown in Figure 1. Referring to Figure 1, we have the following steady-state probability
equations:

(
λ1i

(0,1);0 + λ2i
0;(0,1)

)
P i

0,0 = μ1i
(1,0)P

i
1,0 + μ2i

(1,0)P
i
0,1, k = 0, j = 0, (1)

(
λ2i

0;(j,j+1) + λ1i
(0,1);j + μ2i

(j,j−1)

)
P i

0,j = λ2i
0;(j−1,j)P

i
0,j−1 + μ1i

(1,0)P
i
1,j

+μ2i
(j+1,j)P

i
0,j+1, k = 0, j = 1, 2, · · · , m2i − 1, (2)

(
λ1i

(0,1);m2i
+ μ2i

(m2i,m2i−1)

)
P i

0,m2i
= λ2i

0;(m2i−1,m2i)
P i

0,m2i−1 + μ1i
(1,0)P

i
1,m2i

,

k = 0, j = m2i, (3)
(
λ1i

(k,k+1);0 + λ2i
k;(0,1) + μ1i

(k,k−1)

)
P i

k,0 = λ1i
(k−1,k);0P

i
k−1,0 + μ2i

(1,0)P
i
k,1

+μ1i
(k+1,k)P

i
k+1,0, k = 1, 2, · · · , m1i − 1, j = 0, (4)

(
λ2i

m1i;(0,1) + μ1i
(m1i,m1i−1)

)
P i

m1i,0 = λ1i
(m1i−1,m1i);0

P i
m1i−1,0 + μ2i

(1,0)P
i
m1i,1,

k = m1i, j = 0, (5)
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(
λ1i

(k,k+1);j + λ2i
k;(j,j+1) + μ1i

(k,k−1) + μ2i
(j,j−1)

)
P i

k,j

= λ1i
(k−1,k);jP

i
k−1,j + λ2i

k;(j−1,j)P
i
k,j−1 + μ1i

(k+1,k)P
i
k+1,j + μ2i

(j+1,j)P
i
k,j+1,

k = 1, 2, · · · , m1i − 1, j = 1, 2, · · · , m2i − 1, (6)
(
λ1i

(k,k+1);m2i
+ μ1i

(k,k−1) + μ2i
(m2i,m2i−1)

)
P i

k,m2i

= λ1i
(k−1,k);m2i

P i
k−1,m2i

+ λ2i
k;(m2i−1,m2i)

P i
k,m2i−1 + μ1i

(k+1,k)P
i
k+1,m2i

,

k = 1, 2, · · · , m1i − 1, j = m2i, (7)
(
λ2i

m1i;(j,j+1) + μ2i
(j,j−1) + μ1i

(m1i,m1i−1)

)
P i

m1i,j

= λ2i
m1i;(j−1,j)P

i
m1i,j−1 + λ1i

(m1i−1,m1i);j
P i

m1i−1,j + μ2i
(j+1,j)P

i
m1i,j+1,

k = m1i, j = 1, 2, · · · , m2i − 1, (8)
(
μ1i

(m1i,m1i−1) + μ2i
(m2i,m2i−1)

)
P i

m1i,m2i

= λ1i
(m1i−1,m1i);m2i

P i
m1i−1,m2i

+ λ2i
m1i;(m2i−1,m2i)

P i
m1i,m2i−1, k = m1i, j = m2i, (9)

and the following normalizing equation
m1i∑
k=0

m2i∑
j=0

P i
k,j = 1. (10)

Based on Equations (1)–(9), the transition rate matrix Qi of the subsystem i is obtained as
the following block-tridiagonal form

Qi =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

A0 B0

C1 A1 B1

C2 A2 B2

. . . . . . . . .

Cm1i−1 Am1i−1 Bm1i−1

Cm1i Am1i

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (11)

The matrix Qi is a square matrix of order (m1i + 1) · (m2i + 1), and (A0 + B0) e =
(Cm1i + Am1i) e = (Ck + Ak + Bk) e = 0, k = 1, 2, · · · , m1i − 1, e is an m2i + 1 dimensions
column vector with each component equal to one. Each block of the matrix Qi is given in the
following

A0 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

λ1i
(0,1);0 + λ2i

0;(0,1) −λ2i
0;(0,1) 0 · · ·

−μ2i
(1,0) λ1i

(0,1);1 + λ2i
0;(1,2) + μ2i

(1,0) −λ2i
0;(1,2) · · ·

.

.

.
.
.
.

.

.

.
.
.
.

0 0 0 · · ·
0 0 0 · · ·
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0 0 0

0 0 0

.

.

.
.
.
.

.

.

.

−μ2i
(m2i−1,m2i−2) λ1i

(0,1);m2i−1 + λ2i
0;(m2i−1,m2i)

+ μ2i
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0;(m2i−1,m2i)

0 −μ2i
(m2i,m2i−1) λ1i

(0,1);m2i
+ μ2i

(m2i,m2i−1)

⎞
⎟⎟⎟⎟⎟⎟⎠

,

Ak =

⎛
⎜⎜⎜⎜⎜⎜⎝

λ1i
(k,k+1);0+λ2i

k;(0,1)+μ1i
(k,k−1) −λ2i

k;(0,1) 0 · · ·

−μ2i
(1,0) λ1i

(k,k+1);1+λ2i
k;(1,2)+μ1i

(k,k−1)+μ2i
(1,0) −λ2i

k;(1,2) · · ·

.

.

.

.

.

.

.

.

.
. . .

0 0 0 · · ·
0 0 0 · · ·

0 0 0

0 0 0

.

.

.

.

.

.

.

.

.

−μ2i
(m2i−1,m2i−2) λ1i

(k,k+1);m2i−1+λ2i
k;(m2i−1,m2i)

+μ1i
(k,k−1)+μ2i

(m2i−1,m2i−2) −λ2i
k;(m2i−1,m2i)

0 −μ2i
(m2i,m2i−1) λ1i

(k,k+1);m2i
+μ1i

(k,k−1)+μ2i
(m2i,m2i−1)

⎞
⎟⎟⎟⎟⎠

,

k = 1, 2, · · · , m1i − 1,

Am1i =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

λ2i
m1i;(0,1) + μ1i

(m1i,m1i−1) −λ2i
m1i;(0,1) 0 · · ·

−μ2i
(1,0) λ2i

m1i;(1,2) + μ1i
(m1i,m1i−1) + μ2i

(1,0) −λ2i
m1i;(1,2) · · ·

.

.

.
.
.
.

.

.

.
. . .

0 0 0 · · ·
0 0 0 · · ·

0 0 0

0 0 0

.

.

.
.
.
.

.

.

.

−μ2i
(m2i−1,m2i−2) λ2i

m1i;(m2i−1,m2i)
+ μ1i

(m1i,m1i−1) + μ2i
(m2i−1,m2i−2) −λ2i

m1i;(m2i−1,m2i)

0 −μ2i
(m2i,m2i−1) μ1i

(m1i,m1i−1) + μ2i
(m2i,m2i−1)

⎞
⎟⎟⎟⎟⎟⎟⎠

,

Bk =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−λ1i
(k,k+1);0

−λ1i
(k,k+1);1

−λ1i
(k,k+1);2

. . .

−λ1i
(k,k+1);m2i−1

−λ1i
(k,k+1);m2i

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

k = 0, 1, · · · , m1i − 1,
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Ck =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−μ1i
(k,k−1)

−μ1i
(k,k−1)

−μ1i
(k,k−1)

. . .

−μ1i
(k,k−1)

−μ1i
(k,k−1)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

k = 1, 2, · · · , m1i,

where Ak, Bk and Ck are square matrices of order m2i + 1.
Let P i denote steady-state probability vector corresponding to the matrix Qi, and it is

partitioned as P i =
(
P i

0, P
i
1, · · · , P i

m1i

)
, where P i

k = (P i
k,0, P

i
k,1, · · · , P i

k,m2i
), k = 0, 1, · · · , m1i.

According to the transition rate matrix Qi and Equations (1)–(9), the steady-state probability
equations of the subsystem i can be written in matrix form as P iQi = 0, that is,

(
P i

0, P
i
1, · · · , P i

m1i

)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

A0 B0

C1 A1 B1

C2 A2 B2

. . . . . . . . .

Cm1i−1 Am1i−1 Bm1i−1

Cm1i Am1i

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= 0, (12)

then we have

P i
0A0 + P i

1C1 = 0, (13)

P i
k−1Bk−1 + P i

kAk + P i
k+1Ck+1 = 0, k = 1, 2, · · · , m1i − 1, (14)

P i
m1i−1Bm1i−1 + P i

m1i
Am1i = 0. (15)

The normalizing equation can be written as
m1i∑
k=0

P i
ke = 1, (16)

where e represents an m2i + 1 dimensions column vector with all components equal to one.
Based on the method in PÉRez-OcÓN and Montoro-Cazorla[32,33] and Ke and Wang[34], let

D1, D2, · · · , Dm1i−1, Dm1i be matrices satisfying the following conditions

Bk−1 + Dk(Ak + Dk+1Ck+1) = 0, k = 1, 2, · · · , m1i−1, (17)

Bm1i−1 + Dm1iAm1i = 0. (18)

Assume that the matrices Am1i and Ak +Dk+1Ck+1, k = 1, 2, · · · , m1i−1, are non-singular.
According to (15), we have

P i
m1i

= P i
m1i−1Dm1i , (19)
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where Dm1i = −Bm1i−1A
−1
m1i

. According to (14) (k = m1i − 1) and (19), we have

P i
m1i−1 = P i

m1i−2Dm1i−1, (20)

where Dm1i−1 = −Bm1i−2(Am1i−1 + Dm1iCm1i).
Similarly, we can obtain

P i
k = P i

k−1Dk, k = 1, 2, · · · , m1i − 1, (21)

where Dk = −Bk−1 (Ak + Dk+1Ck+1)
−1, k = 1, 2, · · · , m1i − 1.

After substitutions, (13)–(15) can be expressed as
⎧
⎪⎨
⎪⎩

P i
0A0 + P i

1C1 = 0,

P i
k = P i

k−1Dk, k = 1, 2, · · · , m1i,
(22)

where Dk = −Bk−1 (Ak + Dk+1Ck+1)
−1, k = 1, 2, · · · , m1i − 1, Dm1i = −Bm1i−1A

−1
m1i

. There-
fore, we have

P i
k = P i

0D1D2 · · ·Dk = P i
0

k∏
k1=1

Dk1 , k = 1, 2, · · · , m1i, (23)

and P i
0 can be determined by

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

P i
0 (A0 + D1C1) = 0,

m1i∑
k=0

P i
ke = P i

0

(
I +

m1i∑
k=1

k∏
k1=1

Dk1

)
e = 1,

(24)

where I is an identity matrix of order m2i + 1, and e is an m2i + 1 dimensions column vector
with each component equal to one.

Based on the analysis of the above, the steps to calculate the steady-state probability vector
of the parallel redundant subsystem i is given as

1) Calculate the matrices Dm1i = −Bm1i−1A
−1
m1i

and Dk = −Bk−1(Ak+ Dk+1Ck+1)−1,
k = m1i − 1, m1i − 2, · · · , 1.

2) Calculate P i
0 according to P i

0 (A0 + D1C1) = 0 and

m1i∑
k=0

P i
ke = P i

0

(
I +

m1i∑
k=1

k∏
k1=1

Dk1

)
e = 1.

3) Calculate P i
k according to P i

k = P i
0

∏k
k1=1 Dk1 , k = 1, 2, · · · , m1i.

A computer program can be developed to obtain P i
k =

(
P i

k,0, P
i
k,1, · · · , P i

k,m2i

)
and P i

k,j ,
k = 0, 1, · · · , m1i, j = 0, 1, · · · , m2i.
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3.2 Redundant Dependency Analysis

In the real world, a wide variety of dependencies exist among the failure behavior of some
engineering systems. The types of failure dependencies among systems are different and depend
on the functional and constructional configuration of the systems. Yu, et al.[27] showed that the
failure dependency of a system is called redundant dependency if any of the components can be
viewed as a redundancy of one another component. In this paper, the redundant dependency
is considered for each parallel redundant subsystem.

Based on the dependence function in [27] and the parallel redundant subsystem i with differ-
ent components, we introduce a modified dependence function g ((m1i − k), (m2i − j)) to quan-
tify the redundant dependency, where k and j denote the numbers of the failed types 1i and 2i

components, respectively, k = 0, 1, · · · , m1i, j = 0, 1, · · · , m2i. It is assumed that the failure rate
of components in the subsystem i depends on the dependence function g ((m1i − k), (m2i − j))
and their inherent failure rate (failure rate at failure independency). The failure rates of the
two types of components in the subsystem i can be expressed as

λ1i

g ((m1i − k), (m2i − j))
, k = 0, 1, · · · , m1i, (25)

λ2i

g ((m1i − k), (m2i − j))
, j = 0, 1, · · · , m2i, (26)

where k+ j ≤ m1i +m2i −2, λ1i is the inherent failure rate of the type 1i component, λ2i is the
inherent failure rate of the type 2i component, and g (1, 0) = g (0, 1) ≡ 1. For the subsystem i

with redundant dependency, we can obtain the failure transition rates as

λ1i
(k,k+1);j =

(m1i − k)λ1i

g ((m1i − k), (m2i − j))
, k = 0, 1, · · · , m1i − 1, j = 0, 1, · · · , m2i, (27)

λ2i
k;(j,j+1) =

(m2i − j)λ2i

g ((m1i − k), (m2i − j))
, j = 0, 1, · · · , m2i − 1, k = 0, 1, · · · , m1i. (28)

In this study, we assume that the repair of components is independent. Let μ1i and μ2i

be the repair rates of the types 1i and 2i components, respectively. We can obtain the repair
transition rate as

μ1i
(k,k−1) =

⎧
⎨
⎩

kμ1i k ≤ r1i,

r1iμ1i k > r1i,
k = 1, 2, · · · , m1i, (29)

μ2i
(j,j−1) =

⎧⎨
⎩

jμ2i j ≤ r2i,

r2iμ2i j > r2i,
j = 1, 2, · · · , m2i. (30)

In the parallel redundant subsystem i, the failure rate of the components with redundant de-
pendency is less than that of the components with failure independency, i.e., g ((m1i − k), (m2i − j))
≥ 1. The dependence function g ((m1i − k), (m2i − j)) is used to describe the strength of the re-
dundant dependency. Obviously, if k and j are fixed, the bigger the value of g ((m1i − k), (m2i − j)),
the stronger the redundant dependency is. According to (25) and (26), if g ((m1i − k), (m2i − j))
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≡ 1, the failure rates of the types 1i and 2i components are λ1i and λ2i, respectively. It shows no
dependency in the subsystem i. When g ((m1i − k), (m2i − j)) > 1, the redundant dependency
can be classified into weak dependence, moderate dependence and strong dependence. As an
example, the dependence function g ((m1i − k), (m2i − j)) is uniformed as

g ((m1i − k), (m2i − j)) = ((m1i − k) + (m2i − j))αi , αi ≥ 0, (31)

where the redundant dependency is called weak dependence, moderate dependence and strong
dependence when 0 < αi < 1, 1 ≤ αi ≤ 2 and αi > 2, respectively. And the failure transition
rates of the components in the subsystem i with redundant dependency can be written as

λ1i
(k,k+1);j =

(m1i − k)λ1i

((m1i − k) + (m2i − j))αi
, k = 0, 1, · · · , m1i − 1, j = 0, 1, · · · , m2i, (32)

λ2i
k;(j,j+1) =

(m2i − j)λ2i

((m1i − k) + (m2i − j))αi
, j = 0, 1, · · · , m2i − 1, k = 0, 1, · · · , m1i. (33)

4 Steady-State Availability of the Repairable Series-Parallel System

A repairable series-parallel system can be represented by several parallel redundant sub-
systems linked in series. The steady-state availability of the repairable system denotes the
expected long run behavior of the system. Based on the system structure considered here, the
steady-state availability of the system can be determined by

A =
n∏

i=1

Ai, (34)

where Ai is the steady-state availability of the parallel redundant subsystem i. By using
steady-state probability vector P i =

(
P i

0, P
i
1, · · · , P i

m1i

)
, P i

k =
(
P i

k,0, P
i
k,1, · · · , P i

k,m2i

)
, k =

0, 1, · · · , m1i, the steady-state availability of the subsystem i can be obtained as

Ai =
m1i−1∑

k=0

P i
ke +

m2i−1∑
j=0

P i
m1i,j = 1 − P i

m1i,m2i
. (35)

Using (35) through (34), we have

A =
n∏

i=1

(
1 − P i

m1i,m2i

)
. (36)

It is assumed that the dependence function g ((m1i − k), (m2i − j)) is equal to ((m1i − k)+
(m2i − j))αi(αi ≥ 0) in the parallel redundant subsystem i, and then Ai is a function in terms
of αi, that is, Ai = Ai (αi), i = 1, 2, · · · , n. The steady-state availability of the system with
redundant dependency can be written as

A (α1, α2, · · · , αn) =
n∏

i=1

Ai(αi), (37)

where αi is called dependence strength parameter.
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5 Numerical Example

Some numerical results of the steady-state availability of the repairable series-parallel system
for different redundant dependencies are presented in this section. We consider a repairable
series-parallel system with two parallel redundant subsystems. The subsystem 1 consists of
m11 = 2 type 11 components, m21 = 1 type 21 component, r11 = 1 type 11 repairman and
r21 = 1 type 21 repairman. The subsystem 2 consists of m12 = 3 type 12 components, m22 = 2
type 22 components, r12 = 2 type 21 repairmen and r22 = 1 type 22 repairman. The inherent
failure rates λ1i, λ2i and the repair rates μ1i, μ2i, i = 1, 2, are presented in Table 1. The
dependence function for the subsystem i is ((m1i − k) + (m2i − j))αi , αi ≥ 0, i = 1, 2.

Table 1 Inherent failure rate and repair rate for the subsystem i

Subsystem i λ1i λ2i μ1i μ2i

1 0.03 0.04 0.05 0.08

2 0.01 0.02 0.03 0.04

According to Section 3, the transition rate matrix Q1 of the parallel redundant subsystem
1 is obtained as the following form

Q1 =

⎛
⎜⎜⎝

A0 B0 0

C1 A1 B1

0 C2 A2

⎞
⎟⎟⎠ ,

where

A0 =

⎛
⎝0.06/3α1 + 0.04/3α1 −0.04/3α1

−0.08 0.06/2α1 + 0.08

⎞
⎠ , B0 =

⎛
⎝−0.06/3α1 0

0 −0.06/2α1

⎞
⎠ ,

C1 =

⎛
⎝−0.05 0

0 −0.05

⎞
⎠ , B1 =

⎛
⎝−0.03/2α1 0

0 −0.03/1α1

⎞
⎠ ,

A1 =

⎛
⎝0.03/2α1 + 0.04/2α1 + 0.05 −0.04/2α1

−0.08 0.03/1α1 + 0.05 + 0.08

⎞
⎠ ,

C2 =

⎛
⎝−0.05 0

0 −0.05

⎞
⎠ , A2 =

⎛
⎝0.04/1α1 + 0.05 −0.04/1α1

−0.08 0.05 + 0.08

⎞
⎠ .

Let α1 = 1, the steady-state probability vector of the subsystem 1 is obtained as

P 1
0 =

(
P 1

0,0, P
1
0,1

)
= (0.5415, 0.0903), P 1

1 =
(
P 1

1,0, P
1
1,1

)
= (0.2166, 0.0542),

P 1
2 =

(
P 1

2,0, P
1
2,1

)
= (0.0650, 0.0324).

The steady-state availability of the subsystem 1 is obtained

A1(α1) = A1(1)=1 − P 1
2,1 = 0.9676.
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Similarly, we can obtain the steady-state availability of the subsystem 2. In Table 2, we
present the values of the entire system steady-state availability A (α1, α2) for different values
of α1 and α2.

Table 2 Steady-state availability A (α1, α2) for different values of α1 and α2

α1 α2 A (α1, α2) α1 α2 A (α1, α2)

0

0 0.9135

0.5

0 0.9275

0.5 0.9168 0.5 0.9308

1.0 0.9176 1.0 0.9316

1.5 0.9178 1.5 0.9318

1.0

0 0.9631

1.5

0 0.9785

0.5 0.9666 0.5 0.9821

1.0 0.9674 1.0 0.9829

1.5 0.9675 1.5 0.9830

Some interesting results can be observed from Table 2. The system steady-state availability
is 0.9135 when α1 = α2 = 0, that is, the system with independent components has the lowest
availability. The system steady-state availability increases as α1 and α2 increase. The increase
with increasing α1 is rapid when α2 is a fixed value, and the increase with increasing α2 is
slow when α1 is a fixed value. This means that the effect of α1 on the system steady-state
availability is more than that of α2. The results show that the strongest redundant dependency
class obtains the highest steady-state availability for the system.

6 Conclusions and Future Work

A repairable series-parallel system model with redundant dependency and different compo-
nents is studied in this paper. Each parallel redundant subsystem is composed of two different
types of components and the corresponding types of repairmen. A modified failure dependence
function is proposed to quantify the redundant dependency and analyze the failure rate of the
components in each subsystem. By using Markov model theory and matrix analysis method,
the steady-state probability vector of each subsystem and the steady-state availability of the
entire system are obtained. Some numerical results of the steady-state availability of the sys-
tem for different redundant dependencies are presented to illustrate the effect of redundant
dependency class on the system availability. This study reveals that the redundant dependency
is an essential and effective option to improve the steady-state availability of the repairable
series-parallel system.

System optimization design plays a key role in repairable system design and have been
effectively applied to enhance system performance in many real world problems. Therefore, in
the design phase of repairable series-parallel system, system designers typically try to determine
the optimal numbers of components and repair teams for each subsystem, in order to minimize
the system cost while satisfying the system availability constraint or maximize the system
availability while satisfying the system cost constraint. In this paper, the research focus is
mainly on system availability analysis. Further work will mainly concern system optimization
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design for repairable series-parallel system with redundant dependency and different types of
components and teams. Moreover, some effective optimization algorithms can be developed to
solve the optimization model in further research.
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