
J Syst Sci Complex (2019) 32: 1180–1193

Heuristics for Online Scheduling on Identical Parallel

Machines with Two GoS Levels∗

CAI Shuang · LIU Ke

DOI: 10.1007/s11424-019-7427-6

Received: 15 December 2017 / Revised: 26 April 2018

c©The Editorial Office of JSSC & Springer-Verlag GmbH Germany 2019

Abstract This paper considers the online scheduling problem on m (m ≥ 3) parallel machines (the

first k machines with grade 1 and the remaining m−k machines with grade 2) with two GoS levels and

makespan as the objective function. The jobs arrive over time with grade 1 or 2 and an arrival job can

be assigned to a machine only when the grade of the job is no less than the grade of the machine. Three

cases are considered: (i) For k = 1, the authors present an online algorithm with competitive ratio of

9/5. (ii) For 1 < k < m − 1, an online algorithm with competitive ratio of 2.280 is proposed. (iii)

For k = m − 1, an online algorithm is presented with competitive ratio of 2. All the three algorithms

are based on greedy algorithm with a similar structure. At last, numerical instances are given and the

average competitive ratios of the instances show good performance of the proposed algorithms.

Keywords Grade of Service (GoS) constraints, heuristic algorithm, online scheduling, parallel ma-

chine scheduling.

1 Introduction

Scheduling problems are very common in many industries, such as industrial manufactur-
ing, CPU operating. As one of the most important categories in scheduling, parallel machine
scheduling has been studied for over fifty years. Many of the parallel machine scheduling prob-
lems are proved to be NP hard[1]. Therefore, polynomial algorithms to obtain the optimal
solutions are not likely to be found, so many heuristics and meta-heuristics have been studied,
such as Franca, et al.[2], Cheng and Gen[3], Chen and Powell[4], Chang, et al.[5]. Machine eligi-
bility constraints are very common for the scheduling on parallel machines, which means that a

CAI Shuang (Corresponding author)

Logistics R&D Department, Beijing Jingdong Zhenshi Information Technology Co., Ltd. Beijing 100176, China;

Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China; Univer-

sity of Chinese Academy of Sciences, Beijing 100190, China. Email: caishuang@amss.ac.cn.

LIU Ke

Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China; Univer-

sity of Chinese Academy of Sciences, Beijing 100190, China. kliu@amss.ac.cn.
∗This research was supported by the National Natural Science Foundation of China under Grant Nos. 71390334

and 11271356.
�This paper was recommended for publication by Editor WANG Shouyang.

HEURISTICS FOR ONLINE SCHEDULING 1181

job cannot be processed on all parallel machines. For the parallel machine scheduling problem
with releasing time and machine eligibility constraints, Grisselle and Armacost[6] proposed a
heuristic algorithm to minimum the maximum lateness. As a special case of machine eligibility
constraints, the Grade of Service (GoS) eligibility constraint is a qualitative concept, which is
motivated by the scheme that the customer with higher lever should get better service. GoS
eligibility constraint means that each job and machine can be graded and a job can be pro-
cessed on a machine if the grade of the job is no less than the grade of the machine. Though
many papers have been published for the parallel machine scheduling problems with different
kinds of machine eligibility constraints, such as Grisselle and Armacost[6], Liao and Sheen[7],
Edis and Ozkarahan[8], Tseng, et al.[9], few papers have been published for the parallel machine
scheduling problems with GoS eligibility constraints under offline version.

While in many cases, the problems have the constraint that jobs are presented to schedulers
only when they arrive, which are called online scheduling problems. There are two paradigms
of online scheduling: Jobs arrive one by one or over time, i.e., online over list or online over
time. Compared with the offline scheduling problems on parallel machines, there are really
few papers studying the online scheduling problems on parallel machines. Competitive ratio is
used to measure the performance of online algorithm, which is defined as the worst competitive
ratio among all the instances, i.e., cA = maxI CI

∗/CA
I , where cA, I, C∗

I and CA
I represent the

competitive ratio of algorithm A, an instance, the makespan of an optimal offline schedule for
instance I and the makespan by algorithm A for instance I, respectively[8]. For the paradigm
of online over list, a job will arrive only when the former one is scheduled (i.e., jobs arrive one
by one) and the arriving time of each job is 0. There are some papers studying for online over
list in parallel machine scheduling, such as Jongho, et al.[10], Jiang, et al.[11], Yong, et al.[12],
Zhang, et al.[13], Tan and Zhang[14], Jiang[15], Liu, et al.[16], Marvin and Shabtay[17].

For the paradigm of online over time, jobs arrive over time and a job can be seen and
scheduled only when it arrives. Although the paradigm of online over time is more realistic,
very little work has been published until now. For the problem P2 |online, rj , pmtn |Cmax

(preemption is allowed), Hong and Leung[18] provided an exact algorithm with competitive
ratio of 1. Chen and Vestjens[19] studied problem Pm |online, rj |Cmax and proved that the
algorithm of LPT has 3/2-competitive performance and the best competitive ratio is at least
1.347. John and Seiden[20] proposed an optimal online algorithm with competitive ratio of
1.382 when m = 2. Grissele and Armacost[21] gave an LPT-based heuristic algorithm for
problem Pm |online, rj , Mj |Cmax . Lee, et al.[22] proposed optimal algorithms for two prob-
lems P2 |online, rj , Mj, pj = p |Cmax and P2 |online, rj , Mj(GoS), pj = p |Cmax with com-
petitive ratio of (

√
5 + 1)/2 and

√
2, respectively. For the online scheduling problem with

arbitrary processing time of each job, i.e., P2 |online, rj , Mj(GoS) |Cmax , Xu and Liu[23] pro-
posed an optimal algorithm with competitive ratio 1.555. The proposed algorithm allows that
the two machines are both idle at the same time while not all arrival jobs have been pro-
cessed. Li and Zhang[24] studied two online scheduling problems U2 |online, rj |Cmax and
Pm |online, rj |Cmax . Recently, Cai, et al.[25] studied the online scheduling on two identi-
cal parallel machines under a grade of service provision. The paper gave a heuristic online

1182 CAI SHUANG · LIU KE

algorithm based on greedy algorithm, with competitive ratio 5/3.
There is a famous result proposed by Shmoys, et al.[26] which can be used as a general

methodology for solving various online problems. The authors proved that any offline algo-
rithm for a scheduling problem can be used to obtain an online algorithm for the problem
where jobs arrive over time. As Ou, et al.[27] proposed the polynomial-time approximation
scheme (PTAS) for offline problem Pm |rj , Mj(GoS) |Cmax , the online scheduling problem
Pm |online, rj , Mj(GoS) |Cmax has a (2+ε)-competitive polynomial time algorithm for any
positive constant ε. However, the PTAS has very high running time, there are faster approxima-
tion algorithms with a constant worst-case bounds 4/3 for the offline problem Pm|rj , Mj(GoS)|
Cmax proposed by Ou, et al.[27] and Huo and Joseph[28]. Therefore, the effective online algo-
rithm for the online problem Pm |online, rj , Mj(GoS) |Cmax is 8/3-competitive. And to our
best knowledge, there are no other papers published for the online scheduling on more than
two parallel machines with jobs arriving over time under GoS constraints.

Greedy algorithm means that the decision makers make the locally optimal choice at each
stage with the hope of finding a global optimum. Cai, et al.[25] proposed an online scheduling
algorithm based on greedy method for two parallel machines. In this paper the problem is
harder and the online algorithms are more complex. We study the online scheduling problem
on m (m > 2) parallel machines with 2 GoS levels where jobs arrive over time. There are k

machines with grade 1 and m−k machines with grade 2. Each job has grade 1 or 2 and it can be
assigned to a machines only when the grade of the job is no less than the grade of the machine.
Three cases are considered: For k = 1, we proposed an online algorithm Alg1 with competitive
ratio of 9/5. For 1 < k < m − 1, an online algorithm Alg2 is presented to schedule jobs with
competitive ratio of 2.280. For k = m−1, we propose an online algorithm Alg3 with competitive
ratio of 2. The three algorithms have similar structures, which are very useful and novel for
the considered problem. At last, a new measurement is presented: The average competitive
ratio, which is defined as the average competitive ratio for all instances. Numerous instances are
computed and the results demonstrate that the proposed algorithms have good performances on
average. The mixed integer liner programming model for the problem Pm |rj , Mj(GoS) |Cmax

is formulated and it is used to obtain the optimal solution for the offline scheduling version.
The contributions of this paper include the following two aspects: 1) The problem Pm |rj , Mj

(GoS) |Cmax is studied for the first time. 2) Three online algorithms are proposed for the three
cases of the considered problem with effective competitive ratios and the average competitive
ratios of them is very small through lots of experiments.

The rest of this paper is as follows. In Section 2, the considered problem is described with
more details. In Section 3, online algorithm Alg1 is proposed with competitive ratio of 9/5 for
the considered problem in the case of k = 1. Online algorithm Alg2 is presented for the case
of 1 < k < m− 1 in Section 4 and its competitive ratio is 2.280. In Section 5, online algorithm
Alg3 is proposed with competitive ratio of 2 for the case of k = m − 1. In Section 6, for
each of numerous instances, the offline optimal makespan and the makespan by the proposed
algorithms are computed to obtain the competitive ratio. The results show the effectiveness of
the three proposed online algorithms. Finally, we give the conclusions in Section 7.

HEURISTICS FOR ONLINE SCHEDULING 1183

2 Problem Description

In this paper, we consider the online scheduling on m (m > 2) identical parallel machines
with two GoS levels. Suppose that the total number of parallel machines is k+ l (i.e., m = k+ l)
and the first k machines have grade 1, while the last l machines have grade 2, which can be
denoted as 1-machines and 2-machines, respectively. Jobs arrive over time with grade 1 or 2,
i.e., 1-jobs or 2-jobs. We do not know anything about each job until it arrives. For any instance
I, the arriving (processing) time and the grade of job Jj are denoted as rj (pj) and gj . The
manager needs to decide the assignment of each job after it arrives in order to minimize the
makespan. The considered problem with three cases can be described as the α |β |γ notation:

P1+m−1 |online, rj, Mj (GoS) |Cmax ,
Pk+m−k |online, rj, Mj (GoS) |Cmax ,
Pm−1+1 |online, rj, Mj (GoS) |Cmax .

Here the three cases have different machine environments:
1) P1+m−1 represents one 1-machine and m − 1 (m − 1 > 1) 2-machines.
2) Pk+m−k represents k (k > 1) 1-machines and m − k (m − k > 1) 2-machines.
3) Pm−1+1 represents m − 1 (m − 1 > 1) 1-machines and one 2-machine.
The constraints are the same for the three cases of the considered problem:
a) online: The information of any job cannot be known until it arrives.
b) rj : The jobs arrive over time, i.e., each job has a release time.
c) Mj(GoS): Mj(GoS) represents the GoS eligibility constraints (Mj represents the machine

eligibility constraints).

3 Problem P1+m−1 |online, rj , Mj (GoS) |Cmax

In this section, the problem P1+m−1 |online, rj, Mj (GoS) |Cmax is considered. Firstly a new
online algorithm Alg1 is proposed. Then, the time complexity of algorithm Alg1 is analyzed.
At last, the competitive ratio of algorithm Alg1 is proved to be at most 9/5.

3.1 An Online Algorithm for Problem P1+m−1 |online, rj, Mj (GoS) |Cmax

Here we show a new online algorithm which is proved to have a good performance. In order
to describe the algorithm clearly, we make some definitions:

t: The decision time, which can be the arriving time or completion time of each job.
A1(t): The set of arrival 1-jobs which have not been processed on the 1-machines before

time t, the sequence of A1(t) is sorted according to the rule of ERT (earliest releasing time
first).

A2(t): The set of arrival 2-jobs which have not been processed before time t, the sequence
of A2(t) is sorted according to the rule of LPT (longest processing time first).

|A2(t)|: The number of elements in A2(t).
J t

j : The j-th job of A2(t).
Ci,t: The completion time of machine Mi when finishing all the assigned jobs before or at

time t.

1184 CAI SHUANG · LIU KE

CA: The maximum completion time (makespan) among all jobs by the proposed algorithm.
Ci,t can be understood as the time when machine Mi become idle (if no jobs are assigned

to the machine after time t). The online algorithm Alg1 is proposed for each decision moment
t (by pseudo code).

Algorithm Alg1

1) Update A1(t), A2(t) when there are new jobs arriving.
2) If A1(t) �= ∅, let all jobs of A1(t) be assigned to machine M1.
3) While A2(t) �= ∅ and one of the 2-machines is idle
4) Let the first job of A2(t) be assigned to this 2-machine.
5) If machine M1 is idle:
6) For j = 1 to |A2(t)|:
7) If we assign all the jobs before J t

j in A2(t) to 2-machines by greedy algorithm and
8) In this case pt

j/mini>1(Ci,t − Si,a) ≤ 5/4 (Si,a is the starting time of job Ji,a which
9) is processed on machine Mi at time t), assign job J t

j to machine M1, break.

Algorithm Alg1 is proposed as shown above, while it may be a bit complicated in lines 6–9.
The greedy algorithm means that the job with the largest processing time will be assigned to
the machine with the smallest completion time. Lines 6–9 is used to choose a 2-job J t

j which
has the largest processing time in A2(t) and satisfies pt

j/mini>1(Ci,t − Si,a) ≤ 5/4. Here Ci,t

may be larger than the completion time of Ji,a in machine Mi according to line 7.
The time complexity of Alg1 is analyzed as follows: The time for sorting the jobs is at most

O(n2). the decision times are the arriving times or completion times of all jobs, i.e., O(n),
while the time for each decision is at most O(n2m), so the total time complexity for decision is
at most O(n3m). We have the time complexity of Alg1 is O(n3m).

3.2 The Competitive Ratio of Algorithm Alg1

In this subsection, we give the competitive ratio of the proposed algorithm. Firstly, we
give the analysis for the case that the last completed job Jn is a 1-job in Lemma 3.1. Then,
Lemma 3.2 deals with the case that the last completed job Jn is a 2-job. We denote the
makespan by algorithm Alg1 as CA and the optimal makespan under offline condition as C∗.
We just need to consider the case that all machines are not idle at the same time until all
jobs are completed by algorithm Alg1, because all jobs arriving before this time is completed
at this time by Alg1 and all jobs arriving after this time cannot start before it in the optimal
schedule. In the following Lemmas 3.1 and 3.2, the continuous assigned 1-jobs Jq1 , Jq2 , · · · , Jqs

by algorithm Alg1 are seen as a new 1-job Jq with rq = min1≤i≤s rqi and pq =
∑

1≤i≤s pqi .

Lemma 3.1 If the last completed job Jn is a 1-job, the competitive ratio of algorithm
Alg1 is at most 9/5.

Proof For any instance I, without loss of generality, let C∗ = 1. Suppose that CA > 9/5.
According to algorithm Alg1, if there are no 2-jobs assigned to machine 1, the makespan by

HEURISTICS FOR ONLINE SCHEDULING 1185

Alg1 must be equal with the optimal makespan. Define the last 2-job on machine M1 as
Jw and the starting time of Jw is Sw = CA − pn − pw < 1 − pn. We have pw > 4/5 and
rw < 1/5. In lines 6–9 of Alg1, a 2-job that is assigned to machine M1 at time t must satisfy
pw/mini>1(Ci,t −Sa) ≤ 5/4. Then there is at least a job with processing time more than 16/25
on each 2-machine, so the instance has at least (l + 1) 2-jobs with processing time of each job
more than 16/25 and the processing time of the other jobs should be less than 9/25 because
C∗ = 1.

As job Jw should be assigned to machine M1 before time CA−pn−pw if machine M1 is idle
at any time in time interval (1−pw, CA−pn−pw), machine M1 must process a 2-job or a 1-job
at time 1 − pw. If machine M1 only processes 1-jobs in time interval (1 − pw, CA − pn − pw),
the total processing time of all 1-jobs is at least CA − 1 > 9/25, which is also contracted with
C∗ = 1. In the schedule of algorithm Alg1, if a 2-job Jr (Jr �= Jw) starts after or at time 1−pw

on machine M1, the processing time of Jr should be more than 16/25, which is contracted with
C∗ = 1, so no other 2-job starts after time 1− pw. If a 2-jobs Jr starts before time 1 − pw and
is completed after 1− pw and we denote the sum of processing times of these 1-jobs which are
processed in (1−pw, CA−pn−pw) as x (x ≥ 0), it satisfies that pr +x > CA−1−pn > 4/5−pn

and pn + x < 9/25, so we have pr > 11/25, which is also contracted with C∗ = 1. Above all,
we have CA ≤ 9/5.

In Lemma 3.2 and Lemma 4.1, the total processing time after time S by the optimal schedule
includes at least two cases for each job Jj : 1) pj if rj ≥ S. 2) max(0,rj + pj − S) if rj < S.

Lemma 3.2 If the last completed job Jn is a 2-job, the competitive ratio of algorithm
Alg1 is at most 9/5.

Proof For any instance I, without loss of generality, let C∗ = 1. Suppose that CA > 9/5.
As Jn is a 2-job, then the 2-machines must be busy in time interval [1−pn, CA−pn]. According
to lines 6–9, if machine M1 is idle at a time t in the above time interval, Jn (or a job before
Jn in A2(t)) should be assigned to M1, so machine M1 must be busy in time interval [1 − pn,
CA−pn]. We denote the last idle time of the 2-machines before time 1−pn as S, if S ≤ 4/5−pn,
it is obviously that the total processing time of all machines is more than l + 1, so we have
1 − pn ≥ S > 4/5 − pn.

If pn > 3/5, there must exist a 2-job (�= Jn) with processing time more than 3/5 on each
2-machine and some 1-jobs with the sum of the processing times at least 2/5 or a 2-job (�= Jn)
with processing time at least 2/5 on machine M1, which is contracted with C∗ = 1. Therefore,
we have pn ≤ 3/5.

The continuous 1-jobs on machine M1 can be seen as a 1-job in the following analysis of
this lemma. The jobs which are processed on 2-machines and arrive before time S and are
completed after time S are denoted as Ji1 , Ji2 , · · · , Jiu and u < l. Let the maximum waiting
time among the above jobs as x, i.e., x = maxj(Sij − rij). There are three cases:

i) If machine M1 is not always busy in time interval [S, 1− pn], the job processed after or at
time 1 − pn must be arrived after time S. As the schedule by Alg1 process Ji1 , Ji2 , · · · , Jiu at
or before time S, if x ≤ S

2 , the total processing time after time S by the optimal schedule is at

1186 CAI SHUANG · LIU KE

least (CA−pn−S)∗l+CA−1+pn−x∗l ≥ (1−S)∗(l+1)+(CA−1−pn− S
2)∗l+CA−2+ S

2 +pn.
However, (CA − 1− pn − S

2) ∗ l + CA − 2+ S
2 + pn ≥ (CA − 3

2 − pn

2) ∗ l + CA − 2+ 1
2 > 0, which

is contracted with C∗ = 1. If x > S
2 , the total processing time of all machines by Alg1 is at

least (CA − pn − S) ∗ l + CA − 1 + S
2 ∗ l + S

2 + pn ≥ (CA − pn − S
2) ∗ l + CA − 1 + S

2 + pn ≥
(CA − pn

2 − 1
2) ∗ l + CA − 1 + 1

2 > l + 1, which is contracted with C∗ = 1.
ii) If machine M1 is always busy in time interval [S, 1 − pn] and processes a 1-job at time

S, there are two cases with almost the same analysis of i): if x ≤ S
2 , the total processing time

after time S by the optimal schedule is at least (CA − pn − S) ∗ (l + 1) − S
2 ∗ l − S + pn ≥

(1 − S) ∗ (l + 1) + (CA − 1 − pn − S
2) ∗ (l + 1) − S

2 + pn, by the same method of i) we have it
is contracted with C∗ = 1. If x > S

2 , we also have the total processing time of all machines by
Alg1 is above l + 1, which is contracted with C∗ = 1.

iii) If machine M1 is always busy in time interval [S, 1 − pn] and processes a 2-job Jq at
time S, there are two cases: a) Machine M1 does not process a 1-job immediately after the
completion time of Jq, by the same analysis of ii), we can obtain a contradiction. b) Otherwise,
a 1-job Jw is processed once Jq is completed. If rw ≥ S or Cw ≤ 1 − pn, we can easily obtain
a contradiction by the method of i) and ii), so rw < S and Cw > 1 − pn. Although there are
two jobs which arrive before time S and are completed after time S, we have in the optimal
schedule, the starting time of Jq (Jw) is at least 0 (Sq). Therefore, by the same analysis of ii)
we can obtain a contradiction with C∗ = 1.

Theorem 3.1 Algorithm Alg1 has competitive ratio of 9/5 for problem P1+m−1 |online, rj, Mj

(GoS) |Cmax .

Proof Combining Lemma 3.1 and Lemma 3.2, we can obtain Theorem 3.1. It is clearly
that the lower bound is tight.

4 Problem Pk+m−k |online, rj , Mj (GoS) |Cmax

In this section, the problem Pk+m−k |online, rj, Mj (GoS) |Cmax is considered. Firstly a new
online algorithm Alg2 is proposed. Then, the time complexity of algorithm Alg2 is analyzed.
At last, the competitive ratio of algorithm Alg2 is proved to be at most 2.280.

4.1 An Online Algorithm for Problem Pk+m−k |online, rj, Mj (GoS) |Cmax

Here we show a new online algorithm for problem Pk+m−k |online, rj, Mj (GoS) |Cmax which
is proved to have a good performance. We use the same definitions as Subsection 3.1 except
the following two notations:

A1(t): The set of arrival 1-jobs which have not been processed on the 1-machines before
time t, the elements in A1(t) is sorted according to the rule of LPT (longest processing time
first).

S(t): The maximum time that one of the 2-machines is idle before time t.
The online algorithm Alg2 for each decision moment t is proposed as follows (by pseudo

code):

HEURISTICS FOR ONLINE SCHEDULING 1187

Algorithm Alg2

1) Update A1(t), A2(t) when there are new jobs arriving.
2) While A1(t) �= ∅ and one of the 1-machines is idle.
3) Let the first job of A1(t) be assigned to this 1-machine.
4) While A2(t) �= ∅ and one of the 2-machines is idle
5) Let the first job of A2(t) be assigned to this 2-machine.
6) Flag=1.
7) While one of the 1-machine is idle and Flag=1
8) Flag=0.
9) For j = 1 to |A2(t)|:
10) If we assign all the jobs before J t

j in A2(t) to 2-machines by greedy algorithm and
11) In this case pt

j/mini>k(Ci,t − S(t)) ≤ (
√

17 − 1)/4, assign job J t
j to a idle 1-machine

12) and let Flag=1, break.

The lines 6–12 use the greedy algorithm similar to lines 5–9 of Alg1. The time complexity
of Alg2 are analyzed as follows: The time for sorting the jobs is at most O(n2m). the decision
times are the arriving times or completion times of all jobs (O(n) times), while the time for
each decision is at most O(n2m), so the total time complexity for decision is at most O(n3m),
i.e., the time complexity of Alg2 is O(n3m).

4.2 The Competitive Ratio of Algorithm Alg2

In this subsection, we give the competitive ratio of the proposed algorithm Alg2. With the
same analysis of Subsection 3.2, firstly we give the proof when the last completed job Jn is a
1-job in Lemma 4.1. Then, Lemma 4.2 deals with the case that the last completed job Jn is a
2-job.

Lemma 4.1 If the last completed job Jn is a 1-job, the competitive ratio of algorithm
Alg2 is at most (

√
17 + 5)/4 ≈ 2.280.

Proof For any instance I, without loss of generality, let C∗ = 1 and α = (
√

17− 3)/4 and
we denote the 1-machine which processes Jn as machine Mi. Suppose that CA > 2 + α. As
the last job Jn is a 1-job, all 1-machines do not process 2-jobs after time 1 − pn unless their
starting times are before time 1 − pn. All 1-jobs have arrived at time 1 − pn according to lines
2–3 and the definition of A1(t) and all 1-machines are busy at time interval [1 − pn, CA − pn].
We denote the last completed 2-job on the 1-machines as Jls (processed on machine Mi′) and
it can be known that Sls < 1 − pn. As the optimal makespan for this instance is 1, we have
pls ≤ 1 and Cls = Sls + pls < 2 − pn < CA − pn. All 1-machines must process 1-jobs at time
interval [Cls, C

A−pn] according to lines 2–3, so all 1-machines processed at least one 1-job with
processing time more than pn during time interval [Cls − pn, CA − pn]. We obtain k′ 1-jobs
(k′ ≥ k) with processing time above or equal to pn at this time interval, so there are at least
(k′ + 1) 1-jobs with starting time after 1 − pn. While these (k′ + 1) 1-jobs are started after

1188 CAI SHUANG · LIU KE

job Jls and the optimal makespan is 1, the earliest arriving time among these jobs is at most
1 − 2pn and Sls < 1 − 2pn, which can obtain that pn ≤ 0.5.

If there exists y (y ≥ 0) 1-jobs with arriving time before Sls and completion time after
Cls, the starting time of these jobs by algorithm Alg2 must be at or before time Sls. The
earliest arriving time among the 1-jobs with starting time after or at time Sls is at most
1− (CA − pn −Cls), i.e., Sls ≤ 1− (CA − pn −Cls), because the total processing time after Sls

by the optimal schedule is at least (CA−pn−Cl)∗k−(Sls−pls)∗y ≥ CA−pn−Cl)∗k (Sls ≤ pls

as (CA−pn−Cl)∗k−(Sls−pls)∗y ≤ (1−Sls)∗k). We have pls ≥ Cls−(1−(CA−pn−Cls)) =
CA − 1 − pn > 1 + α − pn ≥ 0.5 + α.

According to lines 6–12, Jls is assigned to machine Mi′ at time Sls if we assign all the jobs
before Jls in A2(Sls) to 2-machines by greedy algorithm and pls/mini>k(Ci,Sls

− S(Sls)) ≤
(
√

17 − 1)/4. It is obvious that all the jobs before Jls in A2(Sls) to 2-machines must be
assigned to 2-machines as Jls is the 2-job with the last completion time on all 1-machines. As
Ci,Sls

− S(Sls) ≥ pls/(
√

17− 3)/4 ≥ 1, ∀i > k, the total processing time of all 2-machines must
be at least l. While all the 1-machines are busy during time interval [1−pn, CA −pn], the total
processing time of all machines is at least k(1 + α) + l > m, which is contracted with C∗ = 1.

Lemma 4.2 If the last completed job Jn is a 2-job, the competitive ratio of algorithm
Alg2 is at most (

√
17 + 5)/4 ≈ 2.280.

Proof For any instance I, without loss of generality, let C∗ = 1 and α = (
√

17 − 3)/4.
Suppose that CA > 2+α. As the last job Jn is a 2-job, then all 2-machines must be busy at time
interval [1 − pn, CA − pn]. According to lines 6–12, all the 2-jobs on 2-machines with starting
time after 1−pn have already arrived at time 1−pn and they have the front position in A2(1−pn)
compared with job Jn. If a 1-machine is idle at time [t0, t1], 1 − pn ≤ t0 < t1 ≤ CA − pn, job
Jn should be assigned to the idle 1-machine, so all 1-machines have to be busy at time interval
[1− pn, CA − pn]. In this way, we have the total processing time by algorithm Alg2 is above m,
which is contracted with C∗ = 1.

Theorem 4.1 Algorithm Alg2 for problem Pk+m−k |online, rj, Mj (GoS) |Cmax has com-
petitive ratio of (

√
17 + 5)/4 ≈ 2.280.

Proof Combining Lemma 4.1 and Lemma 4.2, we can obtain Theorem 4.1. In fact, the
competitive ratio of 2.280 is tight, which can be obtained as follows (Suppose k = 4 and l = 2):

i) At time t = 0 two 2-jobs J1, J2 arrives with p1 = p2 = 2√
17+3

. According to Alg2, J1, J2

are assigned to the two 2-machines.
ii) At time t = ε (a sufficient small and positive number) three 2-jobs J3, J4, J5 arrive with

p3 = p4 = p5 = 1 + ε. According to lines 6–12 of Alg2, J3, J4, J5 cannot be assigned to
1-machines if no new jobs arrive.

It is clearly that the competitive ratio of the above instance is infinitely close to 2.280 when
ε → 0.

HEURISTICS FOR ONLINE SCHEDULING 1189

5 Problem Pm−1+1 |online, rj , Mj (GoS) |Cmax

In this section, the problem Pm−1+1 |online, rj, Mj (GoS) |Cmax is considered. Firstly a new
online algorithm Alg3 is proposed. Then, the time complexity of algorithm Alg3 is analyzed.
At last, the competitive ratio of algorithm Alg3 is proved to be at most 2.

5.1 An Online Algorithm for Problem Pm−1+1 |online, rj, Mj (GoS) |Cmax

Here we show a new online algorithm for the third case of the scheduling problem which
is proved to have a good performance. In Subsection 5.1, we use the same definitions of the
notations as Subsection 4.1. The online algorithm Alg3 for each decision moment is proposed
by pseudo code as follows.

Algorithm Alg3

1) Update A1(t), A2(t) when there are new jobs arriving.
2) While A1(t) �= ∅ and one of the 1-machines is idle
3) Let the first job of A1(t) be assigned to this 1-machine.
4) If A2(t) �= ∅ and the 2-machine is idle
5) Let the first job of A2(t) be assigned to the 2-machine.
6) Flag=1.
7) While one of the 1-machine is idle and Flag=1.
8) Flag=0.
9) For j = 1 to |A2(t)|:
10) If we assign all the jobs before J t

j in A2(t) to the 2-machine.
11) And in this case pt

j/ (Cm,t − S(t)) ≤ 1, assign job J t
j to a idle 1-machine.

12) And let Flag=1, break.

The time complexity of Alg3 are analyzed as follows: i) The time for sorting the jobs is at
most O(n2). ii) The decision times are jobs’ arriving times or completion times (O(n)), while
the time for each decision is at most O(n2m). Therefore, the total time complexity for decision
is at most O(n3m).

5.2 The Competitive Ratio of Algorithm Alg3

This subsection gives the competitive ratio of the proposed algorithm Alg3. With the same
analysis of Sections 3 and 4, firstly the proof is given when the last completed job Jn is a 1-job.
Then, Lemma 5.2 deals with the case that the last completed job Jn is a 2-job.

Lemma 5.1 If the last completed job Jn is a 1-job, the competitive ratio of algorithm
Alg3 is at most 2.

Proof For any instance I, without loss of generality, let C∗ = 1. Suppose that CA > 2.
We denote the 1-machine which processes Jn as machine Mi and the last completed 2-job on
the 1-machines as Jls. With the same analysis as Lemma 4.1, pls ≥ Cls − (1 − (CA − pn −
Cls)) = CA − 1 − pn > 1 − pn. According to lines 6–12, Jls is assigned to a 1-machine at
time Sls when it satisfies: If we assign all the jobs before Jls in A2(Sls) to the 2-machine and

1190 CAI SHUANG · LIU KE

pls/(Cm,Sls
− S(Sls)) ≤ 1. It is obvious that all the jobs before Jls in A2(Sls) to the 2-machine

must be assigned to the 2-machine as Jls is the 2-job with the last completion time on the
1-machines. While all the 1-machines are busy during time interval [1− pn, CA − pn], the total
processing time of all machines is at least m− pn + pn > m, which is contracted with C∗ = 1.

Lemma 5.2 If the last completed job Jn is a 2-job, the competitive ratio of algorithm
Alg3 is at most 2.

Proof For any instance I, without loss of generality, let C∗ = 1. Suppose that CA > 2. As
the last job Jn is a 2-job, then the 2-machine must be busy at time interval [1 − pn, CA − pn].
According to Alg3, all the 2-jobs on the 2-machine with starting time after 1− pn have already
arrived at time 1 − pn and they have the more front position in A2(1 − pn) compared with job
Jn. If a 1-machine is idle at time [t0, t1], 1− pn ≤ t0 < t1 ≤ CA − pn, job Jn should be assigned
to the idle 1-machine, so all 1-machines have to be busy at time interval [1 − pn, CA − pn].
While in this way, it is obvious that the total processing time by algorithm Alg3 is above m,
which is contracted with C∗ = 1.

Theorem 5.1 Algorithm Alg3 for problem Pm−1+1 |online, rj, Mj (GoS) |Cmax has com-
petitive ratio of 2.

Proof Combining Lemma 5.1 and Lemma 5.2, we can obtain Theorem 5.1. In fact, it is
clearly that the lower bound 2 of Alg3 is tight.

6 Experiments for Average Competitive Ratio

In this section, we build 100 instances for the scheduling problem and compute the compet-
itive ratio for each instance in each of three machine environments.

6.1 Preparation for Experiments

Firstly, we give an introduction for the instances generating. All the instances are the same
except the machine environment, which are (1, 5), (3, 5), and (5, 1) (the first number represents
the number of 1-machines, while the second one represents the number of 2-machines), respec-
tively. The number of jobs is 20 for all the instances. Each instance is obtained by the following
method: Both the processing time and the arriving time are subject to uniform distribution
([1, 5] and [0, 30], respectively). The grade of each job is 1 or 2 randomly with equal probability
1/2. In order to obtain the optimal schedule for problem Pm |rj , M(GoS) |Cmax , we propose
a mixed integer liner programming and the optimal makespan is obtained by the lpsolve solver
(the optimal makespan of each instance can be obtained within 3 minutes). In the model, we

HEURISTICS FOR ONLINE SCHEDULING 1191

sort the jobs by arriving time, i.e., r1 ≤ r2 ≤ · · · ≤ rn.

min Cmax (1)

s.t. Cmax ≥ Ci,n, ∀i, (2)

Ci,j ≥ (rj + pj)Xj,i, ∀i, j, (3)

Ci,j ≥ Ci,j−1 + pjXj,i, ∀i, j ≥ 2, (4)

Xj,i ≤ gj − 1, ∀j, i > k, (5)
∑

1≤i≤m

Xj,i = 1, ∀j, (6)

Cmax and Ci,j : Continuous variable, Xj,i ∈ {0, 1}. (7)

6.2 Analysis for the Experiments’ Results

For each online algorithm A, the running results for algorithm A are compared with the
optimal makespan for each instance and the ratios for all the 100 instances are summarized
(the ratio of each instance = the makespan by A/the optimal makespan). Table 1 records the
average ratios in group of ten instances. The results demonstrate the average ratio for the
instances is very small and very close to 1. Although the instances are just some cases for
the problems and they cannot represent the average ratio for all the cases, we can easily get
the conclusion that the proposed algorithms (Alg1, Alg2 and Alg3) are very effective online
algorithms for the scheduling problem.

Table 1 The results for the scheduling problem under three machine environments

Alg1 Alg2 Alg3

Instances Ratios Instances Ratios Instances Ratios

Problems 01–10 1.026 Problems 01–10 1.077 Problems 01–10 1.088

Problems 11–20 1.018 Problems 11–20 1.050 Problems 11–20 1.082

Problems 21–30 1.018 Problems 21–30 1.083 Problems 21–30 1.087

Problems 31–40 1.025 Problems 31–40 1.060 Problems 31–40 1.072

Problems 41–50 1.018 Problems 41–50 1.054 Problems 41–50 1.064

Problems 51–60 1.021 Problems 51–60 1.056 Problems 51–60 1.080

Problems 61–70 1.022 Problems 61–70 1.056 Problems 61–70 1.068

Problems 71–80 1.022 Problems 71–80 1.058 Problems 71–80 1.048

Problems 81–90 1.014 Problems 81–90 1.054 Problems 81–90 1.059

Problems 91–100 1.028 Problems 91–100 1.059 Problems 91–100 1.052

7 Conclusions

In this paper, we consider online scheduling on identical parallel machines with 2 GoS
levels. When there are one 1-machine and more than one 2-machines, an online algorithm Alg1

1192 CAI SHUANG · LIU KE

is proposed with competitive ratio of at most 9/5. For the scheduling problem with more than
one 1-machines and more than one 2-machines, we present an effective online algorithm Alg2
with competitive ratio of at most 2.280. When there are more than one 1-machines and one
2-machine used for processing jobs, we propose an online algorithm Alg3 with competitive ratio
of at most 2. All the proposed algorithms satisfy that a 1-machine (2-machine) cannot be idle
when there are an unprocessed 1-job (2-job), which can be seen as greedy algorithms. This
property makes sure that the proposed algorithms perform well with the average ratios, which
is very meaningful for real manufacturing.

As the complexity of the considered problem, it is difficult to find an online algorithm with
competitive ratio of at most 2 for the second case. Future research is to find an effective online
algorithm with a better competitive ratio for the second case of the considered problem.

References

[1] Mokotoff E, Parallel machine scheduling problems: A survey, Asia-Pacific Journal of Operational

Research, 2001, 18(2): 193–242.

[2] Franca P M, Gendreau M, Laporte G, et al., A composite heuristic for the identical parallel ma-

chine scheduling problem with minimum makespan objective, Computers & operations research,

1994, 21(2): 205–210.

[3] Cheng R and Gen M, Parallel machine scheduling problems using memetic algorithms, Computers

& Industrial Engineering, 1997, 33(3–4): 761–764.

[4] Chen Z L and Powell W B, Solving parallel machine scheduling problems by column generation,

INFORMS Journal on Computing, 1999, 11(1): 78–94.

[5] Chang P C, Chen S H, and Lin K L, Two-phase sub population genetic algorithm for parallel

machine-scheduling problem, Expert Systems with Applications, 2005, 29(3): 705–712.

[6] Grisselle C and Armacost R L, Parallel machine scheduling with release time and machine eligi-

bility restrictions, Computers & Industrial Engineering, 1997, 33(1–2): 273–276.

[7] Liao L W and Sheen G J, Parallel machine scheduling with machine availability and eligibility

constraints, European Journal of Operational Research, 2008, 184(2): 458–467.

[8] Edis E B and Ozkarahan I, A combined integer/constraint programming approach to a resource-

constrained parallel machine scheduling problem with machine eligibility restrictions, Engineering

Optimization, 2011, 43(2): 135–157.

[9] Tseng C T, Lee C H, Chiu Y S P, et al., A discrete electromagnetism-like mechanism for par-

allel machine scheduling under a grade of service provision, International Journal of Production

Research, 2017, 55(11): 3149–3163.

[10] Jongho P, Chang S Y, and Lee K, Online and semi-online scheduling of two machines under a

grade of service provision, Operations Research Letters, 2006, 34(6): 692–696.

[11] Jiang Y W, He Y, and Tang C M, Optimal online algorithms for scheduling on two identical

machines under a grade of service, Journal of Zhejiang University-Science, 2006, A7(3): 309–

314.

[12] Yong W, Ji M, and Yang Q F, Optimal semi-online scheduling algorithms on two parallel identical

HEURISTICS FOR ONLINE SCHEDULING 1193

machines under a grade of service provision, International Journal of Production Economics, 2012,

135(1): 367–371.

[13] Zhang A, Jiang Y W, and Tan Z Y, Online parallel machines scheduling with two hierarchies,

Theoretical Computer Science, 2009, 410(38–40): 3597–3605.

[14] Tan Z Y and Zhang A, A note on hierarchical scheduling on two uniform machines, Journal of

Combinatorial Optimization, 2010, 20(1): 85–95.

[15] Jiang Y W, Online scheduling on parallel machines with two GoS levels, Journal of Combinatorial

Optimization, 2008, 16(1): 28–38.

[16] Liu M, Xu Y, Chu C, et al., Online scheduling on two uniform machines to minimize the makespan,

Theoretical Computer Science, 2009, 410(21–23): 2099–2109.

[17] Marvin M and Shabtay Dvir, Scheduling unit length jobs on parallel machines with lookahead

information, Journal of Scheduling, 2011, 14(4): 335–350.

[18] Hong K S and Leung J Y T, On-line scheduling of real-time tasks, IEEE Transactions on Com-

puters, 1992, 41(10): 1326–1331.

[19] Chen B and Vestjens A, Scheduling on identical machines: How good is LPT in an online setting,

Operations Research Letters, 1997, 21(4): 165–169.

[20] John N and Seiden S S, An optimal online algorithm for scheduling two machines with release

times, Theoretical Computer Science, 2001, 268(1): 133–143.

[21] Grissele C and Armacost R L, Minimizing makespan on parallel machines with release time

and machine eligibility restrictions, International Journal of Production Research, 2004, 42(6):

1243–1256.

[22] Lee K, Joseph Y T L, and Pinedo M L, Scheduling jobs with equal processing times subject to

machine eligibility constraints, Journal of Scheduling, 2011, 14(1): 27–38.

[23] Xu J and Liu Z H, An optimal online algorithm for scheduling on two parallel machines with GoS

eligibility constraints, Journal of the Operations Research Society of China, 2016, 4(3): 371–377.

[24] Li S S and Zhang Y Z, On-line scheduling on parallel machines to minimize the makespan, Journal

of Systems Science and Complexity, 2016, 29(2): 472–477.

[25] Cai S, Liu A, and Liu K, Online scheduling of two identical machines under a grade of service

provision, Control Conference (CCC), 2017 36th Chinese IEEE, 2017.

[26] Shmoys D B, Joel W, and David P W, Scheduling parallel machines on-line, SIAM Journal on

Computing, 1995, 24(6): 1313–1331.

[27] Ou J, Joseph Y T L, and Chung L L, Scheduling parallel machines with inclusive processing set

restrictions, Naval Research Logistics, 2008, 55(4): 328–338.

[28] Huo Y and Joseph Y T L, Fast approximation algorithms for job scheduling with processing set

restrictions, Theoretical Computer Science, 2010, 411(44–46): 3947–3955.

