
J Syst Sci Complex (2019) 32: 1767–1782

Logcf: An Efficient Tool for Real Root Isolation∗

DAI Liyun · FAN Zhe · XIA Bican · ZHANG Hanwen

DOI: 10.1007/s11424-019-7361-7

Received: 1 November 2017 / Revised: 14 October 2018

c©The Editorial Office of JSSC & Springer-Verlag GmbH Germany 2019

Abstract Computing upper bounds of the positive real roots of some polynomials is a key step

of those real root isolation algorithms based on continued fraction expansion and Vincent’s theorem.

The authors give a new algorithm for computing an upper bound of positive roots in this paper. The

complexity of the algorithm is O(n log(u+1)) additions and multiplications where u is the optimal upper

bound satisfying Theorem 3.1 of this paper and n is the degree of the polynomial. The method together

with some tricks have been implemented as a software package logcf using C language. Experiments on

many benchmarks show that logcf is competitive with RootIntervals of Mathematica and the function

realroot of Maple averagely and it is much faster than existing open source real root solvers in many

test cases.

Keywords Computer algebra, continued fractions, real root isolation, univariate polynomial, vin-

cent’s theorem.

1 Introduction

Real root isolation of univariate polynomials with integer coefficients is one of the funda-
mental tasks in computer algebra as well as in many applications ranging from computational
geometry to quantifier elimination. The problem can be stated as: Given a polynomial p ∈ Z[x],
computing for each of its real roots an interval with rational endpoints containing it and being
disjoint from the intervals computed for the other roots. There are three kinds of methods to
isolate real roots. The first kind consists of the subdivision algorithms using counting tech-
niques based on, e.g., the Sturm theorem or Descartes’ rule of signs. This method counts the
sign changes (of Sturm sequence or coefficients of some polynomials) in the considered interval
and if the sign changes reach 1 or 0, the procedure returns from this interval. Otherwise it sub-
divides the interval and computes recursively. The symbolic implementations of this method

DAI Liyun (Corresponding author)

RISE & School of Computer and Information Science, Southwest University, Chongqing 400700, China.

Email: dailiyun@swu.edu.cn.

FAN Zhe · XIA Bican · ZHANG Hanwen

LMAM & School of Mathematical Science, Peking University, Beijing 100871, China.
∗The research was supported by the National Science Foundation of China under Grant Nos. 61802318, 61732001

and 61532019.
�This paper was recommended for publication by Editor LI Hongbo.

1768 DAI LIYUN, et al.

can be found in [1–4] and the symbolic-numberic algorithms implementations can be found
in [3, 5–7].

The second kind of methods take use of the continued fraction algorithms[8–10]. These
methods are highly efficient and competitive[3, 11]. Especially, [11] provides a test dataset
consisting of 5000 polynomials from many different settings. And its results indicate that there
is no best method overall.

The third method is based on Newton-Raphson method and interval arithmetic. The search
space is subdivided until it contains only a single real root and Newton’s method converges.
When the polynomial is sparse and has very high degree, this method will be much faster than
other methods. The symbolic implementations of this kind of methods can be found in [12, 13]
and the numeric implementations can be found in [14, 15].

Those methods which are based on continued fraction compute the continued fraction ex-
pansion of the real roots of a polynomial in order to compute isolating intervals for real roots.
One important step is to compute the upper bounds of the positive real roots for some poly-
nomials. There are several classic methods to compute such upper bounds, such as Cauchy’s
bound, Lagrange-MacLaurin’s bound and Kioustelidis’ bound. And there are many recent
works about the upper bound of the positive roots of univariate polynomials[8, 16, 17]. Some
methods for computing these bounds, such as Cauchy’s bound, are of O(n) complexity but the
results are very coarse. Some methods, as presented in [8], are of O(n2) complexity but their
bounds are sharper. The balance between the precision and efficiency for computing such upper
bounds has to be taken into account.

1.1 Our Contribution

We provide a new method for computing such bounds with time complexity O(n log(u+1))
where u is the optimal upper bound satisfying Theorem 3.1. Besides, compared with [8], when
Algorithm 4 returns true (the upper bound is less than 1), our upper bound is at most two times
that in [8]. In this way, the algorithm of isolating real roots is improved. Our method has been
implemented as a software package logcf using C language. For many benchmarks logcf is about
four times faster than the function realrootof Maple. Roughly speaking, logcf is competitive
with RootIntervals of Mathematica. In some test cases logcf is faster than RootIntervals but
in some other cases RootIntervals is faster than logcf and the mean time of all test cases is
almost the same. But we have an interesting finding that RootIntervals may output wrong
results on some input polynomials due to incorrect zero judgement. And in general logcf is also
much faster than other state of the art open source exact real root isolation solvers, such as
CF, ANewDsc and SLV. For those benchmarks which have only real roots, logcf is much faster
than Sleeve and eigensolve which are based on numerical computation.

1.2 Organization

The rest of this paper is organized as follows. In Section 2, we review the main algorithm
for real root isolation based on continued fractions. We present some theoretical results about
upper bounds of positive roots in Section 3. In Section 4, we provide a new algorithm for

LOGCF: AN EFFICIENT TOOL FOR REAL ROOT ISOLATION 1769

computing an upper bound of positive roots and we also list some tricks used in logcf. In
Section 5, we list the comparative experimental results of our algorithm and other software.

2 Algorithm Based on Continued Fraction

In this section, we first recall Descartes’ rule of signs, which gives a bound on the number
of positive real roots. Then the Vincent theorem, which ensures the termination of algorithms
based on continued fractions, is presented. Finally, we review an algorithm of real root isolation
based on continued fractions.

As usual, deg(p) denotes the degree of univariate polynomial p. The derivative of polynomial
p with respect to the only variable is denoted by p′ and gcd(f, g) means the greatest common
divisor of polynomials f and g.

Example 2.1 Consider the polynomial

p1(x) = x6 + 2x5 − 4x4 + x3 + 10x2 − 5x + 5,

deg(p1) = 6, p′1 = 6x5 + 10x4 − 16x3 + 3x2 + 20x − 5.

Notation 1 (Sign variation) Let S = {a0, a1, · · · , an} be a finite sequence of non-zero
real numbers. Define V (S), the sign variation of S, as follows.

V (S) = 0 if |S| ≤ 1,

V (a0, · · · , an−1, an) =

{
V (a0, · · · , an−1) + 1, if an−1an < 0;

V (a0, · · · , an−1), otherwise.

If some elements of S are zero, remove those zero-elements to get a new sequence and define
V (S) to be the sign variation of this new sequence.

Theorem 2.2 (Descartes’ rule of signs) Suppose p =
∑n

i=0 aix
i ∈ R[x] has m positive real

roots, counted with multiplicity. Set V (p) = V (a0, a1, · · · , an). Then m ≤ V (p), and V (p) − m

is even.

Theorem 2.3 (Vincent’s theorem) Let p(x) be a real polynomial of degree n which has
only simple roots. It is possible to determine a positive quantity δ so that for every pair of
positive real numbers a and b with |b − a| < δ, the coefficients sequence of every transformed
polynomial of the form p(x) = (1 + x)np(a+bx

1+x) has exactly 0 or 1 sign variation. The second
case is possible if and only if p(x) has a single root within (a, b).

Definition 2.4 We define the following transformations for a univariate polynomial p(x) =
anxn + an−1x

n−1 + · · · + a1x + a0, n > 0.

lc(p(x)) = an,

R(p(x)) = xn

(
p

(
1
x

))
,

Hλ(p(x)) = p(λx),

T (p(x)) = p(x + 1),

D(p(x)) = anxn−1 + an−1x
n−2 + · · · + a2x + a1.

1770 DAI LIYUN, et al.

T (p) is also called Taylor shift one[18, 19].

Algorithm 1: loglb
.
Input: p ∈ Z[x], lc(p) �= 0.
Output: root lb, a lower bound of positive roots of p.
p = R(p);;
if lc(p) < 0 then p = −p; root lb =logup(p); /* logup is described as Algorithm

5 */

Vincent’s theorem provides a possible method to isolate the real roots. But it needs to
divide R into many small intervals and the width of these intervals is smaller than a given finite
value. So Vincent’s theorem cannot be used to isolate the real roots directly since R is infinite.
For employing Vincent’s theorem, we need to discard the intervals containing no real roots.
Algorithm 1 provides a lower bound lb of positive roots for given p. Since the interval (0, lb)
contains no real roots, we can safely discard (0, lb) when isolate the real roots.

Definition 2.5

intvl(a, b, c, d) =

⎧⎪⎨
⎪⎩

(
min

{
a

c
,
b

d

}
, max

{
a

c
,
b

d

})
, if cd �= 0;

(0,∞), otherwise.

Using the above notations and definitions, an algorithm for isolating all the real roots of
a nonzero univariate polynomial is described as Algorithm 2. Algorithm 3, which is a slight
modification of the algorithm in [8], is presented here to make our subsequent description clearer.

Continued fractions based procedures will continue subdividing the considered interval into
two subintervals and make a one to one map from (a, b) to (0, +∞) by p(x) = (1 + x)np(a+bx

1+x)
until V (p) equals 1 or 0. Informally, Algorithm 2 is employing the above map to magnify the
considered interval to (0, +∞). Through Descartes’ rule of signs, there is no positive real roots
if V (p) = 0. In this case we delete the interval from the considered interval set. When V (p) = 1,
this interval contains exact one real root by Descartes’ rule of signs. In this case we throw away
the interval from the considered interval set. When V (p) > 1, since it cannot be determined
how many real roots are contained in this interval, we divide the considered interval into two
subintervals. In this case we throw away the interval from the considered interval set and add
two subintervals to the considered interval set. Repeating this procedure, we can divide the
interval into subintervals until there is no width of the corresponding original interval greater
or equal to δ in considered interval set. Then there is at most one real root in every interval in
the considered interval set and then the procedure will terminate. This is also the reason why
Theorem 2.3 can guarantee the termination of Algorithm 2.

LOGCF: AN EFFICIENT TOOL FOR REAL ROOT ISOLATION 1771

Algorithm 2: main
Input: A non-zero polynomial p(x) ∈ Z[x].
Output: I, a set of real root isolating intervals of p(x).
I = ∅; ;
if deg(p) equals to 0 then

return I;
end
p = p

gcd(p,p′) ; /* square free */

if p(0) equals to 0 then
I.add([0, 0]); /* add [0, 0] to set I */

p = D(p); /* derivative of p */

end
I.addAll(cf(p)); ;
/* add all the positive root intervals to set I */

/* cf is described as Algorithm 3 */

p = p(−x);;
I.addAll(-cf(p));

Algorithm 3: cf
.
Input: A squarefree polynomial p ∈ Z[x] \ {0}.
Output: roots, a list of isolating intervals of positive roots of p.
roots = ∅; s = V (p);
intstack = ∅; intstack.add({1, 0, 0, 1, p, s}); while intstack �= ∅ do

{a, b, c, d, p, s} = intstack.pop();/* pop the first element */

λ = loglb(p); if λ ≥ 1 then {a, c, p} = {λa, λc, Hλ(p)};
{b, d, p} = {a + b, c + d, T (p)}; if p(0) == 0 then roots.add([b

d , b
d]); p = p

x ;
s = V (p); if s == 0 then continue; else if s == 1 then roots.add(intvl(a, b, c, d));
continue; {p1, a1, b1, c1, d1, r} = {T (p), a, a + b, c, c + d, 0}
if p1(0) == 0 then roots.add([b1

d1
, b1

d1
]); p1 = p1

x ; r = 1; s1 = V (p1);
{s2, a2, b2, c2, d2} = {s − s1 − r, b, a + b, d, c + d}; if s2 > 1 then
p2 = (x + 1)deg(p)T (p); if p2(0) == 0 then p2 = p2

x ; s2 = V (p2); if s1 == 1 then
roots.add(intvl(a1, b1, c1, d1)); else if s1 > 1 then
intstack.add({a1, b1, c1, d1, p1, s1});
if s2 == 1 then roots.add(intvl(a2, b2, c2, d2)); else if s2 > 1 then
intstack.add({a2, b2, c2, d2, p2, s2}).

end

1772 DAI LIYUN, et al.

3 A New Upper Bound of Positive Real Roots for Polynomials

One key ingredient of continued fractions based methods is the computation of the positive
real roots’ upper bounds. We give in Theorem 3.1 a new characteristic of such upper bounds
of univariate polynomials.

Theorem 3.1 Suppose p = anxn + an−1x
n−1 + · · · + a1x + a0 (an > 0) is a univariate

polynomial in x with real coefficients. Then a nonnegative number u is an upper bound of
positive roots of p if u satisfies that

∑n
i=j aiu

i−j ≥ 0 for j = 0, 1, · · · , n.

Proof If n = 0, then p is a nonzero constant and any positive number is its upper bound
of positive roots.

Otherwise, if b > u, we claim that
∑n

i=j aib
i−j >

∑n
i=j aiu

i−j for any j = 0, 1, · · · , n − 1.
When j = n − 1,

∑n
i=n−1 aib

i−n+1 − ∑n
i=n−1 aiu

i−n+1 = an(b − u) > 0. Thus, the claim
holds.

Assume the claim holds when j = k. When j = k−1,
∑n

i=k−1 aib
i−k+1 =

(∑n
i=k aib

i−k
)
b+

ak−1. By assumption,
∑n

i=k aib
i−k >

∑n
i=k aiu

i−k ≥ 0. Since b > u ≥ 0,
(∑n

i=k aib
i−k

)
b >(∑n

i=k aiu
i−k

)
u and

∑n
i=k−1 aib

i−k+1 >
∑n

i=k−1 aiu
i−k+1. So

∑n
i=j aib

i−j >
∑n

i=j aiu
i−j for

any j = 0, 1, · · · , n − 1.
By the above claim, p(b) =

∑n
i=0 aib

i > 0 when b > u. Because b is arbitrarily chosen, u is
an upper bound of the positive roots of p.

For Example 2.1,

• ∑6
i=6 aix

i−j is 1.

• ∑6
i=5 aix

i−j is x + 2 and x is positive for x ≥ 0.

• ∑6
i=4 aix

i−j is x2 + 2x − 4 and its two real roots are −1 −√
5 and −1 +

√
5.

• ∑6
i=3 aix

i−j is x3 + 2x2 − 4x + 1 and its largest real root is 1.

• ∑6
i=2 aix

i−j is x4 + 2x3 − 4x2 + x + 10 and its largest real root is less than 1.

• ∑6
i=1 aix

i−j is x5 + 2x4 − 4x3 + x2 + 10x − 5 and its largest real root is less than 1.

• ∑6
i=0 aix

i−j is x6 +2x5 − 4x4 + x3 + 10x2 − 5x+ 5 and its largest real root is less than 1.

Hence,
∑6

i=j aiu
i−j ≥ 0, j = 0, 1, · · · , 6 when u = −1 +

√
5. By Theorem 3.1, −1 +

√
5 is one

upper bound of positive roots of p1.
The following theorem was given by Akritas, et al. in [8], which computes positive root

upper bounds of univariate polynomials.

Theorem 3.2 (see [8]) Let p(x) = anxn + an−1x
n−1 + · · · + a0 (an > 0) be a polynomial

with real coefficients and let d(p) and t(p) denote the degree and the number of its terms,
respectively.

Moreover, assume that p(x) can be written as

p(x) = q1(x) − q2(x) + q3(x) − q4(x) + · · · + q2m−1(x) − q2m(x) + g(x), (1)

LOGCF: AN EFFICIENT TOOL FOR REAL ROOT ISOLATION 1773

where all the coefficients of polynomials qi(x) (i = 1, 2, · · · , 2m) and g(x) are positive. In
addition, assume that for i = 1, 2, · · · , m we have

q2i−1(x) = c2i−1,1x
e2i−1,1 + · · · + c2i−1,t2i−1x

e2i−1,t2i−1

and
q2i(x) = b2i,1x

e2i,1 + · · · + b2i,t2ix
e2i,t2i ,

where e2i−1,1 = d(q2i−1), e2i,1 = d(q2i), t2i−1 = t(q2i−1), and t2i = t(q2i) and the exponent
of each term in q2i−1(x) is greater than the exponent of each term in q2i(x). If for all indices
i = 1, 2, · · · , m, we have

t(q2i−1) ≥ t(q2i),

then an upper bound of the values of the positive roots of p(x) is given by

up = max
i=1,2,··· ,m

{
max

j=1,2,··· ,t2i

{(
b2i,j

c2i−1,j

) 1
e2i−1,j−e2i,j

}}
(2)

for any permutation of the positive coefficients c2i−1,j , j = 1, 2, · · · , t2i−1. Otherwise, for each
of the indices i for which we have

t2i−1 < t2i,

we break up one of the coefficients of q2i−1(x) into t2i − t2i−1 + 1 parts, so that now t(q2i) =
t(q2i−1) and apply the same formula (2) given above.

For Example 2.1 we have

q1 = x6 + 2x5, −q2 = −4x4, q3 = x3 + 10x2,

−q4 = −5x, q5 = 5.

A direct application of Theorem 3.2 pairs the terms {x6,−4x4} of q1(x) and q2(x), and ignores
the last term of q1(x). For q3(x) and q4(x), application of Theorem 3.2 pairs the terms {x3,−5x}
of them, and ignores the last term of q3(x). The resulting upper bound is

√
5. As

√
5 > −1+

√
5,

for Example 2.1, the upper bound given by Theorem 3.2 is greater than the upper bound given
by Theorem 3.1. For the upper bound, the value is better if the estimated upper bound is
smaller. So in this case, Theorem 3.1 is better than Theorem 3.2. In general, we shall show
in Theorem 3.3 that the optimal bound given by Theorem 3.1 is better than that given by
Theorem 3.2.

Theorem 3.3 Let p(x) = anxn + an−1x
n−1 + · · · + a0 (an > 0) be a polynomial with

real coefficients. If u is an upper bound of positive roots of p obtained by Theorem 3.2, then∑n
i=j aiu

i−j ≥ 0 for j = 0, 1, · · · , n.

Proof For every ai < 0, by Theorem 3.2, there exist ci1x
ei1 and bi2x

ei2 , respectively, such
that ei1 > ei2 , bi2x

ei2 is the term −aix
i and ci1x

ei1 is either a whole or a part (broken up by
Theorem 3.2) of a positive term of p. Since u satisfies the equation (2), ci1u

ei1 ≥ bi2u
ei2 . So p(x)

can be written as p(x) =
∑

(ci1x
ei1 −bi2x

ei2)+g(x), where ci1 > 0, bi2 > 0, ei1 > ei2 , ei+11 ≥ ei1

1774 DAI LIYUN, et al.

and all the coefficients of polynomial g(x) are positive. So for every aj > 0, the sum of coefficient
ci1 where ei1 = j and the terms of ci1x

ei1 has a corresponding bi2x
ei2 is less or equal than aj .

In other words,
(∑

ai<0,ei1=j ci1

)
≤ aj for every aj > 0. So, if u ≥ 0, then

n∑
i=k

aiu
i ≥

n∑
i=k,ai<0,aixi=−bi2x

ei2

(ci1u
ei1 − bi2u

ei2)

for any k = 0, 1, · · · , n. Since ci1u
ei1 ≥ bi2u

ei2 ,
∑n

i=k aiu
i ≥ 0 for k = 0, 1, · · · , n. Since u ≥ 0,∑n

i=k aiu
i−k ≥ 0 for any k = 0, 1, · · · , n.

4 A New Algorithm of Computing Upper Bounds

Theorem 3.1 is a good theoretical result, it can easily guarantee a value is an upper bound
for a given polynomial. However it is difficult to directly use it for computing the optimal upper
bound. So, in this section we will provide a new algorithm for computing upper bounds. The
correctness of this new algorithm is guaranteed by the theoretical results in Section 3. And
this algorithm can easily output an upper bound which is at most two times greater than the
optimal result of Theorem 3.1.

Algorithm 4 is based on Theorem 3.1 to check whether 1 is an upper bound for a given
polynomial.

We explain the correctness of Algorithm 4 as follow. When the algorithm reaches line 6, we
have

an︸︷︷︸
+

, an−1︸ ︷︷ ︸
+0︸ ︷︷ ︸
i

, · · ·︸︷︷︸
+0,··· ,+0

, astart+1︸ ︷︷ ︸
+

, astart︸ ︷︷ ︸
−︸ ︷︷ ︸
j

, astart−1︸ ︷︷ ︸
∗

, · · ·︸︷︷︸
∗,··· ,∗

, alastNeg+1︸ ︷︷ ︸
∗

, alastNeg︸ ︷︷ ︸
−

, alastNeg−1︸ ︷︷ ︸
+0

, · · ·︸︷︷︸
+0,··· ,+0

,

where “+” means the corresponding ak is positive, “−” means the corresponding ak is negative,
“∗” means the sign of the corresponding ak is unknown and “+0” means the corresponding ak is
nonnegative. The loop between lines 4 and 4 shifts i and j right until one of them reaches value
lastNeg−1. If j reaches value lastNeg−1 at line 14, it is easy to check that i ≥ j∧cfSum ≥ 0
always holds in this iteration. In other words,

∑n
k=l ak ≥ 0 for l = lastNeg, · · · , n. As ak > 0

for k = 0, 1, · · · , lastNeg − 1,
∑n

k=l ak ≥ 0 for l = 0, 1, · · · , n. By Theorem 3.1, 1 is an upper
bound of the positive real roots of p.

In Example 2.1, at the beginning, cfSum = 1 and the values of i, j, lastNeg are as follows:

1, 2︸︷︷︸
i=5

, −4︸︷︷︸
j=4

, 1, 10, −5︸︷︷︸
lastNeg=1

, 5.

After executing the main loop of Algorithm 4 between line 4 and line 4, the values will become
cfSum = −3,

1, 2︸︷︷︸
i=5

,−4, 1︸︷︷︸
j=3

, 10, −5︸︷︷︸
lastNeg=1

, 5.

LOGCF: AN EFFICIENT TOOL FOR REAL ROOT ISOLATION 1775

After the second iteration, the values will become cfSum = −1,

1, 2, −4︸︷︷︸
i=4

, 1︸︷︷︸
j=3

, 10, −5︸︷︷︸
lastNeg=1

, 5.

Hence, during the third iteration, the algorithm will return at line 4. This means 1 is not an
upper bound of positive real roots of p1.

Algorithm 4: lessOne
.
Input: p = anxn + an−1x

n−1 + · · · + a1x + a0 ∈ Z[x], an > 0, ∃ai, anai < 0.
Output: true: the positive root bound of p must be less than 1;

false: cannot determine whether the bound is less than 1.
start = n − 1; lastNeg = 0;
while alastNeg ≥ 0 do

lastNeg = lastNeg + 1;
end
while astart ≥ 0 do

start = start − 1;
end
cfSum = an; i = n − 1; j = start; while i ≥ lastNeg − 1and j ≥ lastNeg − 1 do

if cfSum < 0 then
while i > jand ai ≤ 0 do

i = i − 1;
end
if i == j then return false; cfSum = cfSum + ai; i = i − 1;

end
else

if j == lastNeg − 1 then return true; while j ≥ lastNeg and aj ≥ 0 do
j = j − 1;

end
cfSum = cfSum + aj ; j = j − 1;

end

end
return true.

It is difficult to compute the optimal value which satisfies Theorem 3.1. Hence, we provide
Algorithm 5 based on the idea of dichotomic search to find a value which is close enough to the
optimal value. The correctness of Algorithm 5 is directly based on Theorem 3.1. Theorem3.1
needs a value u satisfying that

∑n
i=j aiu

i−j ≥ 0 for j = 0, 1, · · · , n. Since the resulting λ of
Algorithm 5 satisfies that

∑n
i=j aiλ

i−j ≥ 0, j = 0, 1, · · · , n, λ is an upper bound for the given
polynomial. Moreover, by Theorem 4.1, λ is at most two times greater than the optimal upper
bound which satisfies Theorem 3.1.

1776 DAI LIYUN, et al.

Theorem 4.1 Let p(x) = anxn + an−1x
n−1 + · · · + a0 (V (p) > 0) be a polynomial with

real coefficients. Let u denote the output of Algorithm 5 and u1 denote the optimal upper bound
of p satisfying Theorem 3.1. When u is less than or equal to 1, u < 2u1.

Proof In Algorithm 5, if 1
2base ≥ u1, then

∑n
i=j ai

(
1

2base

)i−j ≥ 0 for j = 0, 1, · · · , n by the
proof of Theorem 3.1. Thus the loop does not terminate at this step. So when Algorithm 5 re-
turns, base must satisfy 1

2base < u1. Therefore, the output u = 1
2base−1 and u < 2u1. Obviously,

this algorithm will terminate.
Furthermore,

∑n
i=j ai

(
1

2base−1

)i−j ≥ 0 for j = 0, 1, · · · , n − 1 by Theorem 3.1. Hence,
u = 1

2base−1 is an upper bound of p.

Corollary 4.2 Let p(x) = anxn+an−1x
n−1+· · ·+a0 (V (p) > 0) be a polynomial with real

coefficients. Set u to be the optimal upper bound of positive roots of p satisfying Theorem 3.1.
Then Algorithm 5 costs at most O(n log(u + 1)) additions and multiplications.

5 Experiments

5.1 Environment

We first explain the implementation and computation environment. We compare logcf
with SLV, ANewDsc, Mathematica’s† RootIntervals and Maple’s‡ realroot on a 64-bit Intel(R)
Core(TM) i7 CPU-4710Q @ 2.50GHz with 8GB RAM memory and Windows 7. In this envi-
ronment logcf was compiled by visual studio 2013.

5.2 Tricks

Variable substitution If p(x) ∈ Z[x] and p(x) = p1(xk) (k > 1), then substitute y = xk

in p. Obviously, deg(p1, y) = deg(p,x)
k . We first isolate the real roots of p1 then obtain the

real roots of p. Using this trick, we can greatly reduce the running time of ChebyshevT and
ChebyshevU when each term of the polynomials is of even degree. The same trick was also
taken into account in [20].

Incomplete termination check If p(x) ∈ Z[x] and V (p) = 2, we may try to check whether
the sign of p(1) is the same as the sign of the leading coefficient of p. If they are not the same,
then p has one positive root in (0, 1) and the other one in (1, +∞). So, we can terminate this
subtree. Since the whole logcf procedure is a tree and logcf spends more than 90 percent of the
total time on computing T (p), this trick may improve the efficiency of the algorithm greatly.

5.3 Benchmarks

5.3.1 Wn

Wilkinson polynomials: Wn = Πn
i=1(x − i).

5.3.2 mWn

Modified Wilkinson polynomials: mWn = Wn − 1.
If n > 10, mWn has n simple real roots but most of them are irrational.

†11.1 version
‡Maple(TM) 2017,Windows(R) (64-bit)

LOGCF: AN EFFICIENT TOOL FOR REAL ROOT ISOLATION 1777

Algorithm 5: logup
.
Input: p = anxn + an−1x

n−1 + · · · + a1x + a0 ∈ Z[x], an > 0, ∃ai, anai < 0.

Output: an upper bound of the positive roots of p.
start = n − 1; lastNeg = 0; base = 1;
if ¬lessOne(p) then return 2; /* 2 is a special value which leads Algorithm 3

to run line 3 branch. */

while alastNeg ≥ 0 do lastNeg = lastNeg + 1; while astart ≥ 0 do start = start − 1;
i = n; while i == n do

i = n − 1; j = start; cfSum = an;;
while i ≥ lastNeg − 1 and j ≥ lastNeg − 1 do

if cfSum < 0 then
while i > j and ai ≤ 0 do

i = i − 1;
end
if i == j then break; cfSum = cfSum + ai2(n−i)base; /* As in symbolic

computation division is slower than multiplication, we check

wether 2np(x) is greater than 0 instead of p(x). */

i = i − 1;
end
else

if j == lastNeg − 1 then j = lastNeg − 2;/* lastNeg − 2 is a special

value which leads program to run line 5 branch. */

break;
while j ≥ lastNeg and aj ≥ 0 do

j = j − 1;
end
cfSum = cfSum + aj2(n−j)base; j = j − 1;

end

end
if j == lastNeg − 2 then

base = base + 1; i = n;
end

end
return 1

2base−1 .

1778 DAI LIYUN, et al.

5.3.3 WPn

Wilkinson-like polynomials: WPn is polynomial which convert Πn
i=1(x− i

n−i) to polynomial
with integer coefficients.

5.3.4 IWn

The distance between Wn’s two nearest real roots is 1 and the distance between mWn’s two
nearest real roots is nearly 1. We construct new polynomials IWn = Πn

i=1(ix − 1), which have
a completely different nearest distance.

5.3.5 mIWn

We modify IWn into mIWn = IWn − 1 for the same purpose as we construct mWn. Most
real roots of mIMn become irrational.

5.3.6 Tn

ChebyshevT polynomials: T0 = 1, T1 = x, Tn+1 = 2xTn − Tn−1. Tn has n simple real roots.

5.3.7 Un

ChebyshevU polynomials: U0 = 1, U1 = 2x, Un+1 = 2xUn − Un−1. Un has n simple real
roots.

5.3.8 Ln

Laguerre polynomials: L0 = 1,L1 = 1 − x,Ln+1(x) = (2n+1−x)Ln(x)−nLn−1(x)
(n+1) . Obviously,

n!Ln is a polynomial with integer coefficients.

5.3.9 LPn

Legendre polynomials of the first kind. LP1 = 1 and LPn(x) = 1
2nn!

dn

dxn (x2 − 1)n.

5.3.10 Mn

Mignotte polynomials: xn − 2(5x − 1)2. If n is odd, Mn has three simple real roots. If n is
even, it has four simple real roots.

5.3.11 MRn

Mignotte rational center polynomials: xn − ((27 − 1)x − 1)2.

5.3.12 Hn

Hermite polynomials: H0 = 1, H1 = 2x, Hn = 2xHn−1 − 2(n − 1)Hn−2. Hn has n simple
real roots.

5.3.13 MIn

Mignotte irrational center polynomials: x129 − ((2
1
4n − 1)x2 − 1)2.

5.3.14 R(n, b, r)

Randomly generated polynomials: R(n, b, r)=anxn + · · · + a1x + a0 with |ai| ≤ b, Pr[ai ≥
0] = 1

2 and Pr[ai �= 0] = 1 − r, where Pr means probability. For each setting (n, b, r), we
generate randomly five instances and compute the mean of five running times. The degree of
random cases are between 10 to 1500, the coefficients belong to [−17951, 17951] and the value
of r belongs to {0.1, 0.2, · · · , 0.9}.

LOGCF: AN EFFICIENT TOOL FOR REAL ROOT ISOLATION 1779

5.4 Results

We convert all input polynomials to squarefree before isolating their real roots. And the
converting time is not included in the following timings.

As a built-in Maple function, realroot is compared with our tool logcf. The Maple we use
has a version number 2017. For almost all benchmarks, our software logcf can be four times
faster than realroot. The comparative data can be found in Figure 1 and Table 1. In many
cases, logcf is much faster than realroot, the mean speedup is more than 4 and the largest
speedup is more than 900. A possible reason may be that realroot is based on Descartes’s rule
of signs and bisection method while logcf is based on continuous fractions representation and
Vincent’s theorem.

As a built-in Mathematica symbol, RootIntervals is compared with our tool logcf. The
Mathematica we use has a version number 11.1. logcf is as good as RootIntervals, in other
words, in some test cases logcf is faster than RootIntervals but in some other cases RootInter-
vals is faster than logcf and the mean time of all test cases is almost the same. The reason
may be that logcf and RootIntervals both are based on continuous fractions representation
and Vincent’s theorem. In the comparison we find a bug of RootIntervals. In Table 2 when
n = 1024, 1448, 2096, RootIntervals outputs a double root. A possible reason for this may
be that RootIntervals uses PossibleZeroQ to check whether an expression is zero or not but
PossibleZeroQ cannot guarantee its outputs on those examples.

Table 1 shows that logcf is much faster than other solvers on Wn. The reason is that
Algorithm 4 firstly check whether 1 is an upper bound and the distance of any two consecutive
real roots of Wn is just 1, which guarantees that the equation of line 12 in Algorithm 3 always
holds.

We also consider open software, such as ANewDsc[4] and SLV[2] which seem to be the fastest
open software available for exact real root isolation. Many experiments about state of the art
open software for isolating real roots have been done in [2, 4, 11], which indicate that ANewDsc
and SLV are the fastest in many cases. In Figure 1 and Table 1, logcf is about 4 times faster
than ANewDsc and ANewDsc is better on polynomials MRn and MIn which have two very
close real roots. Figure 2 plots the compared result between logcf and SLV. As the figure shows,
logcf is 7 times faster than SLV on Wn, Tn, Un, Hn, WPn averagely and a little slower than SLV
on MIn polynomials.

For randomly generated polynomials, we consider different settings of (n, b, r) as shown in
Figure 3. In almost every randomly generated benchmark, logcf is faster than other solvers.
And we can also find that degree is the main factor affecting the running time.

1780 DAI LIYUN, et al.

Figure 1 Mean running time compared with RootIntervals, realroot and ANewDsc

Figure 2 Comparison of logcf and SLV on benchmarks

Figure 3 Comparison on random benchmarks R(n, b, r) with different settings

Table 1 Comparison on three special benchmarks

Case RootIntervals
logcf

realroot
logcf

ANewDsc
logcf

Wn 8.7 18.04 202

MRn 0.70 980 0.174

MIn 0.58 1.89 0.0029

LOGCF: AN EFFICIENT TOOL FOR REAL ROOT ISOLATION 1781

Table 2 Comparison on MRn

Degree logcf realroot RootIntervals ANewDsc

128 0.016 0.734 0.015 0.02

181 0.018 11.154 0.031 0.038

256 0.034 94.849 0.046 0.063

362 0.083 >600 0.094 0.11

512 0.20 >600 0.219 0.20

724 0.55 >600 0.344 0.42

1024 1.46 >600 error 0.79

1448 6.48 >600 error 1.69

2096 24.19 >600 error 3.16

More test results can be found at https://github.com/djuanbei/logcf/blob/master/testresult.
xls.

In our experiments when Algorithm 5 is used for computing upper bounds, T (p) takes more
than ninety percent of running time§. We have considered methods in [18] for computing T (p),
but finally we chose the classical method (Horner’s method) for its simplicity. In future work
we will use Divide & Conquer method which is the fastest in [18]. We think this will further
improve the performance of our tool.

References

[1] Collins G and Akritas A, Polynomial real roots isolation using descartes’ rule of signs, Proceedings

of the Third ACM Symposium on Symbolic and Algebraic Computation, New York, 1976.

[2] Kobel A, Rouillier F, and Sagraloff M, Computing real roots of real polynomials ... and now for

real, Proceedings of the ACM on International Symposium on Symbolic and Algebraic Computa-

tion, Waterloo, 2016, 303–310.

[3] Rouillier F and Zimmermann P, Efficient isolation of polynomials’ real roots, Comput. Math.

Appl., 2004, 162(4): 33–50.

[4] Tsigaridas E, Slv: A software for real root isolation, ACM Commun. Comput. Algebra, 2016

50(3): 117–120.

[5] Eigenwillig A, Real root isolation for exact and approximate polynomials using Descartes’ rule

of signs, PhD thesis, Saarland University, 2008.

[6] Eigenwillig A, Kettner L, Krandick W, et al., A descartes algorithm for polynomials with bit-

stream coefficients, CASC, Springer, 2005, 138–149.

[7] Mehlhorn K and Sagraloff M, A deterministic algorithm for isolating real roots of a real polyno-

mial, J. Symb. Comput. 2011, 46: 70–90.

§The result of GNU gprof.

1782 DAI LIYUN, et al.

[8] Akritas A, Strzebonski A, and Vigklas P, Improving the performance of the continued fractions

new bounds of positive roots, Nonlinear Analysis: Modelling and Control, 2008, 13(3): 365–279.

[9] Sharma V, Complexity of real root isolation using continued fractions, Theor. Comput. Sci., 2008,

409(2): 292–310.

[10] Tsigaridas E P and Emiris I Z, On the complexity of real root isolation using continued fractions,

Theor. Comput. Sci., 2008, 392: 158–173.

[11] Hemmer M, Tsigaridas E, Zafeirakopoulos Z, et al., Experimental evaluation and cross-

benchmarking of univariate real solvers, Proceedings of the 2009 Conference on Symbolic Numeric

Computation, ACM, Kyoto, 2009, 45–54.

[12] Xia B and Zhang T, Real solution isolation using interval arithmetic, Comput. Math. Appl., 2006,

52: 853–860.

[13] Zhang T and Xia B, A new method for real root isolation of univariate polynomials, Mathematics

in Computer Science, 2007, 1(2): 305–320.

[14] Hammer R, C++ Toolbox for Verified Scientific Computing - Theory, Algorithms and Programs:

Basic Numerical Problems, Springer-Verlag New York, Inc., Secaucus, NJ, USA, 1995.

[15] Rump S, INTLAB - Interval Laboratory. Developments in Reliable Computing, Ed. by Csendes

T, Kluwer Academic Publishers, Dordrecht, 1999, 77–104. http://www.ti3.tu-harburg.de/rump/.

[16] Ştefănescu D, New bounds for the positive roots of polynomials, J. Universal Comput. Sci. 2005,

11(12): 2132–2141.

[17] Hong H, Bounds for absolute positiveness of multivariate polynomials, J. Symb. Comput., 1998,

25(5): 571–585.

[18] Gerhard J, Modular algorithms in symbolic summation and symbolic integration, Lecture Notes

in Computer Science, Springer Press, 2004.

[19] Johnson J R, Krandick W, and Ruslanov A D, Architecture-aware classical taylor shift by 1,

ISSAC, ACM, Beijing, 2005, 200–207.

[20] Johnson J R, Krandick W, Richardson D, et al., High-performance implementations of the

descartes method, ISSAC ACM, Genoa, 2006, 154–161.

