
J Syst Sci Complex (2019) 32: 1358–1374

Robust Finite-Time Trajectory Tracking Control of

Wheeled Mobile Robots with Parametric Uncertainties

and Disturbances∗

GUO Yijun · YU Li · XU Jianming

DOI: 10.1007/s11424-019-7235-z

Received: 10 July 2017 / Revised: 14 May 2018

c©The Editorial Office of JSSC & Springer-Verlag GmbH Germany 2019

Abstract In this paper, a robust finite-time tracking control scheme is proposed for wheeled mobile

robots with parametric uncertainties and disturbances. To eliminate the effect of lumped uncertainties,

a nonlinear extended state observer (NESO) is employed to estimate the unknown states as well as

uncertainties, and the corresponding coefficients are tuned via pole placement technique. Based on

the observation values, the finite-time sliding mode controller is presented to guarantee that both the

sliding mode variables and tracking errors converge to zero within finite time. Simulation results are

given to demonstrate the effectiveness of the proposed control method.

Keywords Finite-time sliding mode control, nonlinear extended state observer, trajectory tracking,

wheeled mobile robot.

1 Introduction

Wheeled mobile robot (WMR) trajectory tracking control is not only an important issue in
practical application but also an important research problem. However, due to the influence
of the parametric uncertainties and external disturbances in the system, the robust tracking
controller design is still a challenging task.

In order to enhance the robustness and the tracking control performance of the system, many
kinds of control methods are applied to the control of the WMR. Such as adaptive control[1, 2],
backstepping control[3, 4], sliding mode control[5–7], etc. In [2], a new adaptive controller is de-
signed for tracking control of nonholonomic mobile robot with unknown slipping and external
disturbances. In [3], to improve the tracking performance of the nonholonomic mobile robot
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trajectory tracking, a robust backstepping control method based on nonlinear disturbance ob-
server is presented. The work of [5] presents a novel integral sliding mode controller for a
two-wheeled mobile robot, the simulation and experiment results are provided to demonstrate
the effectiveness of the work. Among these methods, the sliding mode control method is con-
sidered as an influential method to deal with nonlinear uncertain systems because of its strong
robustness against uncertainties.

However, in traditional sliding mode control the sliding surface is linear, which will lead to
the system states converge to origin in an infinite time. In order to improve the convergence
rate of sliding mode control method, an efficient way is to introduce nonlinear sliding mode
surfaces[8]. Terminal sliding surface is one of such nonlinear sliding surfaces, which can ensure
that the system states can converge to zero in finite time[9, 10]. Another obvious problem in
traditional sliding mode control is chattering, which will shorten the service life of actuator and
even cause the system instability. To solve this problem, we will employ nonlinear extended
state observer (NESO) to estimate the uncertainties of the system. As a kind of disturbance
estimate technique, NESO regards the lumped uncertainties as a new state of the system, and
the observed value can be further employed to compensate the uncertainties by feed-forward
method[11–14]. By the feed-forward compensation, the switching gains of the sliding mode
controller can take smaller values, which will obviously reduce chattering in the control signals.

In this paper, a robust finite-time controller is developed to improve the performance of
tracking control and robustness against uncertainties for the WMR. Firstly, the model of the
wheeled mobile robot with lumped disturbances is established at the dynamic level. Secondly,
a nonlinear extended state observer is designed to estimate the uncertainties, then based on the
estimation value a robust finite time trajectory tracking controller is developed. Finally, the
simulation results are provided to verify the effectiveness of the proposed control scheme.

The main contributions are shown as follows:
1) A robust finite-time control law for trajectory tracking control of WMR is designed, which

can guarantee that the system tracking errors converge to zero within finite time. The proposed
control scheme is only depend on the nominal model of the system, thus it can be applied to
the WMR system with lumped disturbances.

2) The excellent disturbance rejection performance is achieved by the estimation of NESO,
and the parameters of the nonlinear extended state observer are determined by the pole place-
ment technique, which greatly simplifies the parameter tuning process.

3) By compensating for the lumped disturbances of the system, the high gain problem of
the controller can be avoided. Thus, the chattering phenomenon in the controller is weakened.

2 Problem Description

As shown in Figure 1, the mobile robot has two actuated wheels mounted on the same axis
and a castor wheel to maintain the equilibrium of the WMR. The kinematic model[15] of the
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WMR with the constraints of pure rolling and no slipping is described as

q̇ = J(q)u =

⎡
⎢⎢⎣

cos θ 0

sin θ 0

0 1

⎤
⎥⎥⎦

⎡
⎣ v

ω

⎤
⎦ , (1)

where q = [ x y θ ]T ∈ R3 denotes the position and orientation of the WMR; u = [ v ω ]T ∈
R2 is a vector consisting of the linear velocity and angular velocity.

According to the Euler-Lagrange formulation, the dynamic model[15] of the WMR is de-
scribed as

M(q)q̈ + C(q, q̇)q̇ +G(q) + F (q̇) + τd = B(q)τ −AT(q)λ, (2)

where

M(q) =

⎡
⎢⎢⎣
m 0 0

0 m 0

0 0 I

⎤
⎥⎥⎦ , B(q) =

1
r

⎡
⎢⎢⎣

cos θ cos θ

sin θ sin θ

b −b

⎤
⎥⎥⎦ , AT(q) =

⎡
⎢⎢⎣

− sin θ

cos θ

0

⎤
⎥⎥⎦ ,

τ = [ τl τr ]T, λ = −m(ẋ cos θ+ẏ sin θ)θ̇; m is the mass of the WMR; I is the inertia of the WMR;
r and 2b are the radius of the driven wheel and the distance of the driven wheels; τl and τr are
the control torques generated by the left driven wheel and the right driven wheel, respectively;
λ is the Lagrange multiplier; The F (q̇) ∈ R3 is the unknown ground friction; τd ∈ R3 denotes
the unknown bounded disturbance; C(q, q̇) denotes the centripetal and coriolis matrix, G(q)
is the gravitational vector. Suppose that the center of mass of mobile robot is located in the
middle of the rear wheel axis, and the mobile robot moves in the horizontal plane, then we can
conclude that C(ϕ, ϕ̇) = G(ϕ) = 0.

v

X

Y

O

om

Xm

Ym

2r

2b

Figure 1 The platform of mobile robot

By multiplying JT(q) on both sides of (2) and using the fact JT(q)AT(q) = 0, one can
obtain the following dynamic model

Mu̇+ F + τd = Bτ, (3)

where M = JT(q)MJ(q) ∈ R2×2, F = JT(q)F ∈ R2, τd = JT(q)τd, B = 1
r

[
1 1
b −b

]
.
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However, it should be noted that due to the existence of measurement errors, load variation
and unmodeled dynamics, obtaining the accurate model of the system in many cases is very
difficult. Then considering the influence of the uncertain factors, the actual system dynamic
model can be formulated as

(M0 + ΔM)u̇+ F + τd = (B0 + ΔB)τ, (4)

where M0 + ΔM = M , B0 + ΔB = B, M0 and B0 are the nominal parts, ΔM and ΔB are the
uncertain parts.

Define f = [ f1 f2 ]T = M−1
0

[ΔMu̇ + F + τd − ΔBτ ] is the system’s lumped disturbance
vector and ψ = [ ψ1 ψ2 ]T = M−1

0
B0τ is the new control input vector. Then the system (4) can

be further expressed as
u̇+ f = ψ. (5)

Let the reference trajectory qr = [ xr yr θr ]T generate by a virtual robot, which is described
as ⎧

⎪⎪⎨
⎪⎪⎩

ẋr = vr cos θr,

ẏr = vr sin θr,

θ̇r = ωr,

(6)

where xr and yr are the Cartesian coordinates of its reference point; θr is the orientation; vr
and ωr are the desired linear velocity and angular velocity, respectively.

Assumption 2.1 There exists an unknown positive constant L such that the absolute
values of f1, f2, ḟ1, and ḟ2 are bounded by L.

The control objective is to design a robust finite-time tracking controller for the mobile robot
with parametric uncertainties and disturbances such that the tracking errors can converge to
zero within finite time.

3 Design of Nonlinear Extended State Observer

3.1 Nonlinear Extended State Observer Design

Although it’s difficult for the system to accurately measure the lumped disturbance vector
f in practice, but its estimated value can be obtained quickly by nonlinear extended state
observer (NESO). In order to realize the estimation for the lumped disturbance vector f , we
need to employ a new extended state vector [ x12 x22 ]T and define x11=v, x21=ω. Therefore,
the equivalent system of (5) can be expressed as

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ẋ11 = x12 + ψ1,

ẋ12 = h1,

ẋ21 = x22 + ψ2,

ẋ22 = h2,

(7)

where hj (j = 1, 2) is the change rate of the lumped disturbance fj (j = 1, 2), i.e., hj = ḟj, and
hj are assumed to be unknown but bounded functions.
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Based on its design theory, the NESO of the system (7) is designed as
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

e1 = z11 − x11,

ż11 = z12 − β11fal(e1, 0.5, σ) + ψ1,

ż12 = −β12fal(e1, 0.25, σ),

e2 = z21 − x21,

ż21 = z22 − β21fal(e2, 0.5, σ) + ψ2,

ż22 = −β22fal(e2, 0.25, σ),

(8)

where z1j , z2j are the observer values of the states x1j , x2j in the system (7), β1j , β2j (j = 1, 2)
denote the observer gains and the nonlinear function fal(·) has the following form[16, 17]

fal(ej , αj , σ) =

⎧⎨
⎩

|ej|αj sign(ej), |ej| > σ,

ej/σ
1−αj , |ej| ≤ σ,

(9)

where σ > 0 and α1 = 0.5, α2 = 0.25.

Remark 3.1 The lumped disturbances fj (j = 1, 2) and their time derivatives are bounded,
in the practical system this assumption is reasonable. For instance, the unknown ground fric-
tion is always bounded, or the external disturbance and parametric uncertainties of the system
are also limited in a practical application. In addition, the assumption is a basic precondition
for the design of the NESO, which has been widely employed in [18, 19].

Remark 3.2 As pointed out in [18], if the observer parameters β1j , β2j are appropri-
ately chosen the observer errors can converge to a domain of a small positive constant, that is
|x12 − z12| ≤ l1, |x22 − z22| ≤ l2, where l1 and l2 are small positive constants.

3.2 Coefficients Determination of NESO via Pole Placement

From (8), we can see that in order to achieve satisfactory observation performance, the
coefficients β1j , β2j should be tuned carefully through experience. In this section, we will
employ pole placement technique[19] to determine the coefficients.

Define the state observer errors Δ1j = z1j − x1j , Δ2j = z2j − x2j , then according to (7)
and (8), the dynamic of the state observer errors is obtained as

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Δ̇11 = Δ12 − β11fal(e1, 0.25, σ),

Δ̇12 = −β12fal(e1, 0.5, σ) − h1,

Δ̇21 = Δ22 − β21fal(e2, 0.25, σ),

Δ̇22 = −β22fal(e2, 0.5, σ) − h2.

(10)

Due to hj (j = 1, 2) are bounded, the nonlinear function fal(·) is smooth, and fal(0, 0.25, σ) =
0, fal(0, 0.5, σ) = 0, fal′(·) = dfal(·)

dΔ11
�= 0, fal′(·) = dfal(·)

dΔ21
�= 0, then by the Taylor formula (10)
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can be rewritten as follows
⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Δ̇11 = Δ12 − β11fal′(e1, 0.25, σ)Δ11,

Δ̇12 = −β12fal′(e1, 0.5, σ)Δ11 − h1,

Δ̇21 = Δ22 − β21fal′(e2, 0.25, σ)Δ21,

Δ̇22 = −β22fal′(e2, 0.5, σ)Δ21 − h2.

(11)

Define βij = lij

fal′(·) (i = 1, 2, j = 1, 2), we can get the following state space form

Δ̇ = ÃΔ + B̃hj , (12)

where

Ã =

⎡
⎣ −li1 1

−li2 0

⎤
⎦ , B̃ =

⎡
⎣ 0

−1

⎤
⎦ , Δ =

⎡
⎣ Δi1

Δi2

⎤
⎦ .

From (12), we know that the determination of the parameters βij can be realized by the
determination of the parameters lij . If we choose the desired pole pi for the system (12), then
the parameters lij can be obtained by (13).

∣∣∣sI − Ã
∣∣∣ =

2∏
i=1

(s− pi), (13)

where s denotes the system pole; I is the identity matrix.

Remark 3.3 If there is no the second item on the right of (12), we can easily conclude
that the estimated errors will asymptotically converge to zero by choosing the appropriate
parameters lij . However, as pointed out in [20], although there exist hj in (12) the estimated
errors are bounded under the assumption that hj are bounded, and the upper bounds are
related to the bandwidth of the observer.

4 Controller Design and Stability Analysis

In this section, a finite-time trajectory tracking controller based on NESO is designed to
improve the tracking performance of the mobile robot, and the stability analysis is also given.
Firstly, for the controller design, a definition and some lemmas are given to show the stability
of the system.

Definition 4.1 (see [21, 22]) A continuous vector field function f(x) = (f1(x), f2(x), · · · ,
fn(x))T is said to be homogeneous of degree k ∈ R and k ≥ −max{ri, i = 1, 2, · · · , n} with
respect to {r1, r2, · · · , rn}, where ri > 0, if for any given ε > 0, we have

fi(εr1x1, ε
r2x2, · · · , εrnxn) = εk+rifi(x1, x2, · · · , xn), x ∈ Rn, i = 1, 2, · · · , n. (14)

The system ẋ = f(x) is homogeneous if f(x) is homogeneous.
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Lemma 4.2 (see [23]) Consider the following system

ẋ = f(x) + f̂(x), f(0) = 0, x ∈ Rn, (15)

where f(x) is a continuous homogeneous vector field of degree k < 0 with respect to (r1, r2, · · · , rn)
and f̂(x) satisfies f̂(0) = 0. Assume x = 0 is an asymptotically stable equilibrium of the
system ẋ = f(x). Then, x = 0 is a locally finite-time stable equilibrium of the system if
limε→0

f̂i(ε
r1x1,ε

r2x2,··· ,εrnxn)
εk+ri = 0, i = 1, 2, · · · , n, ∀x �= 0.

Lemma 4.3 (see [24]) Suppose a1, a2, · · · , an and 0 < ς < 2 are all positive constants,
then the following inequality holds:

(a2
1 + a2

2 + · · · + a2
n)
ς � (aς1 + aς2 + · · · + aςn)

2. (16)

Lemma 4.4 (see [25]) Suppose that a continuous, positive-definite function V (t) satisfies
the following inequality:

V̇ (t) + γV μ(t) ≤ 0, ∀t ≥ t0, V (t0) ≥ 0, (17)

where γ > 0, 0 < μ < 1 are constants. Then for any given t0, V (t) satisfies the following
inequality:

V 1−μ(t) ≤ V 1−μ(t0) − γ(1 − μ)(t− t0), t0 ≤ t ≤ t1, (18)

and V (t) ≡ 0 for ∀t ≥ t1 with t1 = t0 + V 1−μ(t0)
γ(1−μ) .

4.1 Finite-Time Virtual Velocity Controller Design Based on Kinematic Model

In this subsection our objective is to design the virtual velocity controller vc and ωc to track
the given trajectory as (6) within finite time.

Define the tracking error vector relative to the local coordinate frame Xm-Om-Ym which
is fixed on the mobile robot as Figure 1.

E =
[
ex ey eθ

]T

=

⎡
⎢⎢⎣

cos θ sin θ 0

− sin θ cos θ 0

0 0 1

⎤
⎥⎥⎦

⎡
⎢⎢⎣
xr − x

yr − y

θr − θ

⎤
⎥⎥⎦ . (19)

Differentiate (19) along with (1) and we have

Ė =
[
ėx ėy ėθ

]T

=

⎧
⎪⎪⎨
⎪⎪⎩

ωcey − vc + vr cos eθ,

−ωcex + vr sin eθ,

ωr − ωc.

(20)

By analyzing the structure of (20), the virtual velocity control laws can be designed in two
steps. Firstly, we design ωc such that eθ can converge to zero in finite time. Secondly, we design
vc to make the errors ex and ey converge to zero in finite time.

Firstly, the virtual angular velocity control law is designed as follows

ωc = ωr + k1|eθ|β1sign(eθ), (21)
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where controller parameters k1 > 0, 0 < β1 < 1.
Choose the following Lyapunov function

V1 =
1
2
e2θ. (22)

Differentiating (22) along with (20) and (21), we have

V̇1 = eθėθ

= −eθk1|eθ|β1sign(eθ)

= −k1|eθ|β1+1

= −2
β1+1

2 k1V
β1+1

2
1 . (23)

According to Lemma 4.4, it can be concluded that θe can converge to zero in finite time

tθ = t0 + 2V1
1−β1

2 (t0)

k1(1−β1)2
1+β1

2
.

Secondly, based on the design of ωc, we will design the control law of vc, which will drive
the errors ex and ey converge to zero in finite time after t > tθ. When t > tθ, ωc = ωr, the
system (20) can be transformed into the following form

⎧
⎨
⎩

ėx = ωrey − vc + vr,

ėy = −ωrex.
(24)

Therefore, the virtual linear velocity control law can be designed as follows

vc = vr + k2|ex|β2sign(ex) − k3ωr|ey|β3sign(ey), (25)

where k2, k3 > 0, 0 < β2, β3 < 1.
Then, the closed-loop system of (24) is

⎧⎨
⎩

ėx = ωrey − k2|ex|β2sign(ex) + k3ωr|ey|β3sign(ey),

ėy = −ωrex.
(26)

Choose the following Lyapunov function

V2 =
1
2
e2x +

1
2
e2y +

k3

1 + β3
|ey|1+β3 . (27)

Differentiating (27) along with (24), we have

V̇2 = exėx + eyėy + k3|ey|β3 ėysign(ey)

= ex(ωrey − k2|ex|β2sign(ex) + k3ωr|ey|β3sign(ey)) − eyωrex + k3|ey|β3 ėysign(ey)

= −k2|ex|β2+1

≤ 0. (28)
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Then, it can be concluded that the states ex and ey can converge to zero asymptotically.
Global finite-time stability can be obtained if a system satisfies both global asymptotical sta-
bility and local finite-time stability[22].

In the following, we will prove the states ex and ey are local finite-time convergence.
System (26) can be divided into two parts

⎡
⎣ ėx

ėy

⎤
⎦ = g(ex, ey) + ĝ(ex, ey), (29)

where

g(ex, ey) =

⎡
⎣ −k2|ex|β2sign(ex) + k3ωr|ey|β3sign(ey)

−ωrex

⎤
⎦ ,

ĝ(ex, ey) =

⎡
⎣ ĝ1(ex, ey)

ĝ2(ex, ey)

⎤
⎦ =

⎡
⎣ ωrey

0

⎤
⎦ .

Consider the following system
⎡
⎣ ėx

ėy

⎤
⎦ = g(ex, ey). (30)

Choose the following Lyapunov function

V3 =
1
2
e2x +

k3

1 + β3
|ey|1+β3 . (31)

Differentiating (31) along with (26), we have

V̇3 = exėx + k3|ey|β3sign(ey)ėy

= −k2|ex|β2+1 + k3ωrex|ey|β3sign(ey) − ωrexk3|ey|β3sign(ey)

= −k2|ex|β2+1 ≤ 0. (32)

Then, based on Lyapunov stability theory, (ex, ey) = (0, 0) is an asymptotically stable
equilibrium point of the system (26). If we choose β2 = 2β3

1+β3
, it’s easy to obtain that g(ex, ey)

with variables (ex, ey) is homogeneous of degree k = β3−1
β3+1 with respect to (1, 2

β3+1 ).
As for ĝ(ex, ey), we have

lim
ε→0

ĝi(εr1ex, εr2ey)
εk+ri

= 0, i = 1, 2, ∀(ex, ey) �= 0, (33)

where r1 = 1, r2 = 2
1+β3

. According to Lemma 4.2, System (26) is locally finite-time stable.
Thus, we can conclude that the system (20) is globally finite-time stable under the virtual
velocity control laws of (21) and (25).
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4.2 Finite-Time Tracking Control Based on Dynamic Model

Define the tracking error between virtual velocity vector uc = [ vc ωc ]T and actual velocity
vector u = [ v ω ]T as

E = u− uc. (34)

Then, the first-order derivative of the tracking error is given by

Ė = u̇− u̇c. (35)

In order to ensure the states of the system converge to the equilibrium point quickly, we
select the following fast terminal sliding mode surface

S =
[
s1 s2

]T

= E +
∫ t

0

K1E +K2E
q/pdt, (36)

where p, q are odd number, and selected to satisfy q < p < 2q; K1 =
[
k11 0
0 k12

]
> 0, K2 =[

k21 0
0 k22

]
> 0 are the diagonal matrix.

Differentiating (36) with respect to time yields

Ṡ = Ė +K1E +K2E
q/p. (37)

From (5) and (35), the equation (37) can be rewritten as

Ṡ = ψ − f − u̇c +K1E +K2E
q/p. (38)

Then, actual finite-time control law based on NESO can be designed as

ψ = u̇c − (K1E +K2E
q/p) +

⎡
⎣ z12

z22

⎤
⎦ −K3|S|β4sign(S), (39)

where |S|β4sign(S) = [ |s1|β4sign(s1), |s2|β4 sign(s2) ]T, z12 and z22 are the observing values of the
lumped disturbances f1 and f2, respectively, and K3 =

[
k31 0
0 k32

]
> 0 denotes the diagonal

matrix.
Substituting (39) into (38), we can obtain the following equation

Ṡ =

⎡
⎣ z12

z22

⎤
⎦ − f −K3|S|β4sign(S). (40)

4.3 Stability Analysis

Theorem 4.5 Consider the velocity tracking error system (34), the nonlinear extended
state observer (8), the fast terminal sliding mode surface (36) and the control law (39), the fast
terminal sliding mode surface S will converge to a small region of origin in finite time, and also
the tracking error will be stabilized at a relatively small region of origin within a finite time by
choosing the appropriate controller parameters.
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Proof The following Lyapunov function is considered

V4 =
1
2
STS. (41)

Differentiating (41), and using (40) yields

V̇4 = STṠ

= ST

⎛
⎝

⎡
⎣ z12

z22

⎤
⎦ − f −K3|S|β4sign(S)

⎞
⎠

�
2∑
i=1

li |si| −
2∑
i=1

k3i|si|β4+1
. (42)

It is easy to find a positive constant η satisfied η < min {k31, k32}. Thus, (42) can be
rewritten as

V̇4 � −
2∑
i=1

(k3i − η)|si|β4+1 −
2∑
i=1

(η|si|β4+1 − li |si|). (43)

For (43), when |si| > ( liη )
1

β4 , using Lemma 4.3, we have

V̇4 � −
2∑
i=1

(k3i − η)|si|β4+1

� −κ
( 2∑
i=1

|si|2
) β4+1

2

= −κ2
β4+1

2 V
β4+1

2
4 , (44)

where κ = min {k3i − η}. According to Lemma 4.4, the region |si| � ( liη )
1

β4 can be reached
in finite time, and by choosing the appropriate controller parameters it can be concluded that
the sliding mode surface S can converge to a small region of origin in finite time. Furthermore,
according to the finite time convergence feature of terminal sliding mode[26], we can obtain that
the tracking error will be stabilized at a relatively small region of origin within a finite time.
This completes the proof.

5 Simulation

In this section the proposed control scheme FTC with NESO is applied to the wheeled
mobile robot for verifying its effectiveness and superior performance. Besides, a finite time
sliding mode controller (FTC) without NESO, and a robust tracking controller (RTC) in [27]
are also given for the purpose of comparison.

As for the control scheme FTC without NESO, the corresponding sliding mode surface is
designed as (36), the control law is designed as

ψ = u̇c − (K1E +K2E
q/p) −K3|S|β4sign(S). (45)
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According to Reference [27], the expression of RTC is given as
⎧
⎨
⎩

vc = vr cos eθ + k4ex,

ωc = ωr + k5vrey + k6vr sin eθ,
(46)

ψ =

⎡
⎣ z12

z22

⎤
⎦ −K4E, (47)

where k4, k5, k6 > 0 are the controller gains, and K4 =
[
k41 0
0 k42

]
> 0 is the diagonal matrix.

For fair comparison, the initial parameters of system and partial controller parameters are set
as the same. The initial poses of the virtual robot and actual robot are [ 0 0 0 ]T and [ 0.1 0.1 π/8 ]T,
respectively; the mobile robot parameters are set as r = 0.05 m, b = 0.1 m, I = 2.7 kg ·m2, and
m = 4.5 kg; the desired linear and angular velocities are set as vr = 1 m/s and ωr = 1 rad/s;
the auxiliary velocity controller parameters are set as k1 = 6, k2 = 2, k3 = 2, β1 = 2/3,
and β2 = β3 = 1/3. The parameters of the FTC+NESO are designed as l11 = l21 = 100,
l12 = l22 = 6000, K1 = diag{20, 20}, K2 = diag{15, 15}, K3 = diag{1, 1}, q = 1, p = 1.5,
and β4 = 1/8; the parameters of the control strategy FTC without NESO are designed as
K1 = diag{20, 20}, K2 = diag{15, 15}, K3 = diag{8, 8}, q = 1, p = 1.5, and β4 = 1/8; the
parameters of the RTC are set as k4 = 2, k5 = 10, k6 = 22, and K4 = diag{31, 40}.

The parameter uncertainties are chosen as ΔM = 0.01Mo, ΔB = 0.01Bo, and

τd =

⎡
⎣ sin(t) + 2.4

cos(t) + 2.5

⎤
⎦N · m. (48)

The simulation results are illustrated in Figures 2–5. Figure 2 is the estimation errors for the
lumped disturbances. As shown in Figures 2(a) and (b), by selecting appropriate values of the
observer gains, the estimation states z12 and z22 can converge to the actual disturbance values
f1 and f2 in finite time, respectively. Figure 3 shows the trajectory tracking curves of three
different schemes. Figure 3(a) shows the trajectory tracking curves of the proposed scheme,
while the trajectory tracking curves of the other two schemes are shown in Figures 3(b) and
(c), respectively.

Figure 4 shows the tracking errors of three different schemes with respect to time. From
Figures 4(a) and (b), it is easy to see that the tracking errors and the response time of the
proposed scheme are similar to those of FTC scheme. So the first two control schemes can all
achieve fast convergence speed and very small steady errors, and the response time of tracking
errors is about within 2 seconds. From Figures 4(a) and (c), we can seen that the tracking
errors and the response time of the proposed scheme are all much better than those of the
RTC in [27]. Figure 5 shows the control signals of three different schemes. In Figure 5, it can
be seen that the control signals of FTC+NESO and RTC in [27] almost have no chattering,
while the control signals of FTC have obvious chattering almost all the time. So through the
comparison, we can conclude that the proposed scheme is more suitable to practically apply for
WMR system than the other two control schemes.
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Figure 2 Estimation errors for lumped disturbances. (a) The estimation error of

disturbance f1. (b) The estimation error of disturbance f2
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Figure 3 The trajectory tracking curves of three different schemes. (a) The tra-

jectory tracking of FTC+NESO. (b) The trajectory tracking of FTC.

(c) The trajectory tracking of RTC

0 1 2 3 4 5 6 7
−0.4

−0.3

−0.2

−0.1

0

0.1

Time (s)

Tr
ac

ki
ng

 e
rr

or
s

 

 
 e x
 e y
 e
θ

3 3.5 4
0

2

4
x 10 −3

(a)

0 1 2 3 4 5 6 7
−0.4

−0.3

−0.2

−0.1

0

0.1

Time (s)

Tr
ac

ki
ng

 e
rr

or
s

 

 
 e x
 e y
 e
θ

3 3.5 4
−2

0
2
4

x 10 −3

(b)

0 1 2 3 4 5 6 7
−0.4

−0.3

−0.2

−0.1

0

0.1

Time (s)

Tr
ac

ki
ng

 e
rr

or
s

 

 
 e x
 e y
 e
θ

3 3.5 4
−0.05

0
0.05

0.1

(c)

Figure 4 The tracking errors of three different schemes. (a) The tracking errors

of FTC+NESO. (b) The tracking errors of FTC. (c) The tracking errors

of RTC
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Figure 5 The control signals of three different schemes. (a) The control signals

of FTC+NESO. (b) The control signals of FTC. (c) The control signals

of RTC

6 Conclusions

In this paper, the trajectory tracking problem of WMR with lumped disturbances has
been studied. By using NESO the lumped disturbances of the system can be successfully
estimated, based on which a novel robust finite-time sliding mode controller has been developed.
Detailed simulation results demonstrate that the proposed scheme can achieve a good control
performance and the chattering phenomenon in the traditional finite-time sliding mode control
can be obviously reduced.
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