
J Syst Sci Complex (2020) 33: 26–42

The Stochastic Maximum Principle for a Jump-Diffusion

Mean-Field Model Involving Impulse Controls and

Applications in Finance∗

LI Cailing · LIU Zaiming · WU Jinbiao · HUANG Xiang

DOI: 10.1007/s11424-018-8095-7

Received: 3 April 2018 / Revised: 11 August 2018

c©The Editorial Office of JSSC & Springer-Verlag GmbH Germany 2020

Abstract This paper establishes a stochastic maximum principle for a stochastic control of mean-field

model which is governed by a Lévy process involving continuous and impulse control. The authors also

show the existence and uniqueness of the solution to a jump-diffusion mean-field stochastic differential

equation involving impulse control. As for its application, a mean-variance portfolio selection problem

has been solved.

Keywords Impulse control, jump-diffusion, Markowitz’s mean-variance model, stochastic maximum

principle.

1 Introduction

In recent years, stochastic impulse control has received considerable research attention due
to its wide application in different areas. For example, it has been used to solve the optimal
portfolio problem with transaction costs, see Oksendal and Sulem[1] and for optimal control
of exchange rates between different currencies, see Cadenillas and Zapatero[2]. A forward-
backward system involving impulse control has been studied by Wu and Zhang[3]. The study
regarding coupled forward-backward stochastic systems with delay and noisy memory were
investigated by Wu, et al.[4]. Optimal impulse control of a mean-reverting inventory with
quadratic costs and the mean-field backward doubly stochastic systems were given by Hu,
et al.[5] and Wu and Liu[6], respectively. A comprehensive survey of impulse control and its
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applications were given by Yu[7] and Korn[8]. A survey of stochastic differential game with
partial information has been conducted by Wu and Liu[9].

The stochastic maximum principle and dynamic programming principle are two major ap-
proaches to solve stochastic control problems. The former is a stochastic extension of the
Pontryagin maximum principle. In most cases, the optimal impulse control problem is studied
through dynamic programming principle. The results show that the value function is a solution
of some quasi-variational inequalities. The optimal impulse moments and magnitudes can be
solved through a verification theorem, e.g., Cadenillas and Zapatero[2] and Korn[8]. Singular
control problems have been researched by many authors. The stochastic maximum principle of
singular control was obtained by Cadenillas and Haussmann[10] in which linear dynamics and
convex value function were discussed. Bahlai and Chala[11] put forward a nonlinear dynamics
with convex state constraint. In these papers, the singular control terms are assumed to be a
bounded variation process. However, the impulse control is a piecewise process which is not
necessarily increasing. Wu and Zhang[3] proposed a piecewise impulse control process which is
not increasing for a forward-backward system. In these research mentioned above, stochastic
systems are modeled by stochastic differential equations. Nevertheless, there are also some
phenomena in which the system depends on the expected value of the system.

The mean-field models present the complex reactions of particles through the medium. How-
ever, for a general mean-field controlled jump-diffusion, where the setting is non-Markovian,
the feature of Hamilton-Jacobi-Belman equations depends on the law of iterated expectations
on value function. In this case the principle of dynamic programming does not apply in general.
The stochastic maximum principle provides a new approach for solving such problem. Lasry
and Lions[12] initially got the mean-field model in physics and statistical mechanics and proved
that the mean-field system could be decomposed into a series of nonlinear equations. Oksendal
and Sulem[1] used a stochastic approach to investigate a particular class of mean-field problems
and extended the application of the mean-field models to economics and finance. The appli-
cation of mean-field type problems can be found in Andersson and Djehiche[13]. Buckdahn,
et al.[14] showed that the related theories of backward stochastic differential equations could
be served as the foundations for solving the optimal control of mean-field type problems. The
maximum principle for a jump-diffusion mean-field model was discussed by Shen and Siu[15].
For more theories and applications of the specific stochastic control problems, see Andersson
and Djehiche[13].

In [7], the duality and the convex analysis are used to establish a necessary maximum
principle and a sufficient verification theorem. In this paper, we use the same method to show
the necessary maximum principle and sufficient verification theorem. In [16], near-optimal
conditions in mean-field control models involving continuous and impulse control have been
studied. The authors constructed inequality formula through spike variation technique to get
the absolutely continuous part of near-optimal while the near-optimal impulse controls were
obtained by convex perturbation. We establish a necessary and sufficient stochastic maximum
principle using the duality and the convex analysis. Compared with Chighoub, et al.[16], we
get the results of the continuous and impulse controls using different techniques. Shen and
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Siu[15] established a necessary and sufficient stochastic maximum principle for a mean-field
model governed by Lévy process through convex perturbation. The model in present paper is
somewhat different from Shen and Siu[15]. The dynamics of the controlled system is driven by

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

dX(t) = b(t,X(t), E[X(t)], u(t))dt+ σ(t,X(t), E[X(t)], u(t))dB(t)

+
∫

R0

γ(t,X(t), E[X(t)], u(t), z)Ñ(dt, dz) + C(t)dξ(t),

X(0) = X0.

ξ(t) =
∑

i≥0 ξi1[τi,T ] is a piecewise consumption process. {τi} is a fixed sequence of increasing
Ft-stopping time. Each ξi is an Fτi-measurable random variable.

The objective of the controller is to minimize the expected cost functional, which depends
on the control inputs to the system

J(u(·), ξ(·)) = E

[ ∫ T

0

f(t,X(t), E[X(t)], u(t))dt+ g(X(T ), E[X(T )]) +
∑

i≥0

l(τi, ξi)
]

.

Problems of this type occur in many applications. Shen and Siu[15] considered the ideal con-
dition without interference. In fact, the interference can arise in the system at any time and
state in practice, e.g., the impulse control problem. This gap is fulfilled by our present study
which reproduces a more practical dynamic system and cost functional. In this paper, we
consider a stochastic optimal control problem where the controlled state process is described
by a jump-diffusion mean-field model involving impulse controls. Moreover, the existence and
uniqueness of the solution of this equation have also been proved. These results are applied to
the continuous-time Markowitz’s mean-variance portfolio selection model with piecewise con-
sumption process. To illustrate the effect of Poisson jump, impulse control, and Brownian
motion on the control performance, we give some examples. Assume the dynamics of wealth
are given by X1(·), X2(·), X3(·), X4(·), respectively.

⎧
⎨

⎩

dX1(t) = (α−X1(t))dt,

X1(0) = 1,
⎧
⎨

⎩

dX2(t) = (α−X2(t))dt+ β
√
X2(t)dB(t),

X2(0) = 1,
⎧
⎪⎨

⎪⎩

dX3(t) = (α−X3(t))dt+ β
√
X3(t)dB(t) + γ

∫

R0

Ñ(dt, dz),

X3(0) = 1,
⎧
⎪⎨

⎪⎩

dX4(t) = (α−X4(t))dt+ β
√
X4(t)dB(t) + γ

∫

R0

Ñ(dt, dz) − δdξ(t),

X4(0) = 1.

As we can see from Figure 1 where we take α = 10, β = 1, γ = −0.2, δ = 1. We have a more
intuitive understanding of the above equations from the perspective of mathematical finance.
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X1(·) gives the dynamics of bond price and markets have no risk. X2(·) describes the dynamic
of stock price fluctuation which is represented by Brownian motion and markets have risks.
X3(·) represents that the dynamics of stock price changing rule is affected by the price change
of the underlying asset which is discontinuous and represented by Poisson jump. X4(·) denotes
that we can choose the corresponding optimal strategy which is represented by impulse control
in order to make the price reaching maximum. The jump-diffusion models provide an adequate
description of stock price fluctuation and market risk. So in this paper we consider a general
jump-diffusion model.
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Figure 1 The solution of Xi, i = 1, 2, 3, 4

The rest of the paper is organized as follows. Section 2 presents the notations and the
existence and uniqueness of solutions with respect to stochastic differential equations (SDEs) of
mean-field involving impulse control. In Section 3, we discuss the stochastic maximum principle
for the optimal control problem and a verification theorem. In the final section, our results are
applied to a Markowitz’s mean-variance portfolio selection model.

2 Jump-Diffusion Mean-Field SDE Involving Impulse Control

We fix T > 0 as an arbitrarily finite horizon and denote T = [0, T ], R0 = R − {0} and
B(R0) is the Borel σ-field generated by open subset of R0, whose closure does not contain the
point 0. Let (Ω ,F ,F,P) be a filtered probability space satisfying the usual conditions, i.e., the
right-continuity and the P-completeness of the filtration F := {Ft|t ∈ T }. We assume that the
Brownian motion and the Possion random measure are stochastically independent under P. F

is the right-continuous, P-complete, natural filtration generated by both Brownian motion and
the Possion random measure. We assume that FT = F for convenience.

S2(T , Rn): The space of Rn-valued F-adapted càdlàg processes {X(t) : t ∈ [0, T ]} such that
E[sup0≤t≤T |X2(t)|] <∞.

L2(FT , R
n): The space of all the FT -measurable random variables X : Ω −→ Rn such that

E[|X(t)|2] <∞.
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L2
β(T , Rn×d): The space of all Rn×d-value F-progressively measurable processes {v(t) : t ∈

[0, T ]} such that E[
∫ T

0 e−βt|v(t)|2dt] <∞, ∀ β > 0.
L2(T , Rn×d): The space of all Rn×d-value F-progressively measurable processes {v(t) : t ∈

[0, T ]} such that E[
∫ T

0 |v(t)|2dt] <∞.
L∞(Ω ,Ft,P, R

n×m): The space of Rn×m-value Ft-measurable bounded processes.
L2(T , ν, Rn×k): The space of all Rn×k-value Leb⊗ B(R0)-measurable processes such that

E
[ ∫ T

0

∫

R0
tr[v(t, z)diag(ν(dz))v(t, z)Tdt]

]
<∞.

L2
β(T , ν, Rn×k): The space of all Rn×k-value Leb⊗ B(R0)-measurable processes such that

E
[ ∫ T

0

∫

R0
e−βttr[v(t, z)diag(ν(dz))v(t, z)Tdt]

]
<∞, ∀ β > 0.

L2(R0,B(R0), ν, Rn×k): The Hilbert space of ν-almost sure equivalence classes formed by
the functions from R0 to the space of Rn×k-valued matrices with the norm |v|ν = (

∫

R0
tr[v(z)

diag(νd(z))v(z)T])
1
2 .

I(T , Rn): The class of processes ξ(·) =
∑

i≥0 ξi1[τi,T ] such that each ξi is Rn-valued Fτi-

measurable random variable, E[
∞∑
i=0|ηi|2] <∞. Assuming τi → ∞ implies that at most finitely

many impulses may occur on T .

M2(T , Rn ×Rn×d ×Rn×k) = S2(T , Rk) × L2(T , Rk×d) × L2(T , Rn×k).

In the rest of this section, we introduce some conditions that are necessary for the existence
and uniqueness of jump-diffusion mean-field stochastic differential equation solution involving
impulse control. b, σ, γ are Ft-measurable mappings.

Assumption H1 b, σ, γ are Lipschitz with respect to x, x and have a linear growth in (x, x),
i.e., ∃ c > 0 such that |b(t, x1, x1) − b(t, x2, x2)| + |σ(t, x1, x1) − σ(t, x2, x2)| + |γ(t, x1, x1, ·) −
γ(t, x2, x2, ·)|ν ≤ c(|x1−x2|+|x1−x2|) and |b(t, x, x)|+|σ(t, x, x)|+|γ(t, x, x, ·)|ν ≤ c(1+|x|+|x|).

Consider the following stochastic differential equation:
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

dX(t) = b(t,X(t), E[X(t)])dt+ σ(t,X(t), E[X(t)])dB(t)

+
∫

R0

γ(t,X(t), E[X(t)], z)Ñ(dt, dz) + C(t)dξ(t),

X(0) = X0.

(1)

Here b, σ, γ are F-measurable functions such that
b : Ω × [0, T ]×Rn ×Rn → Rn, σ : Ω × [0, T ]×Rn ×Rn → Rn×d.

γ : Ω × [0, T ]×Rn ×Rn ×R0 → Rn×k, C : Ω × [0, T ] → Rn×m.
B(t) = (B1(t), B2(t), · · · , Bd(t)) is d-dimensional standard Brownian motion. SupposeNi(dt, dz),
i = 1, 2, · · · , k are independent Poisson random measures on the product measurable space (T ×
R,B(T )⊗B(R0)). AssumeN(dt, dz) has the following compensator ν(dz)dt = (ν1(dz)dt, ν2(dz)dt,
· · · , νk(dz)dt). νi(dz) is the Lévy measure of the jump amplitude of i-th Poisson random mea-
sure. ν(dz) is k-dimensional Lévy measure. Ñ(dt, dz): k-dimensional compensated Poisson
random measure Ñ(dt, dz) = (N1(dz, dt) − ν1(dz)dt,N2(dz, dt) − ν2(dz)dt, · · · , Nk(dz, dt) −
νk(dz)dt).
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Lemma 2.1 Let C(·) ∈ L∞(Ω ,Ft,P, R
n×m) be continuous. Under Condition H1 the

SDE (1) has a unique solution X(·) ∈ S2(T , Rn).

Proof If we assume that η(·) ≡ 0 for any t ∈ [0, T ], Equation (1) becomes a classical SDE
with jump without impulses, and the conclusion holds true from the jump-diffusion theory
(see [17]).

Let

h(t) =
∫ t

0

C(s)dξ(s) =
∑

τi≤t

C(τi)ξi, Y (t) = X(t) − h(t),

b̃(t,X(t), E[X(t)]) = b(t,X(t) + h(t), E[X(t) + h(t)]),

σ̃(t,X(t), E[X(t)]) = σ(t,X(t) + h(t), E[X(t) + h(t)]),

γ̃(t,X(t), E[Y (t)]) = γ(t,X(t) + h(t), E[X(t) + h(t)]).

Then we have
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

dY (t) = b̃(t, Y (t), E[Y (t)])dt

+σ̃(t, Y (t), E[Y (t)])dB(t) +
∫

R0

γ̃(t, Y (t), E[Y (t)])Ñ (dt, dz),

Y (0) = X0.

(2)

It is easy to verify that b̃(·), σ̃(·) and γ̃(·) satisfy Assumption H1.
Step 1 For arbitrary y(·) ∈ L2(T , Rn), consider the following SDE:

dY (t) = b̃(t, Y (t), E[y(t)])dt + σ̃(t, Y (t), E[y(t)])dB(t) +
∫

R0

γ̃(t, Y (t), E[y(t)])Ñ (dt, dz). (3)

The existence and uniqueness of the solution of SDE (3) are given by Theorem 1.19 in [12].
Step 2 We construct a mapping from SDE (3) into itself, i.e., l(y(·)) → Y (·) and l

is a contractive mapping. Indeed, for any y1(·), y2(·) ∈ L2(T , Rn), Y1(·) = l(y1(·)), Y2(·) =
l(y2(·)), ŷ(·) = y1(·) − y2(·), Ŷ (·) = Y1(·) − Y2(·). Applying Itô’s formula to e−βt|Ŷ (t)|2 and
taking the mathematical expectation, the result follows from Lipschitz condition,

E

[

e−βt|Ŷ (t)|2
]

+ E

[ ∫ t

0

βe−βs|Ŷ (s)|2
]

ds

= 2E
[∫ t

0

e−βsŶ T(s)|̃b(s, Y1(s), E[y1(s)]) − b̃(s, Y2(s), E[y2(s)])|ds
]

+ E

[ ∫ t

0

e−βs|σ̃(s, Y1(s), E[y1(s)]) − σ̃(s, Y2(s), E[y2(s)])|2ds
]

+ E

[ ∫ t

0

e−βs|γ̃(s, Y1(s), E[y1(s)], ·) − γ̃(s, Y2(s), E[y2(s)], ·)|2νds
]

≤ (6c2 + 1)E
[ ∫ t

0

e−βs|Ŷ (s)|2ds
]

+ 6c2E
[ ∫ t

0

e−βs|ŷ(s)|2ds
]

.

We get

(β − 6c2 − 1)E
[∫ T

0

e−βs|Ŷ (s)|2ds
]

≤ 6c2E
[ ∫ T

0

e−βs|ŷ(s)|2ds
]

.
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Let β be 18c2 + 1. We have

E

[ ∫ T

0

e−βs|Ŷ (s)|2ds
]

≤ 6c2

β − 6c2 + 1
E

[∫ T

0

e−βs|ŷ(s)|2ds
]

.

Since 6c2

β−6c2+1 < 1, l is a contractive mapping in L2
β(T , Rn). We define Lβ [0, T ] to be the

Banach space Lβ [0, T ] = L2
β(T , Rn), with the norm E[

∫ T

0
e−βt|v(t)|2dt]. Since 0 < T < ∞,

all the norms | · |Lβ [0,T ] with different β are equivalent. According to the fixed-point theorem,
the mapping has a unique fixed point Y (·) = l(Y (·)). The existence and uniqueness of the
solution of SDE (3) lead to the existence and uniqueness of the solution of SDE (2). Since
Y (t) = X(t) − h(t) is invertible, SDE (1) has a unique solution.

Step 3 According to Cauchy-Schwarz inequality, Doob martingale inequality, Itô’s isometry
and Burkhölder-Davis-Gundy inequality, we have the following results respectively

E

[

sup
0≤t≤T

∣
∣
∣
∣

∫ t

0

b(s,X(s), E[X(s)])ds
∣
∣
∣
∣

2]

≤ TE

[∫ T

0

∣
∣
∣
∣b(s,X(s), E[X(s)])

∣
∣
∣
∣

2

ds

]

,

E

[

sup
0≤t≤T

∣
∣
∣
∣

∫ t

0

σ(s,X(s), E[X(s)])dB(s)
∣
∣
∣
∣

2]

≤ 4E
[∣
∣
∣
∣

∫ T

0

σ(s,X(s), E[X(s)])dB(s)
∣
∣
∣
∣

2]

= 4E
[∣
∣
∣
∣

∫ T

0

∣
∣
∣
∣σ(s,X(s), E[X(s)])

∣
∣
∣
∣

2

ds

]

,

E

[

sup
0≤t≤T

∣
∣
∣
∣

∫ t

0

∫

R0

γ(s,X(s), E[X(s)], z)Ñ(ds, dz)
∣
∣
∣
∣

2]

≤ 4E
[∫ T

0

∣
∣γ(s,X(s), E[X(s)], ·)

∣
∣2
ν
ds

]

.

The result follows from Lipschitz condition and Jensen’s inequality

E

[ ∫ T

0

|b(s,X(s), E[X(s)])|2ds
]

+ E

[∫ T

0

|σ(s,X(s), E[X(s)])|2ds
]

+ E

[∫ T

0

|γ(s,X(s), E[X(s)], ·)|2νds
]

≤ cE

[ ∫ T

0

|X(s)|2ds
]

+ cE

[∫ T

0

|b(s, 0, 0)|2ds
]

+ cE

[ ∫ T

0

|σ(s, 0, 0)|2
]

+ cE

[∫ T

0

|γ(s, 0, 0, ·)|2νds
]

,

E

[

sup
0≤t≤T

|X(t)|2
]

≤ L

{

E

[

sup
0≤t≤T

∣
∣
∣
∣

∫ t

0

b(s,X(s), E[X(s)])ds
∣
∣
∣
∣

2]

+ E

[

sup
0≤t≤T

∣
∣
∣
∣

∫ t

0

σ(s,X(s), E[X(s)])dB(s)
∣
∣
∣
∣

2]

+ E

[

sup
0≤t≤T

∣
∣
∣
∣

∫ t

0

C(s)dξ(s)
∣
∣
∣
∣

2

+ E[X0]2
]

+ E

[

sup
0≤t≤T

∣
∣
∣
∣

∫ t

0

∫

R0

γ(s,X(s), E[X(s)], z)Ñ(ds, dz)
∣
∣
∣
∣

2]}

≤ L

{

E|X0|2 + TE

[∫ T

0

|b(s,X(s), E[X(s)])|2ds
]

+ 4E
[∫ T

0

|σ(s,X(s), E[X(s)])|2ds
]

+ 4E
[∫ T

0

|γ(s,X(s), E[X(s)], ·)|2νds
]

+ E
∑

τi≤T

[C(τi)ξi]2
}
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≤ L

{

E|X0|2 + E

[ ∫ T

0

|X(s)|2ds
]

+ E

[∫ T

0

|b(s, 0, 0)|2ds
]

+ E

[ ∫ T

0

|σ(s, 0, 0)|2ds
]

+ E
∑

τi≤T

[C(τi)ξi]2 + E

[ ∫ T

0

|γ(s, 0, 0, ·)|2νds
]}

<∞,

where L is a constant which will change from line to line. We have E[sup0≤t≤T |X(t)|2] < ∞,
i.e., X(·) ∈ S2(T , Rn).

Assumption H2

H2.1 : φ(·, 0, 0, 0, 0, 0, 0) ∈ L2(F , Rn);
H2.2 : φ is uniformly Lipschitz, i.e., ∃ c > 0 such that ∀ t, χ1 = (y1, z1, v1), χ2 = (y2, z2, v2),

χ1 = (y1, z1, v1), χ2 = (y2, z2, v2),
|φ(t, χ1, χ1)−φ(t, χ2, χ2)| ≤ c(|y1−y2|+ |z1−z2|+ |v1−v2|ν + |y1−y2|+ |z1−z2|+ |v1−v2|ν).

Lemma 2.2 Under Condition H2, the following BSDE (4) has a unique solution (Y (·), Z(·),
V (·, ·)) ∈M2(T , Rn ×Rn×d ×Rn×k).

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

dY (t) = −φ(t, Y (t), Z(t), V (t), E[Y (t)], E[Z(t)], E[V (t, ·)])dt+ Z(t)dB(t)

+
∫

R0

V (t, z)Ñ(dt, dz) + C(t)dξ(t),

Y (T ) = ζ,

(4)

where ζ is a square-integrable and FT -measurable random variable.

Proof Lemma 2.2 can be proved by the fixed-point theorem.
Let

h(t) =
∫ t

0

C(s)dξ(s) =
∑

τi≤t

C(τi)ξi, Ỹ (t) = Y (t) − h(t),

φ̃(t, Y (t), Z(t), V (t), E[Y (t)], E[Z(t)], E[V (t, ·)])
= φ(t, Y (t) + h(t), Z(t), V (t), E[Y (t) + h(t)], E[Z(t)], E[V (t, ·)]),

dỸ (t) = φ̃(t, Ỹ (t), Z(t), V (t), E[Ỹ (t)], E[Z(t)], E[V (t, ·)])dt + Z(t)dB(t)

+
∫

R0

V (t, z)Ñ(dt, dz),

Ỹ (T ) = ζ − h(T ).

(5)

According to Theorem 3.1 in [15], the mean-field BSDE (5) has a unique solution. We ob-
serve that Ỹ (t) = Y (t) − h(t) is invertible. Then, we obtain the solution (Y (·), Z(·), V (·, ·)) ∈
M2(T , Rn ×Rn×d ×Rn×k).
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3 Stochastic Maximum Principle

We call the following problem an optimal control problem of jump-diffusion mean-field
model involving impulse control. The state process X(·) := {X(t) : t ∈ [0, T ]} is given by a
jump-diffusion mean-field stochastic differential equation involving impulse control.

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

dX(t) = b(t,X(t), E[X(t)], u(t))dt+ σ(t,X(t), E[X(t)], u(t))dB(t)

+
∫

R0

γ(t,X(t), E[X(t)], u(t), z)Ñ(dt, dz) + C(t)dξ(t),

X(0) = X0.

(6)

The objective of the controller is to minimize the expected cost function, which depends on the
control inputs to the system

J(u(·), ξ(·)) = E

[ ∫ T

0

f(t,X(t), E[X(t)], u(t))dt+ g(X(T ), E[X(T )]) +
∑

i≥0

l(τi, ξi)
]

. (7)

Here f : [0, T ] × Rn × Rn × U → R, g : Rn × Rn → R, l : [0, T ] × U → R. Suppose that
the controller wants to minimize the cost functional J by choosing an appropriate admissible
control (u(·), ξ(·)) such that J(u(·), ξ(·))) = inf(v,η)∈A J(v(·), η(·)), where A = U×I is called an
admissible control set. u: T ×Ω → U is defined in a non-empty, closed and convex set U (U : A
nonempty convex set of Rn). We require that the control process {u(t)|t ∈ T } is F-predictable
and has right limits.

Assumption H3

H3.1 : b, σ, γ are continuously differentiable, Lipschitz in (x, x, u), and have a linear growth
in (x, x, u), i.e., for any (x, x1, u1), (x2, x2, u2) ∃ c such that: |b(t, x1, x1, u1)− b(t, x2, x2, u2)|+
|σ(t, x1, x1, u1)− σ(t, x2, x2, u2)|+ |γ(t, x1, x1, u1)− γ(t, x2, x2, u2)|ν ≤ c(|x1 − x2|+ |x1 − x2|+
|u1 − u2|) and |b(t, x, x, u)| + |σ(t, x, x, u)| + |γ(t, x, x, u)|ν ≤ c(1 + |x| + |x| + |u|).

H3.2 : l is continuously differentiable in ξ and l(τ, ξ) ≤ c(1 + |ξ|).
The purpose of the rest of this section is to present the stochastic maximum principle for an

optimal control problem of jump-diffusion mean-field model involving impulse control. Since A
is convex, a convex perturbation technique will be used to prove a necessary condition for the
above optimal control problem. We will give a verification theorem for the necessary condition.

Lemma 3.1 Under Assumption H3, the mean-field SDE (6) has a unique solution X(·) ∈
S2(T , Rn).

Proof The conclusion follows from Lemma 2.1.
The Hamiltonian function is defined as follows

H(t, x, x, u, p, q, r) = f(t, x, x, u) + bT(t, x, x, u)p+ tr[σT(t, x, x, u)q]

+
∫

R0

tr[γ(t, x, x, u, z)diag(ν(dz))rT(t, z)]. (8)

H : Ω × T × Rn × Rn × U ×Rn × Rn×d ×R → R, where R is the set of functions r(ω, t, z) :
Ω × T × R0 → Rn×k such that the integral in (8) and its derivatives with respect to (x, x, u)
converge.
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Assumption H4

H4.1 : f, b, σ, γ are continuously differentiable in (x, x, u), g is continuously differentiable in
(x, x), l is continuously differentiable in ξ.

H4.2: The derivative of b, σ, γ are bounded. The derivative of f, g, l are bounded by C(1 +
|x| + |x| + |u|), C(1 + |x| + |x|), C(1 + |ξ|), respectively.

We denote ψ(t) = ψ(t.X(t), E[X(t)], u(t)), for ψ = b, σ, γ, bx, bx, bu, σx, σx, σu, γx, γx, γu, f,

fx, fu, H(t) = H(t, x, x, u, p, q, r). We introduce the adjoint equation:
⎧
⎪⎨

⎪⎩

dp(t) = −(∇xH(t) + E[∇xH(t)])dt + q(t)dB(t) +
∫

R0

r(t, z)Ñ(dz, dt),

p(T ) = ∇xg(X(T ), E[X(T )]) +E[∇xg(X(T ), E[X(T )])].
(9)

It is easy to see that (9) has a unique solution (p(·), q(·), r(·)) ∈M2(T , Rn×Rn×d×Rn×k) under
Assumption H4. Let (u(·), ξ(·) =

∑
i≥0 ξi1[τi,T ]) be the optimal control of the above stochastic

optimal control problem. (v(·), η(·) =
∑

i≥0 ηi1[τi,T ]) makes u(·)+v(·) ∈ U , ξ(·)+η(·) ∈ I. Since
U , I are convex, then for arbitrarily ε > 0, uε(·) = u(·)+εv(·) ∈ U , ξε(·) = ξ(·)+εη(·) ∈ I. Xε(·)
represents the corresponding trajectory of (uε(·), ξε(·)). We introduce the following variational
equation:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dX1(t)T = [X1(t)Tbx(t) + E[X1(t)T]bx(t) + v(t)Tbu(t)]dt

+[X1(t)Tσx(t) + E[X1(t)T]σx(t) + v(t)Tσu(t)]dB(t)

+
∫

R0

[X1(t−)Tγx(t) + E[X1(t)T]γx(t) + v(t)Tγu(t)]Ñ(dz, dt)

+C(t)dη(t),

X1(0) = 0.

(10)

By Assumption H4, Equation (10) has a unique solution. Denote X̃(t) = Xε(t)−X(t)
ε −X1(t).

Lemma 3.2
lim
ε→0

sup
0≤t≤T

E[|X̃(t)|2] = 0.

Proof Since X̃(t) does not depend on the impulse term, the corresponding conclusion is
derived from Lemma 4.3 in [15].

Since (u(·), ξ(·)) is an optimal control, it is obvious that

ε−1[J(uε(·), ξε(·)) − J(u(·), ξ(·))] ≥ 0.

We obtain the following variational inequality.

Lemma 3.3 Assume (u(·), ξ(·)) is an optimal control, then

E

[

X1(T )T(∇xg(X(T ), E[X(T )]) +E[∇xg(X(T ), E[X(T )])]) +
∫ T

0

[
X1(t)Tfx(t)

+ E[X1(t)T]fx(t) + fu(t)v(t)
]
dt+

∑

i≥0

lξ(τi, ξi)ηi

]

≥ 0.
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Proof From Lemma 3.2, It is easy to see that when ε→ 0,

ε−1E

[
∑

i≥0

l(τi, ξε
i ) − l(τi, ξi)

]

= E

[
∑

i≥0

∫ 1

0

lξ(τi, ξi + εληi)
]

ηidλ→ E

[
∑

i≥0

lξ(τi, ξi)ηi

]

,

ε−1E

[ ∫ T

0

f(t,Xε(t), E[Xε(t)], uε(t))dt
]

− ε−1E

[ ∫ T

0

f(t,X(t), E[X(t)], u(t))dt
]

=E
[ ∫ T

0

∫ 1

0

{
(Xε(t) −X(t))T

ε
fx(t,X(t) + λε(X̃(t) +X1(t)), E[X(t)], u(t))

+
(E[Xε(t)] − E[X(t)])T

ε
fx(t,X(t), E[X(t) + λε(X̃(t) +X1(t))], u(t))

+ fu(t,X(t), E[X(t)], u(t) + λεv(t))v(t)
}

dλdt

]

→E

[ ∫ T

0

[
X1(t)Tfx(t) + E[X1(t)T]fx(t) + fu(t)v(t)

]
dt

]

,

E

[
(Xε(t) −X(t))T

ε
∇xg(X(T ), E[X(T )]) +

(EXε(t) − E[X(t)])T

ε
]∇xg(T,X(T ))

]

→E

[

[X1(T )]T(∇xg(X(T ), E[X(T )]) +E[∇xg(X(T ), E[X(T )])]
]

.

Due to the optimality of (u(·), ξ(·)), we derive that

0 ≤ε−1[J(uε(·), ξε(·)) − J(u(·), ξ(·))]

= ε−1E

[ ∫ T

0

f(t,Xε(t), E[Xε(t)], uε(t))dt+ g(Xε(T ), E[Xε(T )]) +
∑

i≥0

l(τi, ξε
i )

]

− ε−1E

[∫ T

0

f(t,X(t), E[X(t)], u(t))dt+ g(X(T ), E[X(T )]) +
∑

i≥0

l(τi, ξi)
]

→E

[

[X1(T )]T(∇xg(X(T ), E[X(T )]) +E[∇xg(X(T ), E[X(T )])])

+
∫ T

0

[
X1(t)Tfx(t) + E[X1(t)T]fx(t) + fu(t)v(t)

]
dt+

∑

i≥0

lξ(τi, ξi)ηi

]

.

The proof is finished.

Theorem 3.4 Under Assumptions H1,H2,H3,H4, (u(·), ξ(·)) is an optimal control; (p(·),
q(·), r(·)) is the solution of (9) and X(·) is the corresponding trajectory. Then ∀ v ∈ U , η ∈ I,

∇uH(t,X(t), E[X(t)], u(t), p(t), q(t), r(t, ·))(v − u(t))T ≥ 0, a.e. t ∈ T ,P − a.s. (11)

E

[
∑

i≥0

[lξ(τi, ξi) + p(τi)C(τi)]10≤τi≤T (ηi − ξi)
]

≥ 0. (12)
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Proof Using Itô’s formula to p(t)TX1(t) and combining with Lemma 3.3, we have

E

[

X1(T )Tp(T ) −X1(0)Tp(0)
]

= E

[ ∫ T

0

X1(t)T
[
−∇xH(t,X(t), E[X(t)], u(t), p(t), q(t), r(t, ·)

+ E[∇xH(t,X(t), E[X(t)], u(t), p(t), q(t), r(t, ·))])
]
dt

+ p(t)
{

[
X1(t)Tbx(t) + E[X1(t)T]bx(t) + v(t)Tbu(t)

]
dt+ C(t)dη(t)

}

+ q(t)
[
X1(t)Tσx(t) + E[X1(t)T]σx(t) + v(t)Tσu(t)

]
dt+

∫

R0

{
[
X1(t−)Tγx(t)

+ E[X1(t)T]γx(t) + v(t)Tγu(t)
]
ν(dz)dt

}

r(t, z)
]
]

= E

[ ∫ T

0

[
∇uH(t,X(t), E[X(t)], u(t), p(t), q(t), r(t, ·))v(t) −X1(t)Tfx(t) − E[X1(t)T]fx(t)

− fu(t)v(t)
]
dt+

∑

i≥0

p(τi)C(τi)ηi

]

.

Adding the same item

E

[ ∫ T

0

[
X1(t)Tfx(t) + E[X1(t)T]fx(t) + fu(t)v(t)

]
dt+

∑

i≥0

lξ(τi, ξi)ηi

]

on both sides and combining Lemma 3.3, we have

E

[ ∫ T

0

∇uH(t,X(t), E[X(t)], u(t), p(t), q(t), r(t, ·))v(t)dt

+
∑

i≥0

[p(τi)C(τi) + lξ(τi, ξi)]1{0≤τi≤T}ηi

]

≥ 0.

By arbitrariness of v(·) and ηi, i = 1, 2, · · · , we choose v(·) ≡ 0 and ηi ≡ 0, respectively, to get

E

[ ∫ T

0

∇uH(t,X(t), E[X(t)], u(t), p(t), q(t), r(t, ·))(ṽ(t) − u(t))dt
]

≥ 0, (13)

for all ṽ(·) ∈ U , and

E

[
∑

i≥0

[p(τi)C(τi) + lξ(τi, ξi)]1{0≤τi≤T}(ηi − ξi)
]

≥ 0,

for all η(·) =
∑

i≥0 ηi1[τi,T ] ∈ I. Next we refer to the proof in Theorem 1.5 of [6]. For v ∈ U , de-
fined byBv the set of (t, ω) ∈ [0, T ]×Ω such that ∇uH(t,X(t), E[X(t)], u(t), p(t), q(t), r(t, ·))(v(t)−
u(t))dt < 0.
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Obviously, for each t ∈ [0, T ], Bv
t ∈ Ft. Let us consider ṽ ∈ U defined by

ṽ(t, ω) =

⎧
⎨

⎩

v, if (t, ω) ∈ Bv,

u(t, ω), otherwise.

If (Leb⊗ P)(Bv) > 0, then it follows that

E

[ ∫ T

0

∇uH(t,X(t), E[X(t)], u(t), p(t), q(t), r(t, ·))(ṽ(t) − u(t))dt
]

< 0,

which contradicts (13). Thus, we get (Leb⊗ P)(Bv) = 0, and the conclusion (11), (12) hold.

Theorem 3.5 Under Assumptions H1,H2,H3, we assume that l, g,H are convex respect
to ξ, (x, x) and (x, x, u), respectively. X(·) is the corresponding trajectory of (u(·), ξ(·)) ∈ A and
(
p(·), q(·), r(·, ·)

)
is a unique solution of (9). If (11), (12) hold, then (u(·), ξ(·)) is an optimal

control process.

Proof For any (v(·), η(·)) ∈ U × I, Xv(·) represents the corresponding trajectory of
(v(·), η(·)). Consider J(v(·), η(·)) − J(u(·), ξ(·)), using the convexity of g(·), l(·), we have

J(v(·), η(·)) − J(u(·), ξ(·))

= E

[ ∫ T

0

f(t,Xv(t), E[Xv(t)], v(t)) − f(t,X(t), E[X(t)], u(t))dt

+ g(Xv(T ), E[Xv(T )]) − g(X(T ), E[X(T )]) +
∑

i≥0

(l(τi, ηi) − l(τi, ξi))
]

≥ E

[ ∫ T

0

f(t,Xv(t), E[Xv(t)], v(t)) − f(t,X(t), E[X(t)], u(t))dt

+ (Xv(T )−X(T ))T(∇xg(X(T ), E[X(T )]) +E[∇xg(X(T ), E[X(T )])])+
∑

i≥0

lξ(τi, ξi)(ηi−ξi)
]

= E

[ ∫ T

0

[
f(t,Xv(t), E[Xv(t)], v(t)) − f(t,X(t), E[X(t)], u(t))

]
dt

+ (Xv(T ) −X(T ))Tp(T ) +
∑

i≥0

lξ(τi, ξi)(ηi − ξi)
]

.

Using Itô’s formula to (Xv(T ) − X(T ))Tp(T ), the definition of H(·), the convexity of H(·)
and (12), we have

J(v(·), η(·)) − J(u(·), ξ(·))

≥ E

[ ∫ T

0

{

H(t,Xv(t), E[Xv(t)], v(t), p(t), q(t), r(t)) −H(t,X(t), E[X(t)], u(t), p(t), q(t), r(t))
)

− (Xv(t) −X(t))T(∇xH(t,X(t), E[X(t)], u(t), p(t), q(t), r(t))

+ E[∇xH(t,X(t), E[X(t)], u(t), p(t), q(t), r(t))])
}

dt+
∑

i≥0

[lξ(τi, ξi)+p(τi)C(τi)](ηi−ξi)
]

≥ 0.

So (u(·), ξ(·)) is an optimal control.
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4 Application

Suppose we have two kinds of securities in the market for possible investment choices. A
risk-free security (e.g., a bond), whose price S0(t) at time t is given by

⎧
⎨

⎩

dS0(t) = ρ(t)S0(t)dt,

S0(0) = S0.

A risk security (e.g., a stock), whose price S(t) at time t is given by
⎧
⎪⎨

⎪⎩

dS(t) = S(t)
[

μ(t)dt+ σ(t)dB(t) +
∫

R0

γ(t, z)Ñ(dt, dz)
]

,

S(0) = S,

where ρ(t) ≤ μ(t); σ : [0, T ]×R×R → R; γ : [0, T ]×R×R×R0 → R. The wealthy dynamics
follows
⎧
⎪⎨

⎪⎩

dX(t) = (ρ(t)(X(t) − u(t)) + u(t)μ(t))dt + u(t)σ(t)dB(t) +
∫

R0

u(t)γ(t, z)Ñ(dt, dz) − dξ(t),

X(0) = β.

u(·) is a portfolio strategy of agent and X(t) = Xu(t) is the total wealth of the agent at time
t corresponding to portfolio strategy u(·). ξ(t) =

∑
i≥0 ξi1[τi,T ] is a piecewise consumption

process.
Assume that:
1) Short selling is allowed;
2) The trading strategies are self-financing.
The investor selects an investment strategy and a consumption strategy to minimize the

variation and maximize the expected function. The cost functional is given by

J(u(·), ξ(·)) =
a

2
Var[X(T )]− E[X(T )] +E

[
S

2

∑

0≤τi≤T

ξ2i +
∫ T

0

1
2
Q(t)u2(t)dt

]

,

where a is a constant, Q(t) is a deterministic function.

J(u(·), ξ(·)) = E

[ ∫ T

0

1
2
Q(t)u2(t)dt+

[
a

2
X2(T ) −X(T )

]

− a

2
[E[X(T )]]2 +

S

2

∑

0≤τi≤T

ξ2i

]

.

As we can see from (7), g(x, x) = a
2x

2 − x− a
2x

2, l(τi, ξi) = S
2 ξ

2
i , f(t, x, x, u) = 1

2Q(t)u2(t).
g is not convex in x, but we have the following corollary.

Corollary 4.1 If the convex condition is satisfied in expected sense, i.e., the following
inequality holds, for any X1, X2 ∈ L2(FT , R

n), E[g(X1, E[X1]) − g(X2, E[X2])] ≤ E
[
(X1 −

X2)T{∇xg(X1, E[X1]) + ∇xg(X1, E[X1])}
]
, the maximum principle is still valid.

Proof This proof can refer to Corollary 4.1 in [15].
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Define the Hamiltonian equation:

H(t, x, u, p, q, r) = [ρ(t)(x − u) + uμ(t)]p+ uσ(t)q +
∫

R0

uγ(t, z)ν(dz)r +
1
2
Q(t)u2.

The corresponding adjoint equation is as follows
⎧
⎪⎨

⎪⎩

dp(t) = −ρ(t)p(t)dt+ q(t)dB(t) +
∫

R0

r(t, z)Ñ(dz, dt),

p(T ) = aX(T )− 1 − aE[X(T )].

Then, by Theorem 3.4 and Corollary 4.1 we have

u(t) = −
[μ(t) − ρ(t)]p(t) + σ(t)q(t) +

∫

R0
γ(t, z)ν(dz)r(t, z)

Q(t)
, (14)

ξ(t) =
1
S

∑

0≤τi≤T

p(τi). (15)

We give three schematics of the solution p(t), the continuous control u(·) and the impulse
control ξ(·) as shown in Figures 2–4. The involved parameters are given by: T = 10, Q(t) =
1, μ(t) − ρ(t) = 0.5, ρ(t) = ρ, q(t) = q, r(t) = r, σ(t) = γ(t) = 0, S = −1. We assume Δτ =
0.5; 1; 2, τi = iΔτ (i = 1, 2, · · · , 10

Δτ − 1). (14) and (15) are simplified as follows:

u(t) = −0.5p(t), ξ(t) = −
∑

0≤τi≤T

p(τi).
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Figure 2 The solution of adjoint equation

From Figure 2, we observe that larger time t leads to larger values of p(·). On the other
hand, as we can see from Figure 3, larger Δτ leads to smaller optimal consumption ξ(·). Figure 4
shows that larger time t leads to smaller portfolio u(·) in risky security.
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Figure 3 The optimal consumption ξ(t) with different Δτ
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Figure 4 The optimal control u(t)

5 Conclusion

We have showed the existence and uniqueness of the solution to a jump-diffusion mean-field
stochastic differential equation involving impulse control. We also give a necessary maximum
principle and a sufficient verification theorem for the continuous control and impulse control.
Finally, a mean-variance portfolio selection problem has been solved based on the theoretical
results in this study.

In this paper, the control domain is assumed to be convex. It demands more complicated
technique to solve non-convex domain case for the optimal control problems of jump-diffusion
mean-field model involving impulse control. This will be studied in our future work.
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