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Abstract Sensor network deployment is the key for sensors to play an important performance. Based

on game theory, first, the authors propose a multi-type sensor target allocation method for the au-

tonomous deployment of sensors, considering exploration cost, target detection value, exploration

ability and other factors. Then, aiming at the unfavorable environment, e.g., obstacles and enemy

interference, the authors design a method to maintain the connectivity of sensor network, under the

conditions of effective detection of the targets. Simulation result shows that the proposed deployment

strategy can achieve the dynamic optimization deployment under complex conditions.

Keywords Connectivity, dynamic deployment, game theory, target allocation.

1 Introduction

Sensors are widely used in environmental monitoring, battlefield target detection, etc., and
have aroused widespread concern. The deployment of sensors is an important foundation to
ensure the effective operation of the sensor network, about which a serious of results have
achieved. Ozturk, et al.[1] applied artificial bee colony algorithm (ABC) to dynamic deployment
of wireless sensor networks (WSNs). Based on [1], authors in [2] used probability-based node-
aware model modeling in hybrid WSNs. Liao, et al.[3] applied glowworm swarm optimization
(GSO) to the optimal deployment of WSNs. In [4], authors proposed a network coverage
algorithm by improving GSO. In [5], a mobile-sensor-network-node optimization strategy based
on differential evolution (DE) was put forward. In [6], artificial immune system (AIS) was
used into the redeployment of WSNs. In order to achieve the full coverage of all targets in the
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network with directed sensors, authors proposed a target coverage scheme based on immune
algorithm[7]. Aziz, et al.[8] tried to settle the coverage optimization problem of WSN by using
particle swarm optimization (PSO) for the first time. Howard, et al.[9] introduced potential
field-based approach to optimizing deployment of WSNs. In this method, each sensor node is
treated as a mobile robot. Through the action of the Potential Field-based Approach, the sensor
nodes that are initially gathered together are fully dispersed, thereby expending the coverage
area in the network.

As can be seen from the studies above, the main feature of current sensor deployment
researches is reflected in the ideal deployment environment, that is, the complex situations
appear in the actual deployment missions have not been considered. The deployment envi-
ronment of sensors is increasingly complex. Especially in combat missions, values vary from
target to target, and targets pose different threats to sensors. Due to the limited function of a
single sensor, a variety of types of sensors, with different capabilities, are needed to complete
the collaboration. As different types of sensors have differences in value and capability, and
have limited detection ranges, how to effectively accomplish target allocation among different
types of sensors is an important part of ensuring the optimal deployment. In addition, most
sensor networks have ideal deployment environment without considering the impact of actual
environment on deployment. Some restrictions will affect the connectivity of the sensor net-
work and cause a serious impact on deployment performance, e.g., threatened areas set by the
enemy, un-deployable areas in the environment, and so on. Starting from the actual applica-
tion needs, in this paper, we first establish an objective function, including the value of the
detection target, detection cost, detection revenue and other indicators, and allocate targets in
sensor network. Then, treating the threat areas set by the enemy and the un-deployable areas
as obstacles, design a method to make it possible to guarantee the connectivity of the network
and avoid these two types of areas mentioned above while sensors probe targets assigned. This
paper uses game theory to obtain the optimal decision and finally, shows the effectiveness of
the sensor network deployment strategy and its suitability for dynamic deployment in complex
environment through simulation.

2 Game Theory Model

Game theory studies that, under certain rules, parties participating in the game, in accor-
dance with given sequence, predict the behavior of other individuals according to the informa-
tion they have obtained, and select the optimal strategy that maximizes their own revenue from
the strategy set, so that to make the whole situation achieve a balance. The game contains four
basic elements: Participating individuals, strategy set, the order of the game and the proceeds
of the game.

2.1 Participating Individuals

It is usually assumed that the participators, in a finite number, are rational, that is, each
individual will choose the strategy that maximizes its own profits, regardless of considering
whether the strategy will damage the interests of others. In this paper, participating individuals
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are sensors in the sensor network S = {s1, s2, · · · , sn}.
2.2 Strategy Set

Each individual has its own strategy set ai = {ai1, ai2, · · · , ain}, and the number of strategy
sets can be finite or infinite. During each game, each individual in accordance with the specified
order, predicts the strategies of other individuals, and chooses one from their own strategy set
to maximize his own profits. The set of all individual strategies A =

∏n
i=1 ai is called strategy

space. For easy description, take the strategy combination as a = (ai, a−i), among which, a−i

represents a decision collection including all individuals expect individual si.
In this paper, the next available location of each individual constitutes sensor decision collec-

tion. To reduce the amount of computation, with the sensor as the center, select discrete coordi-
nate points within a certain range of R as the current optional strategy, according to the actual
physical characteristics of the sensor. And divide R into several parts R = {R1, R2, · · · , Rn},
based on the number of neighbors, to balance the need of the network connectivity and de-
centralized deployment more effectively. The more the neighbors, the father discrete space the
sensor chooses, on the contrary, the more recent one it chooses, which is shown in Figure 1.
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Figure 1 Discretization of the sensor’s next decision space

2.3 Revenue Function

Define fi = (ai, a−i) as a revenue function to describe the profits of individual si under the
strategy (ai, a−i). It can be seen that the benefits of an individual is not only related to the
strategy of its own choice, but also depends on the strategy of other participants.

2.4 Nash Equilibrium

For individual si, if there exists a∗
i , and only if ∀a′

i ∈ ai, fi(a∗
i , a−i) ≥ fi(a′

i, a−i), we can
say a∗

i is the optimal strategy set for it. If ∀si ∈ S, ∀a′
i ∈ ai, fi(a∗

i , a
∗
−i) ≥ fi(a′

i, a
∗
−i), then the

set of optimal strategies for all individuals is called Nash equilibrium. As can be seen, in the
case of other sensors are not changed, it is impossible for each to obtain greater benefits by
changing its strategy alone.
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3 Task Allocation Model

Assuming that the sensor network consists of n sensors S = {s1, s2, · · · , sn}, and the mission
area has m important targets that require focused detection, recorded as K = {k1, k2, · · · , km}.
3.1 Detection Cost

Suppose si detects the target kj , and the probability of being found by the target is Pkij ,
and the value of is vs

i . Then the cost of assigning target kj to si can be written as

C1 = vs
iPkij . (1)

The closer the distance between the sensor si and the target kj , the less energy is consumed,
which can be shown as follows:

C2 =
di j

maxj∈Kdi j
, (2)

di j is the distance between sensor si and the target kj .

3.2 Detection Revenue

The value of the target kj is vk
j , and the detection efficiency of the sensor si to the target

kj is Psij , Then the detection revenue of detection target kj can be calculated as

C3 = vk
j Psij . (3)

Task assignment problem is a multi-objective optimization one. According to the indexes
above, we can transform it into a single-objective optimization problem through the linear
weighting method and design the revenue function of target allocation:

min f = w1C1 + w2C2 − w3C3, (4)

ω1, ω2, ω3 are positive weight coefficients.

4 Connectivity Maintenance

After dividing task area, each sensor needs to identify and move to the next position. In [10],
authors propose that the connectivity of sensor networks depends on the number of neighbors
within the communication range of each sensor. If each sensor can maintain connectivity with L

key neighbors during deployment, the network can remain connectivity with greater probability.
According to the idea mentioned in [11], suppose that the sensors si and sj are neighbors of
each other at time t. Define the circle whose radius is rc/2, half the communication radius,
as Dij , the center of which is the midpoint connected by si and sj . If at the next time t + 1,
the positions pi and pj of si and sj are still within the circle Dij , that is, pi(t + 1) ∈ Dij

and pj(t + 1) ∈ Dij , then si and sj will certainly be able to maintain connectivity. Thus, if
pi(t + 1) ∈ ∩j∈Ni Dij , then si can continue to be connected with all of the neighbors at the
next moment, which have already been connected with it at the current time t, as shown in
Figure 2.
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Figure 2 Maintain connectivity

5 Design of Revenue Function

To meet the needs of exploration mission, two types of performance should be reflected in
the revenue function. One, sensors should be as close as possible to detection targets. The
other, the distribution of the sensors should be as uniform as possible so that the efficiency
of detection can be improved. Also, keep the appropriate distance between sensors, which can
increase the overall coverage area of the network. In addition, avoid deploying the sensors at
both threatened and un-deployable areas.

In this paper, we consider the threatened areas and un-deployable areas, set by the enemy,
as obstacles. For ease of analysis, a circle O is used to represent the obstacle. When the sensor
detects an obstacle, it will keep a certain distance from the edge point q of the nearest obstacle.
To reduce the probability of bumping into the obstacles, we state that the individual benefits
value will decrease as the distance between the sensor and the obstacle O decreases. When
the distance is very close to 0, the penalty value tends to be infinite, and the revenue value
will go to infinitesimal. The penalty function designed as

∑
o∈Oi(t)

1
dio(t+1) , and dio(t + 1) =

||pi(t+1)−O0− r0|| represents the distance between the position (pi) of sensor si and the edge
point q of the obstacle nearest to itself, and O0, r0 represents the center and the radius of the
obstacle, respectively.

In summary, we can design the revenue function of the deployment process:

max fi(ai(t), a−i(t)) = −μ1di j(t + 1) + μ2

∑

j∈Ni(t)

dij(t + 1)

−μ3

⎡

⎣
∑

j∈Ni(t)

(

dij(t + 1)−
∑

j∈Ni(t)
dij(t + 1)

Ni(t)

)2
⎤

⎦

1/2

−μ4

∑

o∈Oi(t)

1
dio(t + 1)

, (5)

where μ1, μ2, μ3, μ4 are positive weight coefficients, Ni(t) consists of the neighbors of si at the
current moment, di j is the distance between si and its own detection target, dij is the distance
between si and its neighbor sj , Those four parts in the function (5) represent that when sensor
si is expected to adopt strategy ai(t), the distance between si and its own target k and the
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distance from all current neighbors at the next moment, the variance of the distance distribution
and the penalty value of the distance from detected obstacle O at the current time.

6 Experimental Simulation

We randomly distribute 25 sensors with communication radius of 30, and set 25 targets.
The parameters of sensors and targets are as follows:

Table 1 The parameters of sensors and targets

(a) Target number, value and location

Target number Value Location

k1 64 [38.2, 65.5]

k2 16 [51.9, 11.9]

k3 17 [13.4, 44.3]

k4 82 [29.8, 91.1]

k5 83 [34.5, 65.9]

k6 88 [66.7, 10.8]

k7 12 [70.8, 50.1]

k8 65 [17.4, 48.6]

k9 57 [41.4, 90.3]

k10 86 [30.8, 77.4]

k11 75 [86.8, 87.1]

k12 4 [29.1, 38.4]

k13 86 [11.4, 45.4]

k14 47 [79.3, 81.4]

k15 49 [17.1, 92.4]

k16 52 [22.8, 75.9]

k17 39 [52.7, 71.6]

k18 39 [76.4, 90.9]

k19 21 [61.7, 35.8]

k20 11 [86.1, 40.4]

k21 72 [20.1, 40.6]

k22 3 [47.1, 70.1]

k23 100 [86.1, 19.3]

k24 8 [84.1, 17.4]

k25 40 [28.3, 10.6]

(b) Sensor number, value and initial location

Sensor number Value Initial Location

s1 44 [8.9, 11.7]

s2 24 [12.8, 10.1]

s3 67 [10.5, 9.9]

s4 60 [14.3, 13.9]

s5 76 [10.8, 10.1]

s6 33 [18.5, 6.6]

s7 74 [11.4, 6.5]

s8 3 [6.3, 6.0]

s9 11 [13.2, 6.0]

s10 88 [8.6, 12.5]

s11 33 [13.6, 5.7]

s12 99 [10.6, 8.4]

s13 60 [6.7, 13.2]

s14 26 [10.9, 13.1]

s15 36 [8.4, 14.0]

s16 49 [6.1, 10.9]

s17 28 [11.4, 5.6]

s18 81 [13.1, 14.5]

s19 27 [12.5, 9.9]

s20 20 [10.9, 8.7]

s21 75 [6.4, 7.9]

s22 68 [11.3, 9.4]

s23 71 [13.6, 11.9]

s24 17 [11.0, 8.9]

s25 39 [9.7, 7.8]
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Table 2 Target treat probability to sensor

ID s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13

k1 0.73 0.40 0.53 0.64 0.99 0.79 0.23 0.46 0.52 0.54 0.26 0.03 0.88

k2 0.75 0.09 0.33 0.91 0.51 0.85 0.84 0.88 0.26 0.70 0.74 0.53 0.10

k3 0.06 0.04 0.81 0.64 0.38 0.01 0.45 0.27 0.19 0.92 0.39 0.73 0.93

k4 0.77 0.39 0.52 0.18 0.54 0.82 0.06 0.71 0.17 0.03 0.68 0.69 0.37

k5 0.01 0.59 0.18 0.85 0.07 0.28 0.07 0.13 0.18 0.91 0.01 0.54 0.16

k6 0.34 0.01 0.88 0.97 0.83 0.11 0.78 0.34 0.29 0.57 0.84 0.32 0.01

k7 0.66 0.30 0.05 0.32 0.25 0.41 0.10 0.52 0.37 0.14 0.79 0.57 0.36

k8 0.58 0.34 0.53 0.25 0.17 0.16 0.98 0.33 0.63 0.30 0.27 0.89 0.42

k9 0.79 0.68 0.63 0.56 0.47 0.05 0.49 0.69 0.38 0.24 0.84 0.89 0.42

k10 0.08 0.33 0.88 0.73 0.23 0.76 0.74 0.85 0.46 0.04 0.30 0.30 0.01

k11 0.07 0.12 0.75 0.62 0.30 0.86 0.35 0.91 0.75 0.19 0.14 0.26 0.30

k12 0.49 0.53 0.37 0.02 0.49 0.79 0.07 0.87 0.25 0.29 0.69 0.66 0.27

k13 0.17 0.90 0.84 0.29 0.84 0.29 0.82 0.77 0.68 0.98 0.20 0.30 0.86

k14 0.08 0.28 0.49 0.12 0.82 0.86 0.24 0.74 0.04 0.97 0.18 0.63 0.71

k15 0.21 0.52 0.13 0.14 0.05 0.73 0.05 0.70 0.45 0.50 0.37 0.56 0.22

k16 0.55 0.79 0.46 0.73 0.14 0.06 0.05 0.59 0.79 0.58 0.71 0.09 0.31

k17 0.08 0.30 0.11 0.46 0.25 0.66 0.70 0.67 0.56 0.73 0.42 0.38 0.97

k18 0.07 0.01 0.28 0.53 0.88 0.07 0.42 0.29 0.60 0.99 0.29 0.56 0.94

k19 0.93 0.74 0.40 0.28 0.24 0.09 0.69 0.54 0.75 0.95 0.67 0.05 0.77

k20 0.50 0.28 0.07 0.84 0.37 0.51 0.84 0.92 0.67 0.01 0.33 0.48 0.83

k21 0.98 0.92 0.39 0.15 0.30 0.73 0.37 0.70 0.73 0.89 0.94 0.02 0.05

k22 0.71 0.01 0.76 0.02 0.42 0.28 0.53 0.77 0.36 0.24 0.11 0.43 0.14

k23 0.71 0.47 0.93 0.59 0.12 0.98 0.74 0.57 0.89 0.08 0.91 0.24 0.50

k24 0.29 0.13 0.93 0.64 0.77 0.57 0.39 0.96 0.97 0.89 0.92 0.81 0.67

k25 0.94 0.28 0.31 0.48 0.20 0.93 0.76 0.03 0.01 0.89 0.01 0.43 0.17

ID s14 s15 s16 s17 s18 s19 s20 s21 s22 s23 s24 s25

k1 0.39 0.47 0.46 0.67 0.65 0.78 0.83 0.52 0.36 0.38 0.17 0.73

k2 0.91 0.01 0.25 0.29 0.27 0.53 0.08 0.58 0.54 0.04 0.27 0.67

k3 0.96 0.93 0.83 0.13 0.85 0.21 0.69 0.22 0.54 0.02 0.67 0.99

k4 0.76 0.37 0.29 0.96 0.39 0.38 0.34 0.68 0.10 0.87 0.44 0.43

k5 0.07 0.86 0.11 0.57 0.72 0.60 0.75 0.33 0.48 0.90 0.89 0.70

k6 0.42 0.87 0.38 0.20 0.28 0.80 0.13 0.68 0.37 0.31 0.28 0.86

k7 0.17 0.02 0.21 0.26 0.39 0.09 0.72 0.97 0.53 0.76 0.55 0.06

k8 0.26 0.87 0.50 0.09 0.27 0.76 0.02 0.70 0.76 0.64 0.29 0.18
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ID s14 s15 s16 s17 s18 s19 s20 s21 s22 s23 s24 s25

k9 0.41 0.87 0.52 0.67 0.56 0.87 0.40 0.59 0.57 0.82 0.94 0.01

k10 0.23 0.10 0.91 0.94 0.37 0.83 0.85 0.17 0.16 0.85 0.75 0.86

k11 0.17 0.95 0.94 0.15 0.12 0.91 0.82 0.84 0.19 0.27 0.57 0.56

k12 0.43 0.41 0.95 0.66 0.15 0.40 0.33 0.49 0.03 0.11 0.43 0.08

k13 0.22 0.91 0.49 0.78 0.70 0.88 0.65 0.25 0.49 0.60 0.81 0.42

k14 0.94 0.53 0.57 0.90 0.26 0.47 0.39 0.20 0.11 0.15 0.62 0.05

k15 0.37 0.24 0.99 0.50 0.83 0.03 0.44 0.91 0.55 0.05 0.36 0.20

k16 0.35 0.78 0.56 0.38 0.17 0.95 0.60 0.77 0.36 0.37 0.05 0.14

k17 0.99 0.60 0.61 0.75 0.67 0.55 0.98 0.80 0.41 0.93 0.74 0.46

k18 0.32 0.20 0.15 0.45 0.24 0.28 0.07 0.12 0.30 0.20 0.99 0.80

k19 0.89 0.37 0.30 0.57 0.64 0.39 0.35 0.33 0.36 0.42 0.58 0.11

k20 0.37 0.06 0.72 0.32 0.33 0.31 0.20 0.33 0.29 0.50 0.20 0.38

k21 0.01 0.98 0.56 0.26 0.46 0.78 0.40 0.22 0.87 0.20 0.76 0.84

k22 0.76 0.51 0.14 0.73 0.70 0.01 0.36 0.99 0.64 0.62 0.99 0.43

k23 0.42 0.94 0.55 0.01 0.35 0.73 0.78 0.22 0.75 0.01 0.32 0.99

k24 0.13 0.21 0.62 0.64 0.30 0.60 0.54 0.27 0.81 0.81 0.74 0.36

k25 0.85 0.68 0.68 0.20 0.74 0.66 0.70 0.34 0.81 0.33 0.75 0.77

Table 3 Sensor detection efficiency on target

ID k1 k2 k3 k4 k5 k6 k7 k8 k9 k10 k11 k12 k13

s1 0.66 0.81 0.77 0.62 0.44 0.60 0.16 0.14 0.78 0.74 0.99 0.76 0.91

s2 0.14 0.81 0.85 0.29 0.15 0.51 0.53 0.83 0.59 0.72 0.03 0.48 0.70

s3 0.09 0.21 0.66 0.68 0.58 0.84 0.20 0.13 0.17 0.81 0.74 0.06 0.12

s4 0.97 0.70 0.27 0.42 0.95 0.28 0.15 0.68 0.08 0.74 0.58 0.51 0.64

s5 0.14 0.88 0.21 0.73 0.84 0.50 0.75 0.94 0.82 0.64 0.95 0.40 0.14

s6 0.35 0.26 0.53 0.63 0.08 0.10 0.91 0.45 0.15 0.09 0.39 0.58 0.08

s7 0.17 0.84 0.63 0.91 0.85 0.32 0.21 0.11 0.06 0.99 0.51 0.96 0.74

s8 0.77 0.80 0.04 0.26 0.94 0.65 0.16 0.06 0.58 0.41 0.79 0.96 0.19

s9 0.75 0.36 0.93 0.01 0.99 0.87 0.79 0.77 0.46 0.07 0.39 0.99 0.01

s10 0.20 0.73 0.76 0.72 0.81 0.76 0.61 0.01 0.46 0.74 0.16 0.51 0.02

s11 0.88 0.56 0.39 0.80 0.24 0.81 0.77 0.60 0.90 0.99 0.56 0.72 0.40

s12 0.44 0.31 0.63 0.37 0.26 0.47 0.55 0.35 0.15 0.54 0.59 0.14 0.59

s13 0.43 0.32 0.56 0.31 0.10 0.28 0.29 0.39 0.79 0.59 0.82 0.18 0.04

s14 0.68 0.39 0.35 0.89 0.28 0.45 0.59 0.39 0.67 0.15 0.99 0.23 0.01

s15 0.11 0.10 0.21 0.46 0.16 0.28 0.16 0.41 0.91 0.63 0.34 0.91 0.57

s16 0.55 0.27 0.99 0.92 0.73 0.35 0.37 0.82 0.56 0.54 0.01 0.08 0.35
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Table 3 (continued) Sensor detection efficiency on target

ID k1 k2 k3 k4 k5 k6 k7 k8 k9 k10 k11 k12 k13

s17 0.97 0.03 0.70 0.67 0.44 0.61 0.90 0.72 0.20 0.28 0.06 0.69 0.16

s18 0.60 0.66 0.52 0.12 0.74 0.41 0.41 0.90 0.25 0.65 0.46 0.18 0.62

s19 0.65 0.90 0.41 0.45 0.99 0.92 0.83 0.78 0.62 0.99 0.98 0.81 0.55

s20 0.66 0.37 0.20 0.33 0.82 0.32 0.97 0.32 0.37 0.50 0.03 0.32 0.84

s21 0.43 0.25 0.80 0.80 0.57 0.75 0.56 0.20 0.35 0.20 0.36 0.80 0.40

s22 0.51 0.87 0.40 0.52 0.49 0.20 0.68 0.65 0.02 0.63 0.17 0.81 0.05

s23 0.23 0.74 0.10 0.09 0.23 0.30 0.54 0.10 0.76 0.68 0.86 0.31 0.99

s24 0.55 0.26 0.87 0.45 0.15 0.26 0.74 0.88 0.23 0.45 0.63 0.20 0.04

s25 0.59 0.36 0.61 0.96 0.71 0.69 0.64 0.58 0.66 0.08 0.88 0.16 0.12

ID k14 k15 k16 k17 k18 k19 k20 k21 k22 k23 k24 k25

s1 0.45 0.68 0.01 0.73 0.90 0.99 0.25 0.62 0.98 0.46 0.41 0.20

s2 0.80 0.20 0.36 0.84 0.41 0.72 0.76 0.51 0.43 0.94 0.54 0.25

s3 0.40 0.88 0.68 0.51 0.78 0.28 0.52 0.84 0.17 0.33 0.96 0.01

s4 0.75 0.61 0.40 0.34 0.50 0.59 0.10 0.80 0.01 0.88 0.07 0.33

s5 0.33 0.03 0.23 0.18 0.26 0.74 0.68 0.49 0.27 0.03 0.04 0.74

s6 0.34 0.84 0.95 0.08 0.37 0.45 0.66 0.86 0.44 0.71 0.27 0.28

s7 0.61 0.13 0.24 0.46 0.47 0.04 0.90 0.49 0.04 0.85 0.61 0.01

s8 0.94 0.23 0.03 0.09 0.71 0.95 0.48 0.96 0.05 0.28 0.39 0.03

s9 0.17 0.37 0.26 0.58 0.57 0.48 0.46 0.07 0.04 0.62 0.70 0.69

s10 0.11 0.20 0.80 0.84 0.46 0.08 0.66 0.37 0.65 0.98 0.38 0.27

s11 0.45 0.66 0.79 0.04 0.25 0.05 0.93 0.59 0.03 0.50 0.12 0.09

s12 0.97 0.12 0.12 0.38 0.64 0.63 0.32 0.21 0.86 0.81 0.35 0.38

s13 0.79 0.83 0.12 0.52 0.03 0.30 0.02 0.67 0.19 0.68 0.83 0.63

s14 0.15 0.70 0.06 0.64 0.06 0.74 0.77 0.66 0.23 0.03 0.71 0.34

s15 0.79 0.29 0.83 0.10 0.73 0.56 0.08 0.75 0.09 0.11 0.56 0.63

s16 0.71 0.75 0.58 0.75 0.02 0.71 0.53 0.78 0.91 0.98 0.27 0.65

s17 0.30 0.83 0.33 0.39 0.64 0.64 0.79 0.61 0.16 0.25 0.58 0.91

s18 0.14 0.27 0.75 0.03 0.88 0.30 0.54 0.80 0.35 0.07 0.38 0.71

s19 0.99 0.52 0.67 0.06 0.89 0.54 0.80 0.29 0.08 0.01 0.17 0.01

s20 0.77 0.01 0.27 0.01 0.29 0.79 0.31 0.26 0.59 0.49 0.02 0.68

s21 0.51 0.74 0.61 0.57 0.81 0.67 0.39 0.06 0.38 0.21 0.91 0.23

s22 0.37 0.96 0.47 0.76 0.56 0.97 0.47 0.72 0.47 0.80 0.84 0.87

s23 0.26 0.97 0.20 0.08 0.93 0.66 0.26 0.44 0.98 0.56 0.87 0.62

s24 0.59 0.66 0.58 0.06 0.79 0.24 0.77 0.12 0.16 0.32 0.75 0.05

s25 0.10 0.41 0.85 0.64 0.27 0.45 0.49 0.70 0.94 0.51 0.61 0.69
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Table 4 Target assignment result

s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13

k12 k13 k21 k2 k8 k16 k25 k19 k3 k10 k1 k22 k14

s14 s15 s16 s17 s18 s19 s20 s21 s22 s23 s24 s25

k4 k5 k6 k7 k20 k15 k24 k17 k9 k23 k18 k11

Set a circular obstacle area located at point (50, 50), shown as a gray circle, and 25 targets
in star mode. Let ω1 = 1, ω2 = 1, ω3 = 1, μ1 = 100, μ2 = 1, μ3 = 1, μ4 = 2000, and rc = 30.
And let the number of key neighbors L = 2. In Figure 3, the black circles represent the
initial position of the sensors, the red circles represent the final position of the sensors, the
blue asterisks represent the location of the targets, the shadows represents the undeployable
areas and the green lines represent the connectivity between sensors. The initial position of
the sensors, the location of the targets and the undeployable area are shown in Figure 3(a).
First, through target assignment, each target is assigned to the appropriate sensor, as shown in
Table 4. It can be seen from the experimental results in Figure 3(b) that after 70 iterations, the
sensors in the network can effectively avoid the obstacle areas and keep the network connected.
At the same time, sensors can be close to the target for effective deployment.
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(a) The initial position of the sensors, the loca-

tion of the targets and the undeployable area
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(b) The final location of the sensor and the net-

work topology

Figure 3 The initial and final deployment of the sensors

7 Conclusion

According to the actual engineering requirements, we design a dynamic deployment strategy
to allocate the detection target in sensor network. The objective function includes the detection
value of the target, detection cost, detection revenue and other indicators. Considering the
threatened areas and un-deployed areas set by enemy as obstacles, we propose a method of
maintaining connectivity so that sensors can avoid those obstacles while detecting the assigned
targets. In this paper, game theory is used to obtain the optimal decision-making. It is verified
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that the deployment strategy proposed above is effective, and it is also suitable for dynamic
optimization deployment in complex environment.
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