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Abstract This paper is concerned with the problem of guaranteed cost finite-time control of fractional-

order nonlinear positive switched systems (FONPSS) with D-perturbation. Firstly, the proof of the

positivity of FONPSS with D-perturbation is given, the definition of guaranteed cost finite-time sta-

bility is firstly given in such systems. Then, by constructing linear copositive Lyapunov functions and

using the mode-dependent average dwell time (MDADT) approach, a static output feedback controller

is constructed, and sufficient conditions are derived to guarantee that the corresponding closed-loop

system is guaranteed cost finite-time stable (GCFTS). Such conditions can be easily solved by linear

programming. Finally, an example is provided to illustrate the effectiveness of the proposed method.

Keywords Finite-time stability, fractional-order nonlinear positive switched systems, guaranteed cost

control, linear programming, mode-dependent average dwell time.

1 Introduction

Recently, positive switched systems have been paid much attention in control fields. Some
remarkable results about such systems have been published in recent years[1−3]. However, these
studies mainly focused on integer order derivative. In many practical applications, fractional
derivative is more feasible than integer calculations and it is increasingly used to model the
behavior of real systems, such as fractional-order circuit[4], fractional-order biological system[5],
signal processing[6], electrical machines[7], and so on. During the last decades, fractional-order
positive systems have been highlighted by many researchers, and some meaningful results have
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been obtained[8−11]. Among them, only a few results were concerned with fractional-order
positive switched systems (FOPSS)[10,11]. [10] studied the controllability of FOPSS for fixed
switching sequence. [11] discussed the problem of state-dependent switching control of FOPSS.
The above results were involved in asymptotic stability, which dealt with the behavior of a
system within a sufficiently long (or in infinite) time interval.

Nevertheless, in fact, it is necessary to maintain the state under some bounds during, at
least, a specific time interval. In [12], Doroto has firstly proposed finite time stability (FTS)
for linear deterministic systems, which means that, given a bound on the initial condition,
the system state does not exceed a certain threshold during a specified time interval. There
have been some meaningful results about FTS of positive switched systems[13−17]. Among
these results, it should be pointed out that only [16, 17] have investigated the FTS problem
of fractional-order linear positive switched systems (FOLPSS) with average dwell time (ADT).
The main reason is that fractional order systems have some different features compared with
ordinary systems, such as the solution process and stability criterion, which directly result in
biggish difficulty of the research of FOPSS. These make the FTS analysis and controller design
of FONPSS interesting but full of challenge.

On the other hand, when designing controllers, it is desirable to ensure a satisfactory system
performance within a specify time interval. One possible approach to this problem is the
guaranteed cost finite-time control. It has the advantage of providing an upper bound on a
given system performance index and thus the system performance degradation incurred by the
uncertainties or time delays is guaranteed to be less than this bound[18,19]. So it is necessary to
study the design problem of guaranteed cost finite-time controller[20,21]. For FOPSS, only [17]
considered the guaranteed cost finite-time control of FOLPSS with ADT. As we know, compared
with FOLPSS, the theory of FONPSS is less developed, because it is difficult to define the
positivity of an FONPSS, and few effective control techniques with respect to such systems are
proposed. Furthermore, compared with ADT approach, MDADT technique allows that every
subsystem has its own ADT to make the individual properties of each subsystem unneglected,
which is more applicable and less conservative. When the nonlinearity and MDADT happen
simultaneously in the FOPSS, the guaranteed cost finite-time controller design problem will be
more complex.

Moreover, in reality, due to the existence of external disturbance, tool wearing, modeling
error, and parameter fluctuation during hardware implementation, almost all the systems con-
tain perturbations. A typical perturbation for positive switched systems is D-perturbation[22].
It may lead to system performance deterioration, even instability. Therefore, the effect of D-
perturbation must be taken into account in analyzing and implementing finite time controller
scheme.

Motivated by the above discussions, in this paper, the problem of guaranteed cost finite-time
control of FONPSS with D-perturbation via MDADT is investigated. The main contribution
of this paper can be summarized as follows: (i) The proof of the positivity of FONPSS with
D-perturbation is given. (ii) A new cost function is firstly proposed, which can utilize the
characteristics of nonnegative states of FONPSS. Then the definition of guaranteed cost finite
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time stability is also given. (iii) By using co-positive type Lyapunov function and MDADT
approach, a static output feedback controller is designed and sufficient conditions are obtained
to guarantee the corresponding closed-loop system is GCFTS. Such conditions can be easily
solved by linear programming.

The rest of this paper is organized as follows. In Section 2, problem statements and necessary
lemmas are given. Main results are given in Section 3. A numerical example is provided in
Section 4. Section 5 concludes this paper.

Notations Throughout this paper, A � 0 (� 0,≺ 0,� 0) means that aij > 0 (≥ 0, < 0,≤ 0),
which is applicable to a vector. A � B (A � B) means that A−B � 0 (A−B � 0); The symbols
R, Rn, and Rn×n denote the set of real numbers, the space of the vectors of n-tuples of real
numbers, the space of n× n matrices with real numbers, respectively. Rn

+ is the n-dimensional
non-negative (positive) vector space. Matrix D ∈ [D, D] means that dij ∈ [dij , dij ]. AT denotes
the transpose of matrix A. ∅ denotes an empty set. I represents the identity matrix. Matrices
are assumed to have compatible dimensions for calculating if their dimensions are not explicitly
stated.

2 Preliminaries and Problem Statements

2.1 Fractional-Order Calculus

Fractional-order integral or derivative plays an important role in modern science. There are
three commonly used definitions of the fractional-order integro-differential operator: Grunwald-
Letnikov, Riemann-Liouville and Caputo definitions. In this paper, we mainly use Riemann-
Liouville and Caputo fractional order operators for our study. The uniform formula of a frac-
tional integral with α ∈ (0, 1) is defined as

t0D
−α
t f(t) =

1
Γ (α)

∫ t

t0

f(τ)
(t − τ)1−α

dτ, (1)

where Γ (α) denotes the Gamma function with non-integer arguments, f(t) is an arbitrary inte-
grable function. For 0 < α < 1, the Riemann-Liouville (RL) definition of fractional derivatives
is given as

RL
t0 Dα

t f(t) =
1

Γ (1 − α)
d

dt

∫ t

t0

f(τ)
(t − τ)α

dτ, (2)

and Caputo definition of fractional derivatives is given as

C
t0D

α
t f(t) =

1
Γ (1 − α)

∫ t

t0

f ′(τ)
(t − τ)α

dτ, (3)

where f(t) is an arbitrary integrable function, t0D
−α
t is the fractional integral of order α on [t0, t],

Γ (α) =
∫ ∞
0

e−ttα−1dt. RL
t0 Dα

t and RL
t0 Dα

t represent Riemann-Liouville and Caputo fractional
derivatives of order α of f(t) on [t0, t], respectively. We mainly use these two fractional-order
operators in this paper. From the above two definitions, we can obtain the following relation
between them:

RL
t0 Dα

t f(t) =C
t0 Dα

t f(t) +
t−α

Γ (1 − α)
f(t0), (4)
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Lemma 2.1 (see [16]) Let α ∈ (0, 1), if f(0) ≥ 0, then RL
t0 Dα

t f(t) ≤ C
t0D

α
t f(t).

2.2 Fractional-Order Nonlinear Positive Switched Systems

Consider the following FONPSS:
⎧⎨
⎩

C
t0D

α
t x(t) = D1Aσ(t)f(x(t)) + D2Bσ(t)u(t),

y(t) = D3Cσ(t)f(x(t)),
(5)

where x(t) ∈ Rn is the system state, u(t) ∈ Rm and y(t) ∈ Rs represent the control input
and output, respectively. f(x) = (f1(x1), f2(x2), · · · , fn(xn))T ∈ Rn, where fi(xi) is a class
of continuous function. C

t0D
α
t denotes Caputo fractional-order derivative. σ(t) : [0,∞) →

S = {1, 2, · · · , S} is the switching signal, and it is continuous from the right everywhere for
a switching, S is the number of subsystems; Perturbations D1 ∈ [D1, D1], D2 ∈ [D2, D2]
and D3 ∈ [D3, D3] with D1 � D1 � 0, D2 � D2 � 0 and D3 � D3 � 0, where matrices
D1, D1, D2, D2, D3, D3 are all diagonal. ∀p ∈ S

¯
, Ap, Bp and Cp are constant matrices with

appropriate dimensions, p denotes the pth systems and tq denotes the qth switching instant.
Next, we will present some definitions, lemmas and inequalities for the FONPSS (5) for our

further study.
Definition 2.2 (see [17]) The system (5) is said to be positive if for any switching signals

σ(t), any initial conditions x(t0) � 0, the corresponding trajectory satisfies x(t) � 0 and y(t) � 0
for all t � 0.

Definition 2.3 (see [13]) A matrix A is called a Metzler matrix if the off-diagonal entries
of matrix A are non-negative.

Definition 2.4 (see [14]) For any switching signal σ(t) and any t2 ≥ t1 ≥ 0, let Nσp(t1, t2)
denote the switching numbers that the pth subsystem is activated over the interval [t1, t2) and
Tp(t1, t2) denote the total running time of the pth subsystem over the interval [t1, t2). If there
exist N0p ≥ 0 and Tωp > 0 such that

Nσp(t1, t2) ≤ N0p +
Tp(t1, t2)

Tωp
, ∀ t2 ≥ t1 ≥ 0, ∀ p ∈ S, (6)

then Tωp and N0p are called MDADT and mode-dependent chattering bounds, respectively.
Generally, we choose N0p = 0.

Assumption 2.5 The nonlinear continuous function f(x) lies in sector fields satisfying

m1x
2
i ≤ fi(xi)xi ≤ m2x

2
i

(7)

for xi ∈ R and i = 1, 2, · · · , n, where 0 < m1 ≤ m2, fi(0) = 0 and ∀xi ≥ 0, f(xi) ≥ 0.
Remark 2.6 The system model (5) is a more general form. Especially, if m1 = m2 = 1 (it

means fi(xi) = xi) and D1 = D2 = D3 = I, then the system (5) is transformed into FOPSS,
such as [11, 16, 17].

Lemma 2.7 The system (5) is positive if and only if D1Ap, ∀p ∈ S are Metzler matrices
and ∀p ∈ S, D2Bp � 0, D3Cp � 0.
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Lemma 2.8 Let Ap = D1Ap, Bp = D2Bp, Cp = D3Cp, Di are all diagonal and Di � 0,
i = 1, 2, 3. We have the following facts:

1) Ap are Metzler matrices ⇒ Ap are Metzler matrices, ∀p ∈ S.
2) Bp(or Cp) � 0 ⇒ Bp(or Cp) � 0, ∀p ∈ S.
Proof 1) Ap are Metzler matrices, according to Definition 2.3, we have apjk =

{
<0, j=k,
≥0, j �=k,

p ∈ S, j, k = 1, 2, · · · , n. Di � 0 and Di are all diagonal. We can easily get dijk =
{

>0, j=k,
0, j �=k,

i = 1, 2, 3, where apjk(dijk) is in the jth row and kth column of Ap(Di). Therefore, apjk =
d1jk · apjk =

{
<0, j=k,
≥0, j �=k, where apjk is in the jth row and kth column of Ap. According to

Definition 2.3, Ap are also Metzler matrices.
2) Bp � 0, we have bpjk ≥ 0, where bpjk is in the jth row and kth column of Bp, p ∈ S, j, k =

1, 2, · · · , n. b2jk = d2jk · bpij ≥ 0, ∀j, k = 1, 2, · · · , n, so we can conclude Bp are nonnegative.
Similar to the above process, Cp are also nonnegative.

Therefore, the system (5) can be rewritten as:
⎧⎨
⎩

C
t0D

α
t x(t) = Aσ(t)f(x(t)) + Bσ(t)u(t),

y(t) = Cσ(t)f(x(t)).
(8)

Lemma 2.9 The system (8) is positive under any switching signals if and only if Ap are
Metzler matrices, Bp � 0 and Cp � 0, ∀p ∈ S.

Proof The proof of Lemma 2.9 is similar to the Theorem 1 in [8], the proof process is
omitted.

From the above, we can conclude the system (8) is positive. In other words, we can conclude
the system (5) is positive.

Definition 2.10 (see [15]) For given time constant Tf and vectors δ � ε � 0, the system (5)
is said to be FTS with respect to (δ, ε, Tf , σ(t)), if

xT(t0)δ ≤ 1 ⇒ xT(t)ε ≤ 1, ∀ t ∈ [0, Tf ]. (9)

Definition 2.11 Define the cost function of the system (5) as follows:

J = 0D
−α
Tf

(xT(t)R1 + uT(t)R2)dt

=
1

Γ (α)

∫ Tf

0

(Tf − t)α−1(xT(t)R1 + uT(t)R2)dt, (10)

where R1 � 0 and R2 � 0 are two given vectors.
Remark 2.12 It should be noted that the proposed cost function is different from the non-

positive systems[18−20], it is for the first time introduced in FONPSS. This definition provides
a more useful description, because it takes full advantage of the characteristics of nonnegative
states of FONPSS. Especially, if α = 1, this definition is turned into the definition of cost
function in positive switched system[21].

Now we gives the definition of GCFTS for the FONPSS (5).
Definition 2.13 (see [17]) For a given time constant Tf and vectors δ � ε � 0. Consider

the system (5), if there exist a feedback control law u(t) and a positive scalar J∗ such that
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the closed-loop system is FTS with the respect to (δ, ε, Tf , σ(t)) and the cost function satisfies
J ≤ J∗, then the closed-loop FONPSS is called GCFTS, where J∗ is a guaranteed cost value
and u(t) is a guaranteed cost finite time controller.

Lemma 2.14 (Cp inequality) For 0 < a < 1 and any positive real numbers x1, x2, · · · , xk,

n∑
k=1

xa
k ≤ n1−a

( n∑
k=1

xk

)a

.

The aim of this paper is to design a static output feedback controller u(t) = Kσ(t)y(t) and a
class of switching signals σ(t) for FONPSS (5) such that the corresponding closed-loop system
is GCFTS.

3 Main Results

3.1 Guaranteed Cost Finite-Time Stability Analysis

In this subsection, we will focus on the problem of GCFTS for NFOPSS (5) with u(t) ≡ 0.

Theorem 3.1 Consider the system (5) with u(t) ≡ 0. Given positive constants Tf , λp,
vectors δ � ε � 0 and R1 � 0, if there exist positive constants ξ1, ξ2, μp, and positive vectors
vp, p ∈ S, such that the following inequalities hold:

m2A
T
p D1vp + R1 � λpvp, (11)

ξ1ε ≺ vp ≺ ξ2δ, (12)

vp � μpvq, (13)

vp ≺ R1, (14)
[αTf (λ − 1)]

Γ (α + 1)
< ln

ξ1

ξ2
, (15)

where ∀p ∈ S, vp = [vp1, vp2, · · · , vpn]T, λ = maxp∈S{λp}, Tω = minp∈S{Tωp}, λp > 1, μp ≥ 1,
then under the following MDADT scheme

Tα > T ∗
α = Tf

(
ln μp +

(λ − 1)(1 − α)
Γ (α + 1)

)/(
ln

ξ1

ξ2
− [αTf (λ − 1)]

Γ (α + 1)

)
, (16)

the FONPSS (5) is GCFTS with respect to (δ, ε, Tf , σ(t)) and the guaranteed cost value of the
system (5) with u(t) = 0 is given by

J =
1

Γ (α)

∫ t

0

(t − s)α−1(xT(s)R1 + uT(s)R2)ds

≤ J∗

= ξ2μ
Tf
Tω + λξ2μ

Tf
Tω

1
αΓ (α)

exp
{

Tf

Tω

(
ln μ +

(1 − α)(λ − 1)
Γ (α + 1)

)

+(λ − 1)
(1 − α) + αTf

Γ (α + 1)

}
(Tω)α−1Tf . (17)
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Proof Constructing the multiple linear type Lyapunov-Krasovskii functional for the sys-
tem (5) as follows:

Vσ(t)(t, x(t)) = xT(t)vσ(t), (18)

where vp ∈ Rn
+, ∀p ∈ S.

Denote t0, t1, · · · as the switching instants over the interval [0, Tf ]. Along the trajectory of
the system (5) with u(t) ≡ 0, we have

C
t0D

α
t Vσ(t)(t, x(t)) = fT(x(t))AT

σ(t)D1vσ(t). (19)

From (11), we obtain
C
t0D

α
t Vσ(t)(t, x(t)) + xT(t)R1

= fT(x(t))AT
σ(t)D1vσ(t) + xT(t)R1

≤ m2x
T(t)AT

σ(t)D1vσ(t) + xT(t)R1

≤ λpx
T(t)vσ(t)

≤ λpVσ(t)(t, x(t)). (20)

Taking the fractional integral C
t0D

−α
t to both sides of (20) during the period [tk, t) for t ∈

[tk, tk+1) leads to

Vσ(t)(t, x(t))

≤ Vσ(tk)(tk, x(tk)) +
λσ(tk)

Γ (α)

∫ t

tk

(t − s)α−1Vσ(t)(s, x(s))ds

− 1
Γ (α)

∫ t

tk

(t − s)α−1xT(s)R1ds. (21)

From (14) and (18), (21) can be rewritten as

Vσ(t)(t, x(t))

≤ Vσ(tk)(tk, x(tk)) +
λσ(tk)

Γ (α)

∫ t

tk

(t − s)α−1Vσ(t)(s, x(s))ds

− 1
Γ (α)

∫ t

tk

(t − s)α−1xT(s)R1ds

≤ Vσ(tk)(tk, x(tk)) +
λσ(tk)

Γ (α)

∫ t

tk

(t − s)α−1Vσ(t)(s, x(s))ds

− 1
Γ (α)

∫ t

tk

(t − s)α−1xT(s)vσ(t)ds

= Vσ(tk)(tk, x(tk)) +
λσ(tk) − 1

Γ (α)

∫ t

tk

(t − s)α−1Vσ(t)(s, x(s))ds. (22)

According to the properties of Gamma function Γ (α) and the Gronwall-bellman inequality
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in [6], for t ∈ [tk, ttk+1), we have

Vσ(t)(t, x(t)) ≤ Vσ(tk)(tk, x(tk)) +
λσ(tk) − 1

Γ (α)

∫ t

tk

(t − s)α−1Vσ(t)(s, x(s))ds

≤ Vσ(tk)(tk, x(tk)) exp
{

λσ(tk) − 1
Γ (α)

∫ t

tk

(t − s)α−1ds

}

= Vσ(tk)(tk, x(tk)) exp
{

λσ(tk) − 1
αΓ (α)

(t − tk)α

}

= Vσ(tk)(tk, x(tk)) exp
{

λσ(tk) − 1
Γ (α + 1)

(t − tk)α

}
. (23)

For t ∈ [tk, tk+1), Vσ(tk) ≤ μσ(tk)Vσ(t−k )(t
−
k , x(t−k )), is easily obtained from (13) and (18). Ac-

cording to exp{λσ(tk)−1

Γ(α+1) (t − tk)α} > 0, we have

Vσ(t)(t, x(t)) ≤ μσ(tk)Vσ(t−k )(t
−
k , x(t−k )) exp

{
λσ(tk) − 1
Γ (α + 1)

(t − tk)α

}
. (24)

Then, for t ∈ [t0, Tf ), we obtain from (23) and (24) that

Vσ(t)(t, x(t)) ≤ Vσ(tk)(tk, x(tk)) exp
{

λσ(tk) − 1
Γ (α + 1)

(t − tk)α

}

≤ μσ(tk)Vσ(t−k )(t
−
k , x(t−k )) exp

{
λσ(tk) − 1
Γ (α + 1)

(t − tk)α

}

≤ μσ(tk)Vσ(tk−1)(tk−1, x(tk−1)) exp
{[

λσ(tk) − 1
Γ (α + 1)

(t − tk)α

+
λσ(tk−1) − 1
Γ (α + 1)

(tk − tk−1)α

]}

≤ μσ(tk)μσ(tk−1)Vσ(t−k−1)(t
−
k−1, x(t−k−1))) exp

{[
λσ(tk) − 1
Γ (α + 1)

(t − tk)α

+
λσ(tk−1) − 1
Γ (α + 1)

(tk − tk−1)α

]}
≤ · · ·

≤
( k∏

i=1

μσ(ti)

)
Vσ(t0)(t0, x(t0)) exp

{[
λσ(tk) − 1
Γ (α + 1)

(t − tk)α

+
λσ(tk−1) − 1
Γ (α + 1)

(tk − tk−1)α + · · · + λσ(t0) − 1
Γ (α + 1)

(t1 − t0)α

]}
. (25)

Let λ = maxp∈S{λp}, we have

Vσ(t)(t, x(t)) ≤
( k∏

i=1

μσ(ti)

)
Vσ(t0)(t0, x(t0))

· exp
{

λ − 1
Γ (α + 1)

[(t − tk)α + (tk − tk−1)α + · · · + (t1 − t0)α]
}

. (26)



GUARANTEED COST FINITE-TIME CONTROL 865

From Definition 2.8 and Lemma 2.14, for t ∈ [0, Tf ], we have

Vσ(t)(t, x(t)) ≤
( S∏

p=1

μNσp(0,t)
p

)
Vσ(t0)(t0, x(t0)) exp

{
λ − 1

Γ (α + 1)
[(t − tk)α

+(tk − tk−1)α + · · · + (t1 − t0)α]
}

≤
( S∏

p=1

μ
Tp(0,t)

Tωp
p

)
Vσ(t0)(t0, x(t0)) exp

{
λ − 1

Γ (α + 1)
[(t − tk)α

+(tk − tk−1)α + · · · + (t1 − t0)α]
}

≤ e
∑S

p=1
ln μp
Tωp

Tp(0,t)
Vσ(t0)(t0, x(t0)) exp

{
λ − 1

Γ (α + 1)
[(t − tk)α

+(tk − tk−1)α + · · · + (t1 − t0)α]
}

≤ e
∑S

p=1
ln μp
Tωp

Tp(0,Tf )
Vσ(0)(0, x(0)) exp

{
λ − 1

Γ (α + 1)

[
Tp(0, Tf)

Tωp

1−α

T α
f

]}

= Vσ(0)(0, x(0)) exp
{ S∑

p=1

ln μp

Tωp
Tp(0, Tf) +

λ − 1
Γ (α + 1)

[
Tp(0, Tf)

Tωp

1−α

T α
f

]}
. (27)

According to Young’s inequality in [16], (27) can be rewritten as

Vσ(t)(t, x(t))

≤ Vσ(t0)(t0, x(t0)) exp
{ S∑

p=1

ln μp

Tωp
Tp(0, t) +

λ − 1
Γ (α + 1)

[
(1 − α)

Tp(0, t)
Tωp

+ αTf

]}

≤ Vσ(t0)(t0, x(t0)) exp
{ S∑

p=1

ln μp

Tωp
Tp(0, t) +

λ − 1
Γ (α + 1)

[
(1 − α)

ln μp

Tωp

Tp(0, t)
ln μp

+ αTf

]}
. (28)

Let β = maxp∈S{ lnμp

Tωp
}, we have

Vσ(t)(t, x(t)) ≤ Vσ(t0)(t0, x(t0)) exp
{

βTf +
λ − 1

Γ (α + 1)

[
(1 − α)β

Tf

ln μp
+ αTf

]}
. (29)

From (11), (18) and (29), for t ∈ [0, Tf ), we have

Vσ(t)(t, x(t)) ≥ ξ1x
T(t)ε, (30)

Vσ(t)(t, x(t)) ≤ ξ2x
T(t0)δ exp

{
βTf +

λ − 1
Γ (α + 1)

[
(1 − α)β

Tf

ln μp
+ αTf

]}
. (31)

Combining (30) with (31), we obtain

xT(t)ε ≤ ξ2

ξ1
{xT(t0)δ} exp

{
βTf +

λ − 1
Γ (α + 1)

[
(1 − α)β

Tf

ln μp
+ αTf

]}
. (32)

Substituting (16) into (32), one has

xT(t)ε < 1. (33)
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From Definition 2.10, we conclude that the system (5) with u(t) = 0 is FTS with respect to
(δ, ε, Tf , σ(t)).

Next, we will give the fractional-order guaranteed cost value of the system (5).
According to (21) and Vσ(tk) ≤ μσ(tk)Vσ(t−k )(t

−
k , x(t−k )), for t ∈ [tk, tk+1), we can obtain

Vσ(t)(t, x(t))

≤ μσ(tk)Vσ(t−
k

)(t
−
k , x(t−k )) +

λσ(tk)

Γ (α)

∫ t

tk

(t − s)α−1Vσ(t)(s, x(s))ds

− 1
Γ (α)

∫ t

tk

(t − s)α−1xT(s)R1ds

≤ μσ(tk)Vσ(tk−1)(tk−1, x(tk−1)) +
λσ(tk−1)μσ(tk)

Γ (α)

∫ tk

tk−1

(tk − s)α−1Vσ(t)(s, x(s))ds

−μσ(tk)

Γ (α)

∫ tk

tk−1

(tk − s)α−1xT(s)R1ds +
λσ(tk)

Γ (α)

∫ t

tk

(t − s)α−1Vσ(t)(s, x(s))ds

− 1
Γ (α)

∫ t

tk

(t − s)α−1xT(s)R1ds ≤ · · ·

≤
( k∏

i=1

μσ(ti)

)
Vσ(t0)(t0, x(t0)) +

λσ(t0)(
∏k

i=1 μσ(ti))
Γ (α)

∫ t1

t0

(t1 − s)α−1Vσ(t)(s, x(s))ds

− (
∏k

i=1 μσ(ti))
Γ (α)

∫ t1

t0

(Tf − s)α−1xT(s)R1ds

+
λσ(t1)(

∏k−1
i=1 μσ(ti))

Γ (α)

∫ t2

t1

(t2 − s)α−1Vσ(t)(s, x(s))ds

− (
∏k−1

i=1 μσ(ti))
Γ (α)

∫ t2

t1

(Tf − s)α−1xT(s)R1ds + · · ·

+
λσ(tk)

Γ (α)

∫ t

tk

(t − s)α−1Vσ(t)(s, x(s))ds − 1
Γ (α)

∫ t

tk

(Tf − s)α−1xT(s)R1ds. (34)

From (31), let 
 = ξ2 exp{βTf+ λ−1
Γ(α+1) [(1−α)β Tf

ln μ+αTf ]}, μ = minp∈S{μp}, λ = maxp∈S{λp}.
For t ∈ [0, Tf ], then (34) can be turned into

Vσ(t)(t, x(t)) ≤
( k∏

i=1

μσ(ti)

)
Vσ(t0)(t0, x(t0)) − 1

Γ (α)

∫ Tf

t0

(Tf − s)α−1xT(s)R1ds

+
λ

∏k
i=1 μσ(ti)

Γ (α)

[ ∫ Tf

tk

(Tf − s)α−1Vσ(t)(s, x(s))ds + · · ·

+
∫ t1

t0

(t1 − s)α−1Vσ(t)(s, x(s))ds

]

≤
( k∏

i=1

μσ(ti)

)
Vσ(t0)(t0, x(t0)) − 1

Γ (α)

∫ Tf

t0

(Tf − s)α−1xT(s)R1ds

+
λ

∏k
i=1 μσ(ti)

Γ (α)



[ ∫ Tf

tk

(Tf − s)α−1ds + · · · +
∫ t1

t0

(t1 − s)α−1ds

]

=
( k∏

i=1

μσ(ti)

)
Vσ(t0)(t0, x(t0)) − 1

Γ (α)

∫ Tf

t0

(Tf − s)α−1xT(s)R1ds

+
λ

∏k
i=1 μσ(ti)

Γ (α)



α
[(Tf − tk)α + · · · + (t2 − t1)α + (t1 − t0)α]. (35)
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From Vσ(t)(t, x(t)) ≥ 0 and Lemma 2.14, we can get

1
Γ (α)

∫ Tf

0

(t − s)α−1xT(s)R1ds

≤
( k∏

i=1

μσ(ti)

)
Vσ(0)(0, x(0))

+
λ

∏k
i=1 μσ(ti)

Γ (α)



α
[(Tf − tk)α + · · · + (t2 − t1)α + (t1 − t0)α]

≤
( S∏

p=1

μ
Nσp(0,Tf )
p

)
Vσ(0)(0, x(0)) +

λ
∏S

p=1 μ
Nσp(0,Tf )
p

Γ (α)



α

(
Tf

Tωp

)1−α

T α
f

≤
( S∏

p=1

μ
Tp(0,t)

Tωp
p

)
Vσ(0)(0, x(0)) +

λ
∏S

p=1 μ
Tp(0,t)

Tωp
p

Γ (α)



α

(
Tf

Tωp

)1−α

T α
f

≤ e
∑S

p=1
lnμp
Tωp

Tp(0,t)
Vσ(0)(0, x(0)) +

λ exp{∑S
p=1

lnμp

Tωp
Tp(0, t)}

Γ (α)



α

(
Tf

Tωp

)1−α

T α
f

≤ eβTf Vσ(0)(0, x(0)) +
λeβTf

Γ (α)



α
(Tωp)α−1Tf . (36)

From (31) and (36), let Tω = minp∈S{Tωp}, we have

1
Γ (α)

∫ Tf

t0

(Tf − s)α−1xT(s)R1ds ≤ eβTf ξ2x
T(t0)δ +

λeβTf

Γ (α)



α
(Tωp)α−1Tf

≤ ξ2eβTf + λ
eβTf

Γ (α)



α
(Tω)α−1Tf . (37)

Then, the guaranteed cost value of System (5) with u(t) = 0 is given by

J =
1

Γ (α)

∫ Tf

0

(t − s)α−1(xT(s)R1 + uT(s)R2)ds

≤ J∗

= ξ2eβTf + λ
eβTf

Γ (α)



α
(Tω)α−1Tf

≤ ξ2μ
Tf
Tω + λξ2μ

Tf
Tω

1
αΓ (α)

exp
{

Tf

Tω

(
ln μ +

(1 − α)(λ − 1)
Γ (α + 1)

)

+(λ − 1)
(1 − α) + αTf

Γ (α + 1)

}
(Tω)α−1Tf . (38)

According to Definition 2.13, we can conclude that the system (5) is GCFTS with respect to
(δ, ε, Tf , σ(t)). Thus, the proof is completed.

Remark 3.2 To achieve guaranteed cost value (38), in (34), we can make t increase
to Tf , that is, − 1

Γ(α) [
∫ t1

t0
(t1 − s)α−1xT(s)R1ds +

∫ t2
t1

(t2 − s)α−1xT(s)R1ds + · · · +
∫ Tf

tk
(Tf −

s)α−1xT(s)R1ds] < − 1
Γ(α) [

∫ t1
t0

(Tf−s)α−1xT(s)R1ds+
∫ t2

t1
(Tf−s)α−1xT(s)R1ds+· · ·+∫ Tf

tk
(Tf−

s)α−1xT(s)R1ds] = − 1
Γ(α)

∫ Tf

t0
(Tf − s)xT(s)R1ds = −J . It means guaranteed cost finite-time

control of FONPSS is feasible. Instead, if Tf → ∞, then the integral items can not be dealt
with, the guaranteed cost control of FONPSS can not be carried out.
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Corollary 3.3 Replace C
t0D

α
t x(t) by RL

t0 Dα
t x(t) in Theorem 3.1. If the conditions in Theo-

rem 3.1 hold, then the FONPSS (5) is GCFTS with respect to (δ, ε, Tf , σ(t)), and the guaranteed
cost value is (17).

Proof According to (4) and Lemma 2.1, we can obtain

C
t0D

α
t Vσ(t)(t, x(t)) + xT(t)R1 ≤ RL

t0 Dα
t Vσ(t)(t, x(t)) + xT(t)R1

≤ fT(x(t))AT
σ(t)D1vσ(t) + xT(t)R1

≤ xT(t)(m2A
T
σ(t)D1vσ(t) + R1)

≤ λpVσ(t)(t, x(t)). (39)

Similar to the proof process of Theorem 3.1, we can obtain the same results and and the proof
is omitted.

3.2 Guaranteed Cost Finite-Time Controller Design

In this section, we focus on the problem of GCFTS controller design of the system (5). A
static output feedback controller will be designed to ensure the following system is GCFTS.

Consider the system (5), under the controller u(t) = Kσ(t)y(t), the corresponding closed-loop
system is given by⎧⎨

⎩
C
t0D

α
t x(t) = (D1Aσ(t) + D2Bσ(t)Kσ(t)D3Cσ(t))f(x(t)),

y(t) = D3Cσ(t)f(x(t)), 0 < α < 1.
(40)

According to Lemma 2.6, to guarantee the positivity of the system (40), D1Ap +D2BpKpD3Cp

should be Metzler matrices, ∀p ∈ S. Theorem 3.4 gives some sufficient conditions to guarantee
that the closed-loop system (40) is GCFTS.

Theorem 3.4 Consider the FONPSS (40). For given constants Tf , λp and vectors δ �
ε � 0, R1 � 0 and R2 � 0, if there exist constants ξ1, ξ2, μp and positive vectors νp, p ∈ S,
such that (12), (13), (15) and the following conditions hold:

D1Ap + D2BpKpD3Cp and D1Ap + D2BpKpD3Cp are Metzler matrices, Kp � 0, (41)

m2A
T
p D1vp + R1 + fp + m2C

T
p D3K

T
p R2 � λpvp, (42)

vp ≺ R1 + m1C
T
p D3K

T
p R2, (43)

where ∀p ∈ S, fp = m2C
T
p D3K

T
p BT

p D2vp, vp = [vp1, vp2, · · · , vpn]T, λ = maxp∈S{λp}, μ =
maxp∈S{μp}, λp > 1, μp ≥ 1, Tω = minp∈S{Tωp}, then under the MDADT scheme (16), the
resulting closed-loop system (40) is GCFTS with respect to (δ, ε, Tf , σ(t)), and the cost value is
given by

J =
1

Γ (α)

∫ Tf

0

(t − s)α−1(xT(s)R1 + yT(s)KT
p R2)ds

≤ J∗

= ξ2μ
Tf
Tω + λξ2μ

Tf
Tω

1
αΓ (α)

exp
{

Tf

Tα

(
ln μ +

(1 − α)(λ − 1)
Γ (α + 1)

)

+(λ − 1)
(1 − α) + αTf

Γ (α + 1)

}
(Tω)α−1Tf . (44)
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Proof We first prove the positivity of the resulting closed-loop system(40). By Definition 2.3
and (41), we get D1Ap + D2BpKpD3Cp � D1Ap + D2BpKpD3Cp � D1Ap + D2BpKpD3Cp.
It means that D1Ap + D2BpKpD3Cp are Metzler matrices. According to Lemma 2.8, the
system (40) is positive if ∀p ∈ S, Bp, Cp are all nonnegative.

Next, we prove the guaranteed cost finite-time stability of the system (40). Consider Kp ≥ 0,
from (42), we have

C
t0D

α
t Vσ(t)(t, x(t)) + xT(t)R1 + uT(t)R2

= fT(x(t))AT
σ(t)D1vσ(t) + xT(t)R1 + yT(t)KT

p R2

≤ m2x
T(t)AT

p D1vp + xT(t)R1 + m2x
T(t)CT

p D3K
T
p BT

p D2vp + m2x
T(t)CT

p D3K
T
p R2

= xT(t)(m2A
T
p D1vp + R1 + m2C

T
p D3K

T
p BT

p D2vp + m2C
T
p D3K

T
p R2)

≤ λpx
T(t)vσ(t)

= λpVσ(t)(t, x(t)). (45)

Taking the fractional integral C
t0D

−α
t to both sides of (45) during the period [tk, t) for t ∈

[tk, tk+1) leads to

Vσ(t)(t, x(t)) ≤ Vσ(tk)(tk, x(tk)) +
λσ(tk)

Γ (α)

∫ t

tk

(t − s)α−1Vσ(t)(s, x(s))ds

− 1
Γ (α)

∫ t

tk

(t − s)α−1(xT(s)R1 + yT(s)KT
p R2)ds

≤ Vσ(tk)(tk, x(tk)) +
λσ(tk)

Γ (α)

∫ t

tk

(t − s)α−1Vσ(t)(s, x(s))ds

− 1
Γ (α)

∫ t

tk

(t − s)α−1xT(s)(R1 + m1C
T
p D3K

T
p (s)R2)ds. (46)

From (43), (46) can be written as

Vσ(t)(t, x(t)) ≤ Vσ(tk)(tk, x(tk)) +
λσ(tk)

Γ (α)

∫ t

tk

(t − s)α−1Vσ(t)(s, x(s))ds

− 1
Γ (α)

∫ t

tk

(t − s)α−1xT(s)vpds

= Vσ(tk)(tk, x(tk)) +
λσ(tk)−1

Γ (α)

∫ t

tk

(t − s)α−1Vσ(t)(s, x(s))ds. (47)

Similar to the process of (23)–(33),we easily obtain that the system (40) is FTS. Next, we
consider the guaranteed cost value of the system (40).
From (46) and Vσ(tk) ≤ μσ(tk)Vσ(t−k )(t

−
k , x(t−k )), for t ∈ [tk, tk+1), we have

Vσ(t)(t, x(t)) ≤ μσ(tk)Vσ(t−k )(t
−
k , x(t−k )) +

λσ(tk)

Γ (α)

∫ t

tk

(t − s)α−1Vσ(t)(s, x(s))ds

− 1
Γ (α)

∫ t

tk

(t − s)α−1(xT(s)R1 + yT(s)KT
p R2)ds. (48)
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Similar to the proof process of (34)–(38), the guaranteed cost value is given as

J =
1

Γ (α)

∫ Tf

0

(t − s)α−1(xT(s)R1 + yT(s)KT
p R2)ds

≤ J∗

= ξ2μ
Tf
Tω + λξ2μ

Tf
Tω

1
αΓ (α)

exp
{

Tf

Tα

(
ln μ +

(1 − α)(λ − 1)
Γ (α + 1)

)

+(λ − 1)
(1 − α) + αTf

Γ (α + 1)

}
(Tω)α−1Tf . (49)

The proof is completed.

Remark 3.5 In Theorem 3.4, the gain matrix Kp � 0, ∀p ∈ S is used. Naturally, when
Kp � 0, we only replace (41) by the following conditions

D1Ap + D2BpKpD3Cp and D1Ap + D2BpKpD3Cp are Metzler matrices, Kp � 0, (50)

R1 + m2C
T
p KT

p R2 � 0. (51)

Following the proof line of Theorem 3.4, we can also get the resulting closed-loop system (40)
is GCFTS with the MDADT scheme (16), and the guaranteed cost value is also given by (44).

Next, an algorithm is presented to obtain the feedback gain matrices Kp, p ∈ S.
Algorithm 3.6
Step 1 Input the matrices Ap, Bp, Cp, Di, Di, R1 and R2, p ∈ S, i = 1, 2, 3.
Step 2 By adjusting the parameter λp > 0 and solving (12)–(13), (15) and (42)–(43) via

linear programming, we can get the solutions vp, Kp and fp.
Step 3 Then, f̃p = m2C

T
p D3K

T
p BT

p D2vp are obtained. If fp−f̃p � 0, D1Ap+D2BpKpD3Cp

and D1Ap +D2BpKpD3Cp are Metzler matrices, then Kp are admissible. Otherwise, return to
Step 2.

Remark 3.7 From Algorithm 3.6, the outcome largely depends on the selection of λp.
However, there is not a general approach to choose the value of λp. In this paper, λp should be
selected small by experience.

4 Numerical Example

In this section, an example will be given to illustrate the effectiveness of the proposed
method. Consider the system (5) with the parameters as follows:

A1 =

⎡
⎣ −2 0

0 −1

⎤
⎦ , B1 =

⎡
⎣ 2 0

0 1

⎤
⎦ , C1 =

⎡
⎣ 0.8 0

0 0.6

⎤
⎦ ,

D1 =

⎡
⎣ 0.4 0

0 0.6

⎤
⎦ , D2 =

⎡
⎣ 0.1 0

0 0.1

⎤
⎦ ,

A2 =

⎡
⎣ −2 0

0 −2

⎤
⎦ , B2 =

⎡
⎣ 1.2 0

0 0.8

⎤
⎦ , C2 =

⎡
⎣ 0.6 0

0 0.4

⎤
⎦ ,
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D1 =

⎡
⎣ 0.6 0

0 0.8

⎤
⎦ , D2 =

⎡
⎣ 0.2 0

0 0.3

⎤
⎦ ,

D3 =

⎡
⎣ 0.4 0

0 0.4

⎤
⎦ , D3 =

⎡
⎣ 0.4 0

0 0.6

⎤
⎦ , R1 =

⎡
⎣ 1.2

1

⎤
⎦ , R2 =

⎡
⎣ 0.6

0.6

⎤
⎦ ,

δ =

⎡
⎣ 0.8

0.5

⎤
⎦ , ε =

⎡
⎣ 0.02

0.01

⎤
⎦ ,

where fi(xi(t)) = xi(t) + xi(t)
x2

i (t)+2
, then we get m1 = 1, m2 = 2.

Let α = 0.8, μ1 = 1.06, μ2 = 1.08, λ = 1.1, λ2 = 1.12. Solving the inequalities in
Theorem3.4 by linear programming, we have

v1 =

⎡
⎣ 1.0040

0.6573

⎤
⎦ , v2 =

⎡
⎣ 0.9746

0.6340

⎤
⎦ , f1 =

⎡
⎣0.8711

0.5427

⎤
⎦ , f2 =

⎡
⎣ 1.1347

0.4323

⎤
⎦ ,

ξ1 = 7.3720, ξ2 = 1.4311,

K1 =

⎡
⎣ 3.1145 2.6216

3.1145 2.6216

⎤
⎦ , K2 =

⎡
⎣ 2.6788 2.5784

2.6788 2.5784

⎤
⎦ .

It is easy to verify that D1Ap +D2BpKpD3Cp and D1Ap +D2BpKpD3Cp are Metzler matrices
for each p ∈ S. Then, according to (20), we can obtain T ∗

ω1 = 1.2623, T ∗
ω2 = 1.3821. Choosing

Tω1 = 1.3 > T ∗
ω1 and Tω2 = 1.4 > T ∗

ω2. Under the static output feedback controller, the
simulation results are shown in Figures 1–4. The initial conditions of the system (5) are x(0) =
[0.6 0.4]T, which satisfies xT(0)δ ≤ 1. Figure 1 shows the state trajectories of the closed-loop
system (5). The state trajectories of the closed-loop system with ADT are shown in Figure 2.
The switching signal σ(t) with MDADT is depicted in Figure 3. Figure 4 plots the evolution
of xT(t)ε of System (5). The cost value is J∗ = 135.4144, which can be obtained by (44).

Time(s)
0 2 4 6 8 10

0

0.1

0.2

0.3

0.4

0.5

0.6
x1

x2

Figure 1 State trajectories of open-loop system (5)
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Figure 2 State trajectories of closed-loop system (5)
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Figure 3 Switching signal of System (5) with MDADT
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Figure 4 The evolution of xT(t)ε of System (5)



GUARANTEED COST FINITE-TIME CONTROL 873

5 Conclusions

This paper has investigated the problem of guaranteed cost finite-time control for FONPSS
with D-perturbation. A novel fractional-order guaranteed cost function is extended to FONPSS.
By using MDADT approach and constructing multiple linear copositive Lyapunov functions,
a static output feedback controller is designed, then a series of switching signals and some
sufficient conditions are obtained to guarantee that the closed-loop system is GCFTS. Such
sufficient conditions can be solved by linear programming. Finally, an example is given to show
the effectiveness of the proposed method.

Time delays usually occur in many practical systems and may result in system performance
deterioration, even instability. In our further work, we will extend the proposed method to
FOPSS with time-varying delays.
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