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Abstract This paper studies the optimal control of a fully-coupled forward-backward doubly stochas-

tic system driven by Itô-Lévy processes under partial information. The existence and uniqueness of

the solution are obtained for a type of fully-coupled forward-backward doubly stochastic differential

equations (FBDSDEs in short). As a necessary condition of the optimal control, the authors get the

stochastic maximum principle with the control domain being convex and the control variable being

contained in all coefficients. The proposed results are applied to solve the forward-backward doubly

stochastic linear quadratic optimal control problem.

Keywords Forward-backward doubly stochastic differential equations, Itô-Lévy processes, linear

quadratic problem, maximum principle, variational equation.

1 Introduction

The optimal control of forward-backward stochastic differential equations (FBSDEs) has
got a lot of attentions over recent years. We can refer to [1] for its widely applications in finan-
cial market. The theory of FBSDEs was first developed in the early 90s by [2–4] and others.
Wu[5] studied the maximum principle of fully-coupled forward-backward stochastic systems with
the control domain being convex. Wu[6] also got the maximum principle of forward-backward
stochastic systems in a more general case where the control domain is non-convex. Ji and
Wei[7] derived the maximum principle for fully-coupled forward-backward stochastic systems
with terminal state constraints. Peng and Wu[8] obtained the existence and uniqueness results
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of fully-coupled forward-backward stochastic differential equations with an arbitrarily large time
duration, and given applications of FBSDEs to stochastic optimal control problems and differ-
ential games. Wu[9] used the solution of FBSDEs to get the explicit form of the optimal control
for LQ problem. Yu[10] obtained the existence and uniqueness result for one kind of forward-
backward stochastic differential equations, and he applied the result to the linear-quadratic
stochastic optimal control and nonzero-sum differential game of forward-backward stochastic
system. Meng[11] established a sufficient and a necessary maximum principle under partial
information for a type of FBSDE. In [12], Øksendal and Sulem presented various versions of
maximum principle for optimal control of forward-backward stochastic differential equations
with jumps. In Wang and Wu[13], a maximum principle for partially observed stochastic recur-
sive optimal control problems was obtained under the assumption that the control domain being
non-convex and the forward diffusion coefficients do not contain the control variable. Wang,
et al.[14] studied a partial information optimal control problem derived by forward-backward
stochastic systems with correlated noises between the system and the observation. Ma and
Liu[15] studied the linear-quadratic optimal control problem for partially observed FBSDEs of
mean-field type. Wu, et al.[16] researched the optimal control of fully coupled forward-backward
stochastic systems with delay and noisy memory. We can refer to the book by Yong and Zhou[17]

for details about stochastic control theory.
In order to provide a probabilistic interpretation for the solution of a class of semi-linear

stochastic partial differential equations, Pardoux and Peng[18] introduced a new kind of back-
ward stochastic differential equations, which is called backward doubly stochastic differential
equations (BDSDEs). Peng and Shi[19] discussed a type of time-symmetric forward-backward
stochastic differential equations (FBDSDEs) and established the existence and uniqueness of the
solution by the method of continuation under some monotonicity assumptions. Sun and Lu[20]

studied the property for solutions of the multi-dimensional BDSDEs with jumps. Recently, the
optimal control of BDSDEs has been considered. Han, et al.[21] investigated the optimal con-
trol problems for backward doubly stochastic control systems. Zhu, et al.[22] got the maximum
principle for backward doubly stochastic systems with jumps. Zhu and Shi[23] also researched
the optimal control of backward doubly stochastic systems under partial information. Xu and
Han[24] solved a class of doubly stochastic optimal control problems that the state trajectory
is described by backward doubly stochastic differential equations with time delay. Zhang and
Shi[25] presented the maximum principle for forward-backward doubly stochastic systems with
the control domain being non-convex. However, among these literatures, the studies on the
optimal control of forward-backward doubly stochastic systems driven by Itô-Lévy processes
were few.

In this paper, we investigate the necessary maximum principle of a fully-coupled forward-
backward doubly stochastic system with the control domain being convex and the control
variable being contained in all coefficients. The rest of the paper is organized as follows.
Section 2 begins a general formulation of the stochastic optimal control of FBDSDEs driven
by Itô-Lévy processes, and gives some assumptions. In Section 3, we prove the existence and
uniqueness of the solution of this type of FBDSDEs. The variational equation and variational
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inequality are deduced in Section 4. In Section 5, we introduce the adjoint equation and the
stochastic Hamiltonian system. Finally, we apply our theoretical results to LQ problem in
Section 6.

2 Statement of the Problem

Let (Ω ,F ,P) be a complete probability space. {Ft}t≥0 is generated by the following three
mutually independent processes:

1) Suppose that {W (t); 0 ≤ t ≤ T } and {B(t); 0 ≤ t ≤ T } are two standard 1-dimensional
Brownian motions defined on (Ω ,F ,P), with values in R.

2) Suppose that η(t) is an independent pure jump Lévy martingale. N(dt, dθ) and ν(dθ) de-
note the jump measure and the Lévy measure of η(·), respectively, then ˜N(dt, dθ) = N(dt, dθ)−
ν(dθ)dt is the compensated jump measure of η(·). We can write η(t) =

∫ t

0

∫

R0
θ ˜N(dt, dθ) where

R0 = R\{0}.
LetN denote the class of P -null sets of F . For each t ∈ [0, T ], we define Ft = FW

t ∨FB
t,T∨Fη

t ,
where for {π(t)}, Fπ

s,t = σ{π(r) − π(s); s ≤ r ≤ t} ∨ N , Fπ
t = Fπ

0,t. Note that the collection
{Ft : t ∈ [0, T ]} is neither increasing nor decreasing, so it does not constitute a filtration. We
use the usual inner product 〈·〉 and norm || · || in R

n.
We adopt the following notations:
S2
F([0, T ]; R) :=

{

v(t, ω) : v(t, ω) is a 1-dimensional {Ft}t≥0-measurable process which

satisfies E
[

sup0≤t≤T v(t, ω)2
]

<∞
}

;

M2
F([0, T ]; R) :=

{

v(t, ω) : v(t, ω) is a 1-dimensional {Ft}t≥0-measurable process which

satisfies E

[

∫ T

0 v(t, ω)2dt
]

<∞
}

;

F 2
N,F([0, T ]; R) :=

{

r(t, θ, ω) : r(t, θ, ω) is a 1-dimensional {Ft}t≥0-measurable process which

satisfies E

[

∫ T

0

∫

R0
r(t, θ, ω)2ν(dθ)dt

]

<∞
}

;

L2
ν(·)(R) :=

{

r(θ) : r(θ) is a 1-dimensional {Ft}t≥0-measurable process which satisfies

||r||ν =
( ∫

R0
r(θ)2ν(dθ)

)
1
2 <∞ a.s.

}

;
L2(Ω ,FT ,P ; R) :=

{

ξ : ξ is a 1-dimensional FT -measurable random variable which satisfies
E
[

ξ2
]

<∞};
M

2 :=
[

M2
F([0, T ]; R)

]4 × F 2
N,F([0, T ]; R).

For a given v ∈ M2
F([0, T ]; R), we can define the forward Itô’s integral

∫ ·
0
v(s)
−→
d W (s) and

the backward Itô’s integral
∫ T

· v(s)
←−
d B(s) (see [18] for details).

We will need the following extension of Itô’s formula.

Lemma 2.1 Let α ∈ S2
F ([0, T ]; R), β, σ, δ ∈M2

F([0, T ]; R), γ ∈ L2
ν(·)(R) be such that

α(t) =α(0) +
∫ t

0

β(s)ds +
∫ t

0

σ(s)
←−
d B(s) +

∫ t

0

δ(s)
−→
d W (s)

+
∫ t

0

∫

R0

γ(s, θ) ˜N(
−→
d s, dθ), 0 ≤ t ≤ T.
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Then

α(t)2 = α(0)2 + 2
∫ t

0

α(s)β(s)ds + 2
∫ t

0

α(s)σ(s)
←−
d B(s)

+ 2
∫ t

0

α(s) δ(s)
−→
d W (s) + 2

∫ t

0

∫

R0

α(s)γ(s, θ) ˜N (
−→
d s, dθ)

−
∫ t

0

σ(s)2ds +
∫ t

0

δ(s)2ds +
∫ t

0

∫

R0

γ(s, θ)2ν(dθ)ds,

E
[

α(t)2
]

= E
[

α(0)2
]

+ 2E

[∫ t

0

α(s)β(s)ds

]

− E

[∫ t

0

σ(s)2ds

]

+ E

[∫ t

0

δ(s)2ds

]

+ E

[∫ t

0

∫

R0

γ(s, θ)2ν(dθ)ds

]

.

Proof We can adopt the similar steps of Lemma 1.3 in [14], and we omit the details here.
Let U be a nonempty convex set of R. Let Gt be a sub-sigma algebra of Ft, i.e., Gt ⊂ Ft. For

example, we could have Gt = FW
t be the information available to the controller at time t. We say

a control process u(·) : Ω× [0 ,T ]→ U is admissible if it is Gt-adapted and u(·) ∈M2
F ([0, T ], R).

Denote the set of all admissible control processes by Uad.
Consider a stochastic system where the state is governed by the following fully-coupled

FBDSDE driven by Itô-Lévy processes:
⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

dy(t) = f(t, y(t), Y (t), z(t), Z(t), K(t, ·), u(t), ω)dt

+g(t, y(t), Y (t), z(t), Z(t), K(t, ·), u(t), ω)
−→
d W (t)− z(t)

←−
d B(t)

+
∫

R0

γ(t, y(t), Y (t), z(t), Z(t), K(t, ·), θ, u(t), ω) ˜N(
−→
d t, dθ), t ∈ [0, T ],

y(0) = x,

dY (t) = −F (t, y(t), Y (t), z(t), Z(t), K(t, ·), u(t), ω)dt

−G(t, y(t), Y (t), z(t), Z(t), K(t, ·), u(t), ω)
←−
d B(t)

+Z(t)
−→
d W (t) +

∫

R0

K(t, θ) ˜N(
−→
d t, dθ), t ∈ [0, T ],

Y (T ) = ξ,

(1)

where (y, Y, z, Z, K(·, ·)) ∈ R
5, x ∈ R is a given constant. T ≥ 0 is a given fixed time duration.

F : [0, T ]× R
5 × U × Ω → R,

f : [0, T ]× R
5 × U × Ω → R,

G : [0, T ]× R
5 × U × Ω → R,

g : [0, T ]× R
5 × U × Ω → R,

γ : [0, T ]× R
5 × U × Ω → R.

The solution (y(t), Y (t), z(t), Z(t), K(t, ·)) corresponding to u(t) is called the state trajectory.
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Suppose that the performance functional is given by:

J(u) = E

[

∫ T

0

l(t, y(t), Y (t), z(t), Z(t), K(t, ·), u(t), ω)dt + h1(y(T ), ω) + h2(Y (0))

]

,

where
l : [0, T ]× R

5 × U × Ω → R, h1 : R× Ω → R, h2 : R→ R.

The optimal control problem is to find u∗(·) ∈ Uad such that

J(u∗) = inf
u∈Uad

J(u). (2)

In the following, the dependence on ω is suppressed for simplicity.
Denote

ζ =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

y

Y

z

Z

K

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, A(t, ζ) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

−F

f

−G

g

γ

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(t, ζ).

We assume that
(A1) For each ζ ∈ R

5, A(·, ζ) is an {Ft}t≥0-measurable process defined on [0, T ] with
A(·, 0) ∈M

2.
(A2) F, f, G, g, γ, l, h1, h2 are twice Fréchet differentiable with respect to (y, Y, z, Z, K, u).

They and all their derivatives up to the second order are bounded by a constant c.
(A3) The following inequality is the key condition:

− (F (t, ζ)− F (t, ζ′))(y − y′) + (f(t, ζ)− f(t, ζ′))(Y − Y ′)− (G(t, ζ) −G(t, ζ′))(z − z′)

+ (g(t, ζ)− g(t, ζ′))(Z − Z ′) +
∫

R0

(γ(t, ζ) − γ(t, ζ ′))(K(·, θ) −K ′(·, θ))ν(dθ)

= 〈A(t, ζ) −A(t, ζ ′), ζ − ζ′〉 ≤ −μ||ζ − ζ′||2, ∀ζ, ζ′ ∈ R
5, ∀t ∈ [0, T ],

where μ is a positive constant.

3 The Existence and Uniqueness of the Solution of FBDSDEs

In this section, we give the existence and uniqueness of the solution of FBDSDEs. Our main
result is as follows:

Theorem 3.1 Under Assumptions (A1)–(A3), for each x ∈ R, and random variable ξ ∈
L2(Ω ,FT ,P ; R), the following FBDSDE has a unique solution (y(t), Y (t), z(t), Z(t), K(t, ·)) ∈
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M
2:

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

dy(t) = f(t, y(t), Y (t), z(t), Z(t), K(t, ·))dt

+g(t, y(t), Y (t), z(t), Z(t), K(t, ·))−→d W (t)− z(t)
←−
d B(t)

+
∫

R0

γ(t, y(t), Y (t), z(t), Z(t), K(t, ·), θ) ˜N (
−→
d t, dθ), t ∈ [0, T ],

y(0) = x,

dY (t) = −F (t, y(t), Y (t), z(t), Z(t), K(t, ·))dt

−G(t, y(t), Y (t), z(t), Z(t), K(t, ·))←−d B(t)

+Z(t)
−→
d W (t) +

∫

R0

K(t, θ) ˜N(
−→
d t, dθ), t ∈ [0, T ],

Y (T ) = ξ.

(3)

In order to prove the above theorem, we need the following two lemmas. Consider the
following family of FBDSDEs parameterized by α ∈ [0, 1],

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

dy(t) = [fα(t, U(t, ·)) + f0(t)]dt + [gα(t, U(t, ·)) + g0(t)]
−→
d W (t)− z(t)

←−
d B(t)

+
∫

R0

[γα(t, U(t, ·), θ) + γ0(t, θ)] ˜N (
−→
d t, dθ), t ∈ [0, T ],

y(0) = x,

dY (t) = −[F α(t, U(t, ·)) + F0(t)]dt− [Gα(t, U(t, ·)) + G0(t)]
←−
d B(t)

+Z(t)
−→
d W (t) +

∫

R0

K(t, θ) ˜N(
−→
d t, dθ), t ∈ [0, T ],

Y (T ) = ξ + (1− α)y(T ),

(4)

where U(t, ·) = (y(t), Y (t), z(t), Z(t), K(t, ·)), (F0(t), f0(t), G0(t), g0(t), γ0(t, ·)) ∈ M
2 are given

processes. And for any given α ∈ [0, 1],

fα(t, U(t, ·)) = αf(t, U(t, ·))− (1− α)Y (t), F α(t, U(t, ·)) = αF (t, U(t, ·)) + (1 − α)y(t),

gα(t, U(t, ·)) = αg(t, U(t, ·))− (1− α)Z(t), Gα(t, U(t, ·)) = αG(t, U(t, ·)) + (1− α)z(t),

γα(t, U(t, ·), θ) = αγ(t, U(t, ·), θ)− (1− α)K(t, ·).

When α = 1, (F0(t), f0(t), G0(t), g0(t), γ0(t, ·)) = 0, (4) is reduced to (3). The following lemma
gives an estimate for the existence interval of (4) with respect to α ∈ [0, 1].

Lemma 3.2 Under Assumptions (A1)–(A3), if for some α0 ∈ [0, 1), and for each x ∈ R,
ξ ∈ L2(Ω ,FT ,P ; R), (F0(t), f0(t), G0(t), g0(t), γ0(t, ·)) ∈ M

2, (4) has a unique solution, then
there exists a positive constant δ0 such that for each α ∈ [α0, α0 + δ0], (4) also has a unique
solution (y(t), Y (t), z(t), Z(t), K(t, ·)) ∈M

2.

Proof Since for each x ∈ R, ξ ∈ L2(Ω ,FT , P ; R), (F0(t), f0(t), G0(t), g0(t), γ0(t, ·)) ∈ M
2,

there exists a unique solution to (4) for α = α0. Let δ be a positive number which is less than
1. It is easy to see that for each U(t, ·) = (y(t), Y (t), z(t), Z(t), K(t, ·)) ∈ M

2, there exists a
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unique solution U(t, ·) = (y(t), Y (t), z(t), Z(t), K(t, ·)) ∈M
2 satisfying the following equation:

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

dy(t) =
[

fα0(t, U(t, ·)) + δ
(

f(t, U(t, ·)) + Y (t)
)

+ f0(t)
]

dt

+
[

gα0(t, U(t, ·)) + δ
(

g(t, U(t, ·)) + Z(t)
)

+ g0(t)
]−→
d W (t)− z(t)

←−
d B(t)

+

∫

R0

[

γα0(t, U(t, ·), θ) + δ
(

γ(t, U(t, ·), θ) + K(t, ·))+ γ0(t, θ)
]

˜N(
−→
d t, dθ),

y(0) = x,

dY (t) = −[Fα0(t, U(t, ·)) + δ
(

F (t, U(t, ·)) − y(t)
)

+ F0(t)
]

dt + Z(t)
−→
d W (t)

−[Gα0(t, U(t, ·)) + δ
(

G(t, U(t, ·))− z(t)
)

+ G0(t)
]←−
d B(t) +

∫

R0

K(t, θ) ˜N(
−→
d t, dθ),

Y (T ) = ξ + (1− α0)y(T )− δy(T ).

We now proceed to prove there exists a small enough δ independent of α0 such that the mapping
defined by U(t, ·) = Iα0+δ(U(t, ·)) : M

2 →M
2 is contractive. Let

U
′
(t, ·) = (y′(t), Y

′
(t), z′(t), Z

′
(t), K

′
(t, ·)),

U ′(t, ·) = (y′(t), Y ′(t), z′(t), Z ′(t), K ′(t, ·)) = Iα0+δ(U
′
(t, ·)),

ΔU(t, ·) = U(t, θ)−U
′
(t, θ) = (y(t)−y′(t), Y (t)−Y

′
(t), z(t)−z′(t), Z(t)−Z

′
(t), K(t, ·)−K

′
(t, ·))

= (Δy(t), ΔY (t), Δz(t), ΔZ(t), ΔK(t, ·)),
ΔU(t, ·) = U(t, ·)−U ′(t, ·) = (y(t)−y′(t), Y (t)−Y ′(t), z(t)−z′(t), Z(t)−Z ′(t), K(t, ·)−K ′(t, ·))

= (Δy(t), ΔY (t), Δz(t), ΔZ(t), ΔK(t, ·)).

Using Itô’s formula to Δy(t)ΔY (t) and noting the fact that E[Δy(0)] = 0, we can obtain:

E
[

Δy(T )
(

(1 − α0)Δy(T )− δΔy(T )
)]

=− E

[

∫ T

0

Δy(t)
(

Fα0(t, U(t, ·))− Fα0(t, U ′(t, ·)) + δ
(

F (t, U(t, ·))− F (t, U
′
(t, ·)) −Δy(t)

)

)

dt

]

+ E

[

∫ T

0

ΔY (t)
(

fα0(t, U(t, ·))− fα0(t, U ′(t, ·)) + δ
(

f(t, U(t, ·))− f(t, U
′
(t, ·)) + ΔY (t)

)

)

dt

]

− E

[

∫ T

0

Δz(t)
(

Gα0(t, U(t, ·))−Gα0(t, U ′(t, ·)) + δ
(

G(t, U(t, ·))−G(t, U
′
(t, ·)) −Δz(t)

)

)

dt

]

+ E

[

∫ T

0

ΔZ(t)
(

gα0(t, U(t, ·)) − gα0(t, U ′(t, ·)) + δ
(

g(t, U(t, ·))− g(t, U
′
(t, ·)) + ΔZ(t)

)

)

dt

]

+ E

[

∫ T

0

∫

R0

ΔK(t, θ)
(

γα0(t, U(t, ·), θ)− γα0(t, U ′(t, ·), θ) + δ
(

γ(t, U(t, ·), θ)− γ(t, U
′
(t, ·), θ)

+ ΔK(t, ·))
)

ν(dθ)dt

]

≤E

[

∫ T

0

[

(α0 − μα0 − 1)||ΔU(t, ·)||2 +
δ(c + 1)

2
||ΔU(t, ·)||2 +

δ(c + 1)
2

||ΔU(t, ·)||2]dt

]

.
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Then we can derive that
[

λ− δ(c + 1)
2

]

E

[

∫ T

0

||ΔU(t, ·)||2dt

]

≤δ(c + 1)
2

E

[

∫ T

0

||ΔU(t, ·)||2dt

]

+
δ

2
E[Δy(T )2] +

δ

2
E[Δy(T )2],

where λ = min{1, μ}. From Itô’s formula, we get:

E
[

Δy(T )2
]

+ E

[

∫ T

0

Δz(t)2dt

]

=2E

[

∫ T

0

Δy(t)
(

fα0(t, U(t, ·))− fα0(t, U ′(t, ·)) + δ
(

f(t, U(t, ·)) − f(t, U
′
(t, ·)) + ΔY (t)

)

)

dt

]

+ E

[

∫ T

0

(

gα0(t, U(t, ·)) − gα0(t, U ′(t, ·)) + δ
(

g(t, U(t, ·))− g(t, U
′
(t, ·)) + ΔZ(t)

)

)2

dt

]

+ E

[

∫ T

0

∫

R0

(

γα0(t, U(t, ·), θ)− γα0(t, U ′(t, ·), θ) + δ
(

γ(t, U(t, ·), θ)− γ(t, U
′
(t, ·), θ)

+ ΔK(t, ·))
)2

ν(dθ)dt

]

≤β E

[

∫ T

0

||ΔU(t, ·)||2dt

]

+ δ2β E

[

∫ T

0

||ΔU(t, ·)||2dt

]

,

where β is a constant which depends only on the constant c, and β > 1. Thus, we have
[

λ− δ(c+β+1)
2

]

E

[

∫ T

0

||ΔU(t, ·)||2dt

]

≤ δ(c+β+1)
2

(

E

[

∫ T

0

||ΔU(t, ·)||2dt

]

+E
[

Δy(T )2
]

)

,

E
[

Δy(T )2
] ≤

[

βδ(c + β + 1)
2λ− δ(c + β + 1)

+ δ2β

]

(

E

[

∫ T

0

||ΔU(t, ·)||2dt

]

+ E
[

Δy(T )2
]

)

.

Let δ0 = 2λ
(8β+1)(c+β+1) , then for any δ ∈ [0, δ0],

E

[

∫ T

0

||ΔU(t, ·)||2dt

]

≤ 1
8β

(

E

[

∫ T

0

||ΔU(t, ·)||2dt

]

+ E
[

Δy(T )2
]

)

,

E
[

Δy(T )2
] ≤ 3

8

(

E

[

∫ T

0

||ΔU(t, ·)||2dt

]

+ E
[

Δy(T )2
]

)

.

It is clearly to see that

E

[

∫ T

0

||ΔU(t, ·)||2dt

]

+ E
[

Δy(T )2
] ≤ 1

2

(

E

[

∫ T

0

||ΔU(t, ·)||2dt

]

+ E
[

Δy(T )2
]

)

.

Thus, for each fixed δ ∈ [0, δ0], the mapping Iα0+δ is contractive, which has a unique fixed point
U(t, ·) = (y(t), Y (t), z(t), Z(t), K(t, ·)) ∈ M

2. We can see that U(t, ·) is the solution of (4) for
α = α0 + δ, δ ∈ [0, δ0]. The proof is completed.
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When α = 0, Equation (4) is reduced to the following simple form:
⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

dy(t) = [f0(t)− Y (t)]dt + [g0(t)− Z(t)]
−→
d W (t)− z(t)

←−
d B(t)

+
∫

R0

[γ0(t, θ)−K(t, θ)] ˜N(
−→
d t, dθ),

y(0) = x,

dY (t) = −[y(t) + F0(t)]dt − [z(t) + G0(t)]
←−
d B(t) + Z(t)

−→
d W (t)

+
∫

R0

K(t, θ) ˜N(
−→
d t, dθ),

Y (T ) = ξ + y(T ).

(5)

We have the following lemma:

Lemma 3.3 For any x ∈ R, ξ ∈ L2(Ω ,FT ,P ; R), (F0(t), f0(t), G0(t), g0(t), γ0(t, ·)) ∈ M
2,

(5) has a unique solution (y(t), Y (t), z(t), Z(t), K(t, ·)) ∈M
2.

Proof Uniqueness: Assume that there exists (y′(t), Y ′(t), z′(t), Z ′(t), K ′(t, ·)) ∈ M
2 satis-

fying the equation (5). We denote

Δy(t) = y(t)− y′(t), ΔY (t) = Y (t)− Y ′(t),

Δz(t) = z(t)− z′(t), ΔZ(t) = Z(t)− Z ′(t),

ΔK(t, ·) = K(t, ·)−K ′(t, ·).

Applying Itô’s formula to Δy(t)ΔY (t), we get

0 ≤ E
[

Δy(T )2
]

= −E

[

∫ T

0

Δy(t)2 + ΔY (t)2 + Δz(t)2 + ΔZ(t)2 + ||ΔK(t, ·)||2νdt

]

.

Thus, the solution of Equation (5) is unique in M
2.

Existence: We consider the following backward doubly stochastic differential equation:
⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

dY (t) = −[f0(t)− Y (t) + F0(t)]dt −G0(t)
←−
d B(t) + [2Z(t)− g0(t)]

−→
d W (t)

+
∫

R0

[2K(t, θ)− γ0(t, θ)] ˜N (
−→
d t, dθ),

Y (T ) = ξ.

(6)

According to [20], there exists a unique solution (Y (t), Z(t), K(t, ·)) solving (6).
We now consider the following forward doubly stochastic differential equation:

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

dy(t) = [f0(t)− Y (t)− y(t)]dt− z(t)
←−
d B(t) + [g0(t)− Z(t)]

−→
d W (t)

+
∫

R0

[γ0(t, θ)−K(t, θ)] ˜N(
−→
d t, dθ),

y(0) = x.

(7)

The above equation has a unique solution (y(t), z(t)). We can refer to [22] for details. Let
y(t) = y(t), Y (t) = y(t) + Y (t), Z(t) = Z(t), z(t) = z(t), K(t, ·) = K(t, ·), then (5) has a
solution (y(t), Y (t), z(t), Z(t), K(t, ·)). We get the existence.
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Now, we are going to prove Theorem 3.1:

Proof Uniqueness: We can derive the result from Lemma 3.2 and Lemma 3.3 obviously. Ex-
istence: By Lemma 3.3, for any x ∈ R, ξ ∈ L2(Ω ,FT ,P ; R), (F0(t), f0(t), G0(t), g0(t), γ0(t, ·)) ∈
M

2, (5) has a solution (y(t), Y (t), z(t), Z(t), K(t, ·)) ∈M
2.

We can derive from Lemma 3.2 that there exists a positive constant δ0, which depends
only on c, μ, such that (4) has a unique solution for α = δ ∈ [0, δ0], thus, we can repeat this
process for N times with 1 ≤ Nδ0 < 1 + δ0. In particular, Equation (4) for α = 1 with
(F0(t), f0(t), G0(t), g0(t), γ0(t, ·)) = 0 has a unique solution in M

2. The theorem is proved.

4 Variational Equation and Variational Inequality

Suppose that (y(t), Y (t), z(t), Z(t), K(t, ·), u(t)) is the solution to the optimal control prob-
lem (2). For any v(t) ∈ Uad satisfying u(t) + v(t) ∈ Uad, by the convexity of Uad, we get for all
0 < ρ ≤ 1, uρ(t) = u(t) + ρv(t) ∈ Uad. Let (yρ(t), Y ρ(t), zρ(t), Zρ(t), Kρ(t, ·)) be the trajectory
of (1) corresponding to uρ(t).

For convenience, we use the following notations in this section:

Φ(t) = Φ(t, y(t), Y (t), z(t), Z(t), K(t, ·), u(t)),

Φρ(t) = Φ(t, yρ(t), Y ρ(t), zρ(t), Zρ(t), Kρ(t, ·), uρ(t)),

Φ(t, uρ(t)) = Φ(t, y(t), Y (t), z(t), Z(t), K(t, ·), uρ(t)),

where Φ = F, f, G, g, γ and their derivatives with respect to (y, Y, z, Z, K, u) respectively.

Lemma 4.1 Under Assumptions (A1)–(A3), we have

lim
ρ→0

E

[

∫ T

0

(yρ(t)− y(t))2 dt

]

= 0, lim
ρ→0

E

[

∫ T

0

(Y ρ(t)− Y (t))2 dt

]

= 0,

lim
ρ→0

E

[

∫ T

0

(zρ(t)− z(t))2 dt

]

= 0, lim
ρ→0

E

[

∫ T

0

(Zρ(t)− Z(t))2 dt

]

= 0,

lim
ρ→0

E

[

∫ T

0

||Kρ(t, ·)−K(t, ·)||2νdt

]

= 0.

Proof Denote y(t) = yρ(t)− y(t) and similarly for Y (t), z(t), Z(t), K(t, ·), then
⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

dy(t) =
(

fρ(t)− f(t)
)

dt +
(

gρ(t)− g(t)
)−→

d W (t)

−z(t)
←−
d B(t) +

∫

R0

(

γρ(t, θ) − γ(t, θ)
)

˜N(
−→
d t, dθ),

y(0) = 0,

dY (t) = −(F ρ(t)− F (t)
)

dt− (Gρ(t)−G(t)
)←−

d B(t)

+Z(t)
−→
d W (t) +

∫

R0

K(t, θ) ˜N(
−→
d t, dθ),

Y (T ) = 0.
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Using Itô’s formula to y(t)Y (t), it follows that

0 ≤E

[

∫ T

0

〈A(t, ζ) −A(t, ζ′), ζ − ζ′〉 dt

]

+ E

[

∫ T

0

∣

∣

∣y(t)
(

F (t, uρ(t))− F (t)
)

∣

∣

∣dt

]

+ E

[

∫ T

0

∣

∣

∣Y (t)
(

f(t, uρ(t))− f(t)
)

∣

∣

∣dt

]

+ E

[

∫ T

0

∣

∣

∣z(t)
(

G(t, uρ(t))−G(t)
)

∣

∣

∣dt

]

+ E

[

∫ T

0

∣

∣

∣Z(t)
(

g(t, uρ(t))− g(t)
)

∣

∣

∣dt

]

+ E

[

∫ T

0

∫

R0

∣

∣

∣K(t, θ)
(

γ(t, uρ(t), θ)− γ(t, θ)
)

∣

∣

∣ν(dθ)dt

]

≤− μ

2
E

[

∫ T

0

{

y(t)2 + Y (t)2 + z(t)2 + Z(t)2 + ||K(t, ·)||2ν
}

dt

]

+ c(μ)E

[

∫ T

0

c2ρ2v2dt

]

,

where c(μ) is a constant depending on μ only.
Hence, we obtain the desired results.

Lemma 4.2 Under Assumptions (A1)–(A3), we have:

lim
ρ→0

E

[

sup
0≤t≤T

(yρ(t)− y(t))2
]

= 0, lim
ρ→0

E

[

sup
0≤t≤T

(Y ρ(t)− Y (t))2
]

= 0.

Proof We see that

y(t)2 =

(

∫ t

0

(

fρ(s)− f(s)
)

ds +
∫ t

0

(

gρ(s)− g(s)
)−→

d W (s)−
∫ t

0

z(s)
←−
d B(s)

+
∫ t

0

∫

R0

(

γρ(s, θ)− γ(s, θ)
)

˜N(
−→
d s, dθ)

)2

≤C

(∫ t

0

(

fρ(s)− f(s)
)

ds

)2

+ C

(∫ t

0

(

gρ(s)− g(s)
)−→

d W (s)
)2

+ C

(∫ T

0

z(s)
←−
d B(s)

)2

+ C

(∫ T

t

z(s)
←−
d B(s)

)2

+ C

(∫ t

0

∫

R0

(

γρ(s, θ)− γ(s, θ)
)

˜N(
−→
d s, dθ)

)2

,

Y (t)2 =

(

∫ T

t

(

F ρ(s)− F (s)
)

ds +
∫ T

t

(

Gρ(s)−G(s)
)←−

d B(s)−
∫ T

t

Z(s)
−→
d W (s)

−
∫ T

t

∫

R0

K(s, θ) ˜N (
−→
d s, dθ)

)2

≤C

(∫ T

t

(F ρ(s)− F (s))ds

)2

+ C

(∫ T

t

(Gρ(s)−G(s))
←−
d B(s)

)2

+ C

(∫ T

0

Z(s)
−→
d W (s)

)2

+ C

(∫ T

0

∫

R0

K(s, θ) ˜N (
−→
d s, dθ)

)2

+ C

(∫ t

0

Z(s)
−→
d W (s)

)2

+ C

(
∫ t

0

∫

R0

K(s, θ) ˜N (
−→
d s, dθ)

)2

,
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where C is a generic constant which might be different in different place.
Thus by Burkholder-Davis-Gundy’s inequality and Assumption (A2), we get

lim
ρ→0

E

[

sup
0≤t≤T

(yρ(t)− y(t))2
]

= 0, lim
ρ→0

E

[

sup
0≤t≤T

(Y ρ(t)− Y (t))2
]

= 0.

The proof is finished.
We introduce the following variational equation:

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

dy1(t) = 〈∇f(t), I(t)〉 dt + 〈∇g(t), I(t)〉 −→d W (t)− z1(t)
←−
d B(t)

+
∫

R0

〈∇γ(t, θ), I(t)〉 ˜N(
−→
d t, dθ),

y1(0) = 0,

dY 1(t) = −〈∇F (t), I(t)〉 dt− 〈∇G(t), I(t)〉←−d B(t) + Z1(t)
−→
d W (t)

+
∫

R0

K1(t, θ) ˜N(
−→
d t, dθ),

Y 1(T ) = 0,

(8)

where for φ = f, g, F, G, γ,

I(t) = (y1(t), Y 1(t), z1(t), Z1(t), K1(t, ·), v(t)),

〈∇φ(t), I(t)〉 = φy(t)y1(t) + φY (t)Y 1(t) + φz(t)z1(t) + φZ(t)Z1(t)

+
∫

R0

φK(t)K1(t, θ)ν(dθ) + φu(t)v(t).

Setting ỹ(t) = yρ(t)−y(t)
ρ − y1(t) and similarly for ˜Y (t), z̃(t), ˜Z(t), ˜K(t, ·), we have the following

two lemmas.

Lemma 4.3 Under Assumptions (A1)–(A3), we have

lim
ρ→0

E

[

∫ T

0

ỹ(t)2dt

]

= 0, lim
ρ→0

E

[

∫ T

0

˜Y (t)2dt

]

= 0,

lim
ρ→0

E

[

∫ T

0

z̃(t)2dt

]

= 0, lim
ρ→0

E

[

∫ T

0

˜Z(t)2dt

]

= 0,

lim
ρ→0

E

[

∫ T

0

|| ˜K(t, ·)||2νdt

]

= 0.

Proof For Φ = f, g, F, G, γ, we denote

Φρ̃(t) = Φ(t, yρ(t)− ρỹ(t), Y ρ(t)− ρ˜Y (t), zρ(t)− ρz̃(t), Zρ(t)− ρ ˜Z(t), Kρ(t, ·)− ρ ˜K(t, ·), uρ(t)).
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Note that ỹ(t) and ˜Y (t) satisfy the following equation:
⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

dỹ(t) =
[

fρ(t)− f(t)
ρ

− 〈∇f(t), I(t)〉
]

dt +
[

gρ(t)− g(t)
ρ

− 〈∇g(t), I(t)〉
]−→

d W (t)

−z̃(t)
←−
d B(t) +

∫

R0

[

γρ(t, θ)− γ(t, θ)
ρ

− 〈∇γ(t, θ), I(t)〉
]

˜N(
−→
d t, dθ),

ỹ(0) = 0,

d˜Y (t) = −
[

F ρ(t)− F (t)
ρ

− 〈∇F (t), I(t)〉
]

dt−
[

Gρ(t)−G(t)
ρ

− 〈∇G(t), I(t)〉
]←−

d B(t)

+ ˜Z(t)
−→
d W (t) +

∫

R0

˜K(t, θ) ˜N (
−→
d t, dθ),

˜Y (T ) = 0.

(9)

We can rewrite the equation as
⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

dỹ(t) =
1
ρ

[

fρ(t)− f ρ̃(t) + ρAf (t)y1(t) + ρBf (t)Y 1(t) + ρCf (t)z1(t) + ρDf (t)Z1(t)

+ρ

∫

R0

Ef (t)K1(t, θ)ν(dθ) + ρMf (t)v(t)
]

dt

+
1
ρ

[

gρ(t)− gρ̃(t) + ρAg(t)y1(t) + ρBg(t)Y 1(t) + ρCg(t)z1(t) + ρDg(t)Z1(t)

+ρ

∫

R0

Eg(t)K1(t, θ)ν(dθ) + ρMg(t)v(t)
]−→

d W (t)− z̃(t)
←−
d B(t)

+
∫

R0

1
ρ

[

γρ(t, θ)− γρ̃(t, θ) + ρAγ(t)y1(t) + ρBγ(t)Y 1(t) + ρCγ(t)z1(t) + ρDγ(t)Z1(t)

+ρ

∫

R0

Eγ(t)K1(t, θ)ν(dθ) + ρMγ(t)v(t)
]

˜N(
−→
d t, dθ),

ỹ(0) = 0,

d˜Y (t) = −1
ρ

[

F ρ(t)− F ρ̃(t) + ρAF (t)y1(t) + ρBF (t)Y 1(t) + ρCF (t)z1(t) + ρDF (t)Z1(t)

+ρ

∫

R0

EF (t)K1(t, θ)ν(dθ) + ρMF (t)v(t)
]

dt

−1
ρ

[

Gρ(t)−Gρ̃(t) + ρAG(t)y1(t) + ρBG(t)Y 1(t) + ρCG(t)z1(t) + ρDG(t)Z1(t)

+ρ

∫

R0

EG(t)K1(t, θ)ν(dθ) + ρMG(t)v(t)
]←−

d B(t)

+ ˜Z(t)
−→
d W (t) +

∫

R0

˜K(t, θ) ˜N (
−→
d t, dθ),

˜Y (T ) = 0,

where for φ = f, g, F, G, γ,

Aφ(t) =
∫ 1

0

{φy(t, y(t) + λρy1(t), Y (t) + λρY 1(t), z(t) + λρz1(t), Z(t) + λρZ1(t), K(t, ·)

+ λρK1(t, ·), u(t) + λρv(t)) − φy(t)}dλ,
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Bφ(t) =
∫ 1

0

{φY (t, y(t) + λρy1(t), Y (t) + λρY 1(t), z(t) + λρz1(t), Z(t) + λρZ1(t), K(t, ·)
+ λρK1(t, ·), u(t) + λρv(t)) − φY (t)}dλ,

Cφ(t) =
∫ 1

0

{φz(t, y(t) + λρy1(t), Y (t) + λρY 1(t), z(t) + λρz1(t), Z(t) + λρZ1(t), K(t, ·)
+ λρK1(t, ·), u(t) + λρv(t)) − φz(t)}dλ,

Dφ(t) =
∫ 1

0

{φZ(t, y(t) + λρy1(t), Y (t) + λρY 1(t), z(t) + λρz1(t), Z(t) + λρZ1(t), K(t, ·)
+ λρK1(t, ·), u(t) + λρv(t)) − φZ(t)}dλ,

Eφ(t) =
∫ 1

0

{φK(t, y(t) + λρy1(t), Y (t) + λρY 1(t), z(t) + λρz1(t), Z(t) + λρZ1(t), K(t, ·)
+ λρK1(t, ·), u(t) + λρv(t)) − φK(t)}dλ,

Mφ(t) =
∫ 1

0

{φu(t, y(t) + λρy1(t), Y (t) + λρY 1(t), z(t) + λρz1(t), Z(t) + λρZ1(t), K(t, ·)
+ λρK1(t, ·), u(t) + λρv(t)) − φu(t)}dλ.

Applying Itô’s formula to ỹ(t)˜Y (t), we get

μE

[ ∫ T

0

(

ỹ(t)2 + ˜Y (t)2 + z̃(t)2 + ˜Z(t)2 + || ˜K(t, ·)||2ν
)

dt

]

≤μ

2
E

[ ∫ T

0

(

ỹ(t)2 + ˜Y (t)2 + z̃(t)2 + ˜Z(t)2 + || ˜K(t, ·)||2ν
)

dt

]

+ CE

[ ∫ T

0

(

Af (t)y1(t) + Bf (t)Y 1(t) + Cf (t)z1(t) + Df(t)Z1(t)

+
∫

R0

Ef (t)K1(t, θ)ν(dθ) + Mf (t)v(t)
)2

dt

]

+ CE

[ ∫ T

0

(

Ag(t)y1(t) + Bg(t)Y 1(t) + Cg(t)z1(t) + Dg(t)Z1(t)

+
∫

R0

Eg(t)K1(t, θ)ν(dθ) + Mg(t)v(t)
)2

dt

]

+ CE

[
∫ T

0

(

AF (t)y1(t) + BF (t)Y 1(t) + CF (t)z1(t) + DF (t)Z1(t)

+
∫

R0

EF (t)K1(t, θ)ν(dθ) + MF (t)v(t)
)2

dt

]

+ CE

[ ∫ T

0

(

AG(t)y1(t) + BG(t)Y 1(t) + CG(t)z1(t) + DG(t)Z1(t)

+
∫

R0

EG(t)K1(t, θ)ν(dθ) + MG(t)v(t)
)2

dt

]

+ CE

[ ∫ T

0

(

Aγ(t)y1(t) + Bγ(t)Y 1(t) + Cγ(t)z1(t) + Dγ(t)Z1(t)

+
∫

R0

Eγ(t)K1(t, θ)ν(dθ) + Mγ(t)v(t)
)2

dt

]

.
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Note that

lim
ρ→0

E

[

∫ T

0

Aφ(t)2dt

]

= 0, lim
ρ→0

E

[

∫ T

0

Bφ(t)2dt

]

= 0, lim
ρ→0

E

[

∫ T

0

Cφ(t)2dt

]

= 0,

lim
ρ→0

E

[

∫ T

0

Dφ(t)2dt

]

= 0, lim
ρ→0

E

[

∫ T

0

||Eφ(t)||2νdt

]

= 0, lim
ρ→0

E

[

∫ T

0

Mφ(t)2dt

]

= 0.

Thus, we have

lim
ρ→0

E

[

∫ T

0

ỹ(t)2dt

]

= 0, lim
ρ→0

E

[

∫ T

0

˜Y (t)2dt

]

= 0, lim
ρ→0

E

[

∫ T

0

z̃(t)2dt

]

= 0,

lim
ρ→0

E

[

∫ T

0

˜Z(t)2dt

]

= 0, lim
ρ→0

E

[

∫ T

0

|| ˜K(t, ·)||2νdt

]

= 0.

The proof is finished.

Lemma 4.4 Under Assumptions (A1)–(A3), it holds that

lim
ρ→0

E

[

sup
0≤t≤T

ỹ(t)2
]

= 0, lim
ρ→0

E

[

sup
0≤t≤T

˜Y (t)2
]

= 0.

Proof We can also rewrite Equation (9) in the following form:
⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

dỹ(t) =
[

A1
f (t)ỹ(t)+B1

f(t)˜Y (t)+C1
f (t)z̃(t)+D1

f(t) ˜Z(t)+
∫

R0

E1
f (t) ˜K(t, θ)ν(dθ)+M1

f (t)
]

dt

+

[

A1
g(t)ỹ(t) + B1

g(t)˜Y (t) + C1
g (t)z̃(t) + D1

g(t) ˜Z(t)

+
∫

R0

E1
g(t) ˜K(t, θ)ν(dθ) + M1

g (t)

]

−→
d W (t)

−z̃(t)
←−
d B(t) +

∫

R0

[

A1
γ(t)ỹ(t) + B1

γ(t)˜Y (t) + C1
γ(t)z̃(t) + D1

γ(t) ˜Z(t)

+
∫

R0

E1
γ(t) ˜K(t, θ)ν(dθ) + M1

γ (t)
]

˜N(
−→
d t, dθ),

ỹ(0) = 0,

d˜Y (t) = −
[

A1
F (t)ỹ(t) + B1

F (t)˜Y (t) + C1
F (t)z̃(t) + D1

F (t) ˜Z(t)

+
∫

R0

E1
F (t) ˜K(t, θ)ν(dθ) + M1

F (t)

]

dt

−
[

A1
G(t)ỹ(t)+B1

G(t)˜Y (t)+C1
G(t)z̃(t)+D1

G(t) ˜Z(t)

+
∫

R0

E1
G(t) ˜K(t, θ)ν(dθ)+M1

G(t)

]

←−
d B(t)

+ ˜Z(t)
−→
d W (t) +

∫

R0

˜K(t, θ) ˜N(
−→
d t, dθ),

˜Y (T ) = 0,
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where

A1
φ(t) =

∫ 1

0

φy(t, y(t)+λy(t), Y (t)+λY (t), z(t)+λz(t), Z(t)+λZ(t), K(t, ·)+λK(t, ·), uρ(t))dλ,

B1
φ(t) =

∫ 1

0

φY (t, y(t)+λy(t), Y (t)+λY (t), z(t)+λz(t), Z(t)+λZ(t), K(t, ·)+λK(t, ·), uρ(t))dλ,

C1
φ(t) =

∫ 1

0

φz(t, y(t)+λy(t), Y (t)+λY (t), z(t)+λz(t), Z(t)+λZ(t), K(t, ·)+λK(t, ·), uρ(t))dλ,

D1
φ(t) =

∫ 1

0

φZ(t, y(t)+λy(t), Y (t)+λY (t), z(t)+λz(t), Z(t)+λZ(t), K(t, ·)+λK(t, ·), uρ(t))dλ,

E1
φ(t) =

∫ 1

0

φK(t, y(t)+λy(t), Y (t)+λY (t), z(t)+λz(t), Z(t)+λZ(t), K(t, ·)+λK(t, ·), uρ(t))dλ,

M1
φ(t) = y1(t)

(

A1
φ(t)−φy(t)

)

+Y 1(t)
(

B1
φ(t)−φY (t)

)

+z1(t)
(

C1
φ(t)−φz(t)

)

+Z1(t)
(

D1
φ(t)−φZ(t)

)

+
∫

R0

K1(t, θ)
(

E1
φ(t)−φK(t)

)

ν(dθ)

+
∫ 1

0

v(t)
(

φu(t, y(t), Y (t), z(t), Z(t), K(t, ·), u(t)+λρv(t))−φu(t)
)

dλ.

Note that

lim
ρ→0

E

[

∫ T

0

M1
φ(t)2dt

]

= 0,

and A1
φ(t), B1

φ(t), C1
φ(t), D1

φ(t), E1
φ(t) are bounded.

Using the similar steps in the proof of Lemma 4.2, we can easily get that

lim
ρ→0

E

[

sup
0≤t≤T

ỹ(t)2
]

= 0, lim
ρ→0

E

[

sup
0≤t≤T

˜Y (t)2
]

= 0.

The proof is finished.

Lemma 4.5 (Variational inequality) Under Assumptions (A1)–(A3), it holds that

0 ≤E

[ ∫ T

0

{

ly(t)y1(t) + lY (t)Y 1(t) + lz(t)z1(t) + lZ(t)Z1(t) +
∫

R0

lK(t)K1(t, θ)ν(dθ)

+ lu(t)v(t)
}

dt

]

+ E
[

h1y(y(T ))y1(T ) + h2Y (Y (0))Y 1(0)
]

.

Proof Since u(·) is the optimal control, by the definition of J(u), we get

0 ≤ρ−1[J(uρ)− J(u)]

=ρ−1
E

[ ∫ T

0

{

l(t, yρ(t), Y ρ(t), zρ(t), Zρ(t), Kρ(t, ·), uρ(t))

− l(t, y(t), Y (t), z(t), Z(t), K(t, ·), u(t))
}

dt

]

+ ρ−1
E[h1(yρ(T ))− h1(y(T ))] + ρ−1

E[h2(Y ρ(0))− h2(Y (0))].
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When ρ→ 0, we get

ρ−1
E

[

∫ T

0

(lρ(t)− l(t))dt

]

→ E

[

∫ T

0

{

ly(t)y1(t) + lY (t)Y 1(t) + lz(t)z1(t) + lZ(t)Z1(t)

+
∫

R0

lK(t)K1(t, θ)ν(dθ) + lu(t)v(t)
}

dt

]

,

ρ−1
E [h1(yρ(T )− h1(y(T ))]→ E

[

h1y(y(T ))y1(T )
]

,

ρ−1
E [h2(Y ρ(0)− h2(Y (0))]→ E

[

h2Y (Y (0))Y 1(0)
]

.

Then the lemma is proved.

5 The Necessary Maximum Principle

To derive the necessary maximum principle in this section, we introduce the following adjoint
equation:
⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

dp(t) = −Hy(t, y(t), Y (t), z(t), Z(t), K(t, ·), u(t), p(t), P (t), q(t), Q(t), r(t, ·))dt

−Hz(t, y(t), Y (t), z(t), Z(t), K(t, ·), u(t), p(t), P (t), q(t), Q(t), r(t, ·))←−d B(t)

+q(t)
−→
d W (t) +

∫

R0

r(t, θ) ˜N (
−→
d t, dθ),

dP (t) = −HY (t, y(t), Y (t), z(t), Z(t), K(t, ·), u(t), p(t), P (t), q(t), Q(t), r(t, ·))dt −Q(t)
←−
d B(t)

−HZ(t, y(t), Y (t), z(t), Z(t), K(t, ·), u(t), p(t), P (t), q(t), Q(t), r(t, ·))−→d W (t)

−
∫

R0

HK(t, y(t), Y (t), z(t), Z(t), K(t, ·), u(t), p(t), P (t), q(t), Q(t), r(t, ·)) ˜N (
−→
d t, dθ),

p(T ) = h1y(y(T )),

P (0) = −h2Y (Y (0)),
(10)

where the Hamiltonian functional H : [0, T ]× R
5 × U × R

5 → R is defined by:

H(t, y, Y, z, Z, K, u, p, P, q, Q, r)

=f(t, y, Y, z, Z, K, u)p + g(t, y, Y, z, Z, K, u)q− F (t, y, Y, z, Z, K, u)P

−G(t, y, Y, z, Z, K, u)Q +
∫

R0

γ(t, y, Y, z, Z, K, u, θ)r ν(dθ) + l(t, y, Y, z, Z, K, u).

We can verify that the equation (10) has a unique solution (p(t), P (t), q(t), Q(t), r(t, ·)) ∈ M
2.

We then have the main result in this paper.

Theorem 5.1 (The necessary maximum principle) Suppose that Assumptions (A1)–
(A3) hold, and let (y(t), Y (t), z(t), Z(t), K(t, ·), u(t)) be the solution to the optimal control prob-
lem (2), (p(t), P (t), q(t), Q(t), r(t, ·)) be the corresponding solution of (10). Then the maximum
principle holds, that is,

E[Hu(t, y(t), Y (t), z(t), Z(t), K(t, ·), u(t), p(t), P (t), q(t), Q(t), r(t, ·))|Gt] = 0.
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Proof Applying Itô’s formula to p(t)y1(t) and P (t)Y 1(t), and combining with the fact that
y1(0) = 0, Y 1(T ) = 0, we get

E
[

h1y(y(T ))y1(T ) + h2Y (Y (0))Y 1(0)
]

=E
[

p(T )y1(T )− P (0)Y 1(0)
]

=− E

[

∫ T

0

Hy(t, y(t), Y (t), z(t), Z(t), K(t, ·), u(t), p(t), P (t), q(t), Q(t), r(t, ·))y1(t)dt

]

− E

[

∫ T

0

Hz(t, y(t), Y (t), z(t), Z(t), K(t, ·), u(t), p(t), P (t), q(t), Q(t), r(t, ·))z1(t)dt

]

+ E

[

∫ T

0

(

p(t) 〈∇f(t), I(t)〉 + q(t) 〈∇g(t), I(t)〉 +
∫

R0

r(t, θ) 〈∇γ(t, θ), I(t)〉 ν(dθ)
)

dt

]

− E

[

∫ T

0

HY (t, y(t), Y (t), z(t), Z(t), K(t, ·), u(t), p(t), P (t), q(t), Q(t), r(t, ·))Y 1(t)dt

]

− E

[

∫ T

0

HZ(t, y(t), Y (t), z(t), Z(t), K(t, ·), u(t), p(t), P (t), q(t), Q(t), r(t, ·))Z1(t)dt

]

− E

[

∫ T

0

∫

R0

HK(t, y(t), Y (t), z(t), Z(t), K(t, θ), u(t), p(t), P (t), q(t), Q(t), r(t, θ))

·K1(t, θ)ν(dθ)dt

]

− E

[

∫ T

0

(

P (t) 〈∇F (t), I(t)〉 + Q(t) 〈∇G(t), I(t)〉
)

dt

]

.

Using Lemma 4.5, we have

0 ≤E

[ ∫ T

0

{

ly(t)y1(t) + lY (t)Y 1(t) + lz(t)z1(t) + lZ(t)Z1(t)

+
∫

R0

lK(t)K1(t, θ)ν(dθ) + lu(t)v(t)
}

dt

]

+ E
[

h1y(y(T ))y1(T ) + h2Y (Y (0))Y 1(0)
]

=E

[

∫ T

0

Hu(t, y(t), Y (t), z(t), Z(t), K(t, ·), u(t), p(t), P (t), q(t), Q(t), r(t, ·))v(t)dt

]

.

Letting α(s) = v[t,t+ε)(s) for ∀v(t) ∈ Uad, we have α(s) ∈ Uad, then

E

[ ∫ t+ε

t

Hu(s, y(s), Y (s), z(s), Z(s), K(s, ·), u(s), p(s), P (s), q(s), Q(s), r(s, ·))v(s)ds

]

≥ 0.

Differentiating with respect to ε at ε = 0, we get

E [Hu(t, y(t), Y (t), z(t), Z(t), K(t, ·), u(t), p(t), P (t), q(t), Q(t), r(t, ·))v(t)] ≥ 0, a.s.

And this inequality holds for all v(t) which is Gt-adapted, we have

E[Hu(t, y(t), Y (t), z(t), Z(t), K(t, ·), u(t), p(t), P (t), q(t), Q(t), r(t, ·))|Gt] = 0.

The proof is completed.
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6 Application

In this section, we give an example of the optimal control of forward-backward doubly
stochastic systems. Consider the optimal control problem, where the state process (y(t), Y (t))
is governed by

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

dy(t) = A(t)Y (t)dt + B(t)Z(t)
−→
d W (t)− z(t)

←−
d B(t), t ∈ [0, T ],

y(0) = x,

dY (t) = −(C(t)y(t) + D(t)v(t))dt + Z(t)
−→
d W (t)−N(t)z(t)

←−
d B(t), t ∈ [0, T ],

Y (T ) = ξ,

(11)

where A(t), B(t), C(t), N(t) are deterministic functions such that the above equation satisfies
the conditions (A1)–(A3). And v(t) is our control process.

The performance functional J(v) is given by

J(v) =
1
2

E

[

∫ T

0

(R(t)y2(t) + S(t)Y 2(t) + L(t)v2(t))dt + Fy2(T ) + GY 2(0)

]

,

where R(t) and S(t) are non-negative deterministic functions, and L(t) is a positive determin-
istic function. We proceed to find an optimal control u(t), such that

J(u) = inf
v∈Uad

J(v),

where Uad is the collection of all admissible control processes.
The Hamiltonian functional H is reduced to

H(t, y, Y, z, Z, v, p, P, q, Q) =
1
2
(R(t)y2 + S(t)Y 2 + L(t)v2) + A(t)Y p + B(t)Zq

− (C(t)y + D(t)v)P −N(t)zQ.

And we can deduce the adjoint equation as follows:
⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

dp(t) = −(R(t)y(t)− c(t)P (t))dt + N(t)Q(t)
←−
d B(t) + q(t)

−→
d W (t),

p(T ) = Fy(T ),

dP (t) = −(A(t)p(t) + S(t)Y (t))dt −B(t)q(t)
−→
d W (t)−Q(t)

←−
d B(t),

P (0) = −GY (0).

Assuming that the information available to the controller is denoted by FW
t . According to

Theorem5.1, if u is the optimal control, then

u(t) = L−1(t)D(t)E[P (t)|FW
t ].

In the rest of our paper, we try to give a more explicit representation of u(·). We set ̂X(t) =
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E[X(t)|FW
t ], X = y, Y, z, Z, p, P, q, Q. By the Lemma 5.4 of [26], p̂(·) and ̂P (·) satisfy

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

dp̂(t) = −(R(t)ŷ(t)− c(t) ̂P (t))dt + q̂(t)
−→
d W (t),

p̂(T ) = F ŷ(T ),

d ̂P (t) = −(A(t)p̂(t) + S(t)̂Y (t))dt −B(t)q̂(t)
−→
d W (t),

̂P (0) = −ĜY (0),

where ŷ(·) and ̂Y (·) satisfy
⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

dŷ(t) = A(t)̂Y (t)dt + B(t) ̂Z(t)
−→
d W (t), t ∈ [0, T ],

ŷ(0) = x,

d̂Y (t) = −(C(t)ŷ(t) + D(t)u(t))dt + ̂Z(t)
−→
d W (t), t ∈ [0, T ],

̂Y (T ) = ξ.

(12)

We put
p̂(t) = F (t)ŷ(t), F (T ) = F, ̂P (t) = G(t)̂Y (t), G(0) = −G.

By Itô’s formula, we have
⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

dp̂(t) = (Ḟ (t)ŷ(t) + F (t)A(t)̂Y (t))dt + F (t)B(t) ̂Z(t)
−→
d W (t),

p̂(T ) = F ŷ(T ),

d ̂P (t) =
[

Ġ(t)̂Y (t)−G(t)(C(t)ŷ(t) + D(t)u(t))
]

dt + G(t) ̂Z(t)
−→
d W (t),

̂P (0) = −ĜY (0).

Combining the drift and the diffusion items of p̂(t) and ̂P (t), we obtain
⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

Ḟ (t)ŷ(t) + F (t)A(t)̂Y (t) = −(R(t)ŷ(t)− c(t) ̂P (t)),

F (t)B(t) ̂Z(t) = q̂(t),

Ġ(t)̂Y (t)−G(t)(C(t)ŷ(t) + D(t)L−1(t)D(t) ̂P (t)) = −(A(t)p̂(t) + S(t)̂Y (t)),

G(t) ̂Z(t) = −B(t)q̂(t).

Then it follows that
⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

(C(t)G(t) −A(t)F (t))2 + (Ḟ (t) + R(t))(G2(t)D2(t)L−1(t)− S(t)− Ġ(t)) = 0,

F (t)B2(t) + G(t) = 0,

F (T ) = F,

G(0) = −G.

(13)

We have the following conclusion:

Proposition 6.1 If all the assumptions hold, then the optimal control process u(·) of this
problem is

u(t) = L−1(t)D(t)G(t)̂Y (t),

where ̂Y (t) is given by (12) and G(t) satisfies the equation (13).
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