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Abstract Community structure is one of the most best-known properties of complex networks. Find-

ing communities help us analyze networks from a mesoscopic viewpoints instead of microscopic or

macroscopic one. It helps to understand behavior grouping. Various community detection algorithms

have been proposed with some shortcomings in time and space complexity, accuracy, or stability. Label

Propagation Algorithm (LPA) is a popular method used for finding communities in an almost-linear

time-consuming process. However, its performance is not satisfactory in some metrics such as accuracy

and stability. In this paper, a new modified version of LPA is proposed to improve the stability and

accuracy of the LPA by defining two concepts -nodes and link strength based on semi-local similarity-,

while preserving its simplicity. In the proposed method a new initial node selection strategy, namely the

tiebreak strategy, updating order and rule update are presented to solve the random behavior problem

of original LPA. The proposed algorithm is evaluated on artificial and real networks. The experiments

show that the proposed algorithm is close to linear time complexity with better accuracy than the

original LPA and other compared methods. Furthermore, the proposed algorithm has the robustness

and stability advantages while the original LPA does not have these features.

Keywords Community detection, complex networks, LPA, similarity measure.

1 Introduction

A complex system is a special real-world system, i.e., a set of interacting elements relatively
isolated from their environment, and possessing some emerging properties[1]. By exploring the
real world, we can find many complex systems such as the social network[2], the Internet[3],
WWW[4], transportation systems[5], protein-protein interactions[6, 7], brain networks[8], and
finical and economic systems[9]. Such complex systems can be modeled as complex networks
in which entities are represented as nodes and the relationship among entities are defined as
links. Complex networks are widely used for modeling real-world systems in very different areas.
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They have non-trivial topological features, due to the particular features of the complex system.
Therefore, this network-or graph- differs from random and regular networks. For instance,
complex networks have small diameters which conclude the small world phenomenon. The next
features are the high clustering coefficient, heavy tail in the degree distribution (power-law),
robustness, assortativity or disassortativity among nodes, community structure, etc.[1, 10, 11].

Community structure is an important property for analyzing and visualizing given networks
from mesoscopic viewpoints. Community structure can be identified when the distribution of
links among nodes is too homogeneous[12]. Over the recent decade, there have been many
investigations in defining and finding the community structure of complex networks. Commu-
nity structures, also called clusters or modules, are groups of nodes which have dense connec-
tions within a community and sparse connections among communities. In social networks, the
community is instantly defined as the social group of users sharing common interests in the
network[13]. In the World Wide Web complex network, a community is a group of websites
dealing with the same topics. In the brain network, communities probably correspond to differ-
ent local body controllers[14]. In metabolic networks, communities may be related to functional
modules such as cycles and pathways or a group of proteins functioning in a similar way within
a cell in the protein-protein interaction networks[15].

In recent years, many studies have been conducted on the subject of discovering communi-
ties. These algorithms try to maximize links within communities while minimizing links among
communities[12]. However, most of these methods are inapplicable due to their low degree of
accuracy or finding communities in large time and space complexity. For example, because of
the exponential growth of real-world graphs such as social networks and biological networks, we
need to use a community detection algorithm with an almost-linear time and space complex-
ity. One of the most popular almost-linear methods is Label Propagation Algorithm (LPA)[16].
LPA has low time complexity and is well-adapted in the large-scale community. The main goal
of LPA is to assign a unique label to each node, update the label of the node with the most
seen label among its neighbors, and finally to discover community-based on the last updated
stage. Despite the simplicity and time efficiency of LPA, it has some deficiencies, namely its
randomly selected initial node, random updating sequence and random tiebreaking[17–19]. In
recent studies, many modifications of LPA have been proposed to improve its accuracy and
robustness. However, these methods suffer from two main weaknesses: 1) The dependence of
LPA on free parameters and 2) the use of global information structure. We have discussed these
weaknesses in many studied LPA-based methods in Section 2.

In this paper, a new LPA-based algorithm is proposed to improve the accuracy and stability
of the original LPA. A strength value has been defined for nodes and links based on semi-
local similarity. This proposed algorithm eliminates two random steps of the original LPA and
uses node strength for the updating order and link strength for rule updating. The proposed
algorithm is then tested on artificial and real networks. The experiments show that the proposed
algorithm is close to linear time complexity and can detect communities with better quality
and stability.

The structure of this paper is as follows. Section 2 discusses recent studies on community
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detection topics. In Section 3, the modified algorithm is proposed based on the label propagation
concept. Section 4, real and artificial data sets have been introduced as well as evaluation criteria
for real and artificial data sets. The proposed algorithm is tested on artificial and real datasets
to verify its efficiency and accuracy in Section 5. Finally, Section 6 concludes the paper and
proposes future directions.

2 Related Work

Hierarchical clustering is one of the oldest and most popular methods for finding communities
(clusters) in complex network analysis. There are some methods based on hierarchical clustering
algorithms such as GN[15], edge clustering coefficient[20], and Information centrality[21].

Modularity-based methods try to detect communities using modularity metric. These meth-
ods suppose a high modularity value for a well-separated community. Newman proposed a fast
algorithm for detecting community structure based on the modularity maximization[22]. This
method has a time complexity of O((m + n)n) on an arbitrary network and O(n2) for a sparse
network. The Fastgreedy method is a faster version of the previous algorithm, which uses more
efficient data structures (Maxheap tree) for updating[23]. The execution time of this method
is O(md log n), where d is the depth of the dendrogram describing the network’s community
structure. Total time complexity is totally O(n log2 n) on a sparse network. BGLL algorithm is
a greedy method based on local information for optimizing modularity[24]. This method consists
of two steps. First, it finds small or initial communities by optimizing of modularity using local
information. Then, it builds a new network whose nodes are the communities found during
the first phase. These steps are iteratively repeated until no more changes are needed and a
maximum of modularity is attained. The time complexity of BGLL method is O(n log n), where
n is the number of nodes in the network. However, all modularity-based algorithms suffer from
a resolution limit beyond which no smaller community can be detected. It has been proved
that modularity Q is not a scale-invariant measure, and consequently, it is unable to detect
communities smaller than a certain size depending on its maximization[25].

In random walk methods, each node initially contains a walker. Then each walker will ran-
domly choose a neighbor of the node it currently stands on to localize. The idea behind Ran-
dom Walk is that the walk tends to be trapped in dense parts of a network to Communities[26].
Markov Clustering (MCL) algorithm uses an initial stochastic matrix M for clustering by iter-
atively repeating two main operators-expansion and inflation-until convergence[27]. WalkTrap
approach defines a similarity measure based on random walks and applies a hierarchical agglom-
erative clustering fashion for discovering an adequate number of communities using modularity
measure[26]. Infomap is the most popular algorithm among random walk methods which is
a flow-based community detection by combining information-theoretic techniques and random
walks[28]. Infomap method inherently turns community detection problem into a coding prob-
lem. Using Huffman coding, the problem of finding communities is solved on two levels: One
level to distinguish communities in the network and the other to distinguish nodes in a com-
munity. Nodes in different communities can reuse the same code. The discovered partitions of
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networks minimize the description length of an infinite random walk process.
Label propagation algorithm (LPA) is a popular and fast method for community detec-

tion proposed by Nandini, et al.[16]. Initially, for each node in the network, a unique label is
assigned. At the next step, each node updates its label with the most frequent label among
its neighbors. When some labels of neighbors are equally frequent, it randomly chooses from
the most frequent labels. This label propagation process is repeated until the nodes with the
same label are grouped into one community. The main advantages of LPA are to have an
almost-linear time complexity, to use the local information, to not depend on free parameters
and objective function, and to be simple in simple implementation[29]. However, this algorithm
has some weaknesses such as instability, low quality, and formation of monster communities
due to its random behavior in initial node selection and random updating the label of a node
randomly in the tiebreak state. Recent investigations show that the various modifications of
LPA have been implemented in order to improve its stability and robustness. However, these
methods have focused either on initial node selection or rule updating. Leung, et al. pro-
posed hop attenuation and preferential linkage to break ties and prevent monster communities
on large web networks[17]. This technique avoids the label from spreading too far from its
origin. Šubelj and Bajec proposed a dynamic hop attenuation and hybrid label propagation
method called diffusion and propagation algorithm (DPA)[19]. This approach retains the dy-
namics of label propagation and still prevents the emergence of a monster community. Barber
and Clark proposed a modularity-specialized LPA (LPAm) which uses an objective function
with the aim of reaching a high modularity value[30]. However, it tends to fall into poor local
maxima in the modularity space[18]. To solve this problem, Liu and Tsuyoshi presented an
advanced modularity-specialized LPA (LPAm+) which combines multi-step greedy agglomer-
ative algorithm (MSG) with LPAm. Since LPAm and LPAm+ require the use of modularity
metric, they inherently suffer from the weakness of modularity-based methods. Labelrank is
another extension of LPA which is an extended version of Markov Cluster Algorithm[31]. It
stores, propagates and ranks the labels in each node. It performs four customized tasks called
propagation, inflation, cut off and conditional update to stabilize the dynamic propagation.
LPA-CNP method introduces a weighted coherent neighborhood propinquity (weighted-CNP)
measure to find stable communities in LPA[32]. Liang, et al. proposed a new development on
LPA by applying consensus clustering technology (LPAcw)[33].

In LPAcw (consensus weight) algorithm, the weight of the edge is the proportion of the
times number which two nodes of the edge are assigned in the same community to the total
consensus time. CK-LPA is a new developed LPA based on community kernel detection. It
initially tries to detect community kernel by selecting seed nodes in degree discount manner
and expands seed nodes by selecting node maximization degree[34]. Then, CK-LPA allocates
a weight for each node. It can be concluded conclude that when the nodes are far from the
community kernel, the weight will be low. Therefore, update rule is done by the label with
the maximum summation of weight values is chosen as the new label. Sun, et al. proposed
CenLP algorithm which extends initial node selecting and updating of LPA[29]. For each node,
it assigns a local density value ρ and the similarity δ with the assumption that the cores in
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communities favor a higher local density and lower similarity. Therefore, the weight of each
node is computed using relation γ =

ρ

δ
. The updating order can be obtained in an ascending

order of for nodes. For each node, a large value of γ reveals that the node has a high potential
for being the core in a networks. For node preference, a node prefers to follow its neighbor
whose local density is higher than itself. Then, among these higher local density nodes, it
selects a node with maximum similarity.

3 The Proposed Efficient Community Detection Algorithm

In this section, we explain our proposed algorithm as a new development of LPA. We have
used two new concepts, node and link strengths, and it is necessary to define these concepts at
below.

3.1 Definitions

Generally, a network can be described by a graph G(N, E, W ), where N is the set of vertices,
E is the set of edges, and W (E) is the weight of the edge E.

Definition 3.1 (link strength) It is defined based on the similarity between its pair
nodes using Equation (1)[35]. The neighborhoods (α) of Ni is defined as neighborhoods (α)
(Ni, α) = {Ni ∈ N | dist(Ni, Nj) � α} where α shows the allowable depth of common neighbors
with subject α > 0, and dist (Ni, Nj) is the shortest path length between Ni and Nj. In this
definition α is set to 2, because the effect of α > 2 is negligible on the link strength and Aij

adjacent matrix is negligible.

sim(Ni, Nj | α) = Aij
|neighborhoods(α)(Ni, α) ∩ neighborhoods(α)(Nj , α)|
|neighborhoods(α)(Ni, α) ∪ neighborhoods(α)(Nj , α)| . (1)

Equation (1) shows a similarity metric to quantify this fact that the nodes in the same
community tend to have more common nodes in their neighborhoods. In fact, this formulation
is an extended version of Jaccard’s similarity, which in addition to the first-level of neighbors,
consider the second-level of neighbors to be more precise.

Definition 3.2 (node strength) In a given weighted network G(N, E, W ), extending the
definition of node degree

K(u) =
∑

N∈Γ(u)\{u}
(sim(u, v)). (2)

Γ (u) shows the structure neighborhood for a node u ∈ V . The structure neighborhood for the
node u is the set Γ (u) containing u and its adjacent nodes which share a common incident edge
with u : Γ (u) = {v ∈ V | {u, v} ∈ E} ∪ {u}.

Equation (2) shows that in unweighted graphs, the degree centrality of each node is calcu-
lated based on the number of its links, but in weighted graphs the total weight of the links of
each node is calculated as node strength. In other words, this equation measures the strength
of nodes in terms of the total weight of their connections.
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Definition 3.3 (node preference) In a given weighted network, the preference of a node
N is defined as follows:

Node Preference(N) =
{
u ∈ V | argmax

u∈Γ1(v)

{sim{v, u}}
}
. (3)

Therefore, for node preference, it prefers to follow the neighbor whose local density is higher
than the node itself and similarity with the node is highest among neighbors.

3.2 Label Propagation Algorithm

In this section, we bring an example for original LPA algorithm to show its instability and
other disadvantages.

Example 3.4 Take the simple network with 18 nodes and 31 links shown in Figure 1.
There are original two communities in this network (painted in gray and blue colors respec-
tively):

Gray community : (N1, N2, N3, N4, N5, N6, N7, N8),

Blue community : (N9, N10, N11, N12, N13, N14, N15, N16, N17, N18).

Feeding LPA with this network, we may obtain just one community (unsuccessful case). Let’s
consider an unsuccessful updating rule in Figure 2. As mentioned above, in the original LPA,
the result of network partitioning is sensitive to the updating order of node labels during label
propagation. Assume that nodes in the left community (nodes 1–8) are already assigned with
label 3 after some steps, while the nodes in the right community are labeled with the number
of 9–18, respectively.

8 
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5 
4 

18 

16 

17 
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15 

14 

13 

12 10

11 

Figure 1 A simple network with 18 nodes, 31 links, and 2 communities

As shown in Figure 2, if we select the updating order for the blue community in the order of
18, 16, 17, 9, 15, 14, 13, 12, 11, and 10 respectively, node 18 is updated first. It may choose label
of nodes 1, 16, or 17 with the same probability. In this case, it uses tiebreak strategy to choose
a label from its neighbors randomly. If it chooses the label 3 of node 1, its label is updated
with label 3. In Step 2 of Figure 2, this condition is repeated for node 16. If node 16 similarly
uses a tiebreak strategy, it may update its label with label 3 of node 16. Therefore, in Step 3,
node 17 is eventually labeled with 3. At the end, the outcome corresponds to an inappropriate
solution, where all nodes in the network are categorized under the same community. However,
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it is possible to reach a true community finding in this order if node 18’s label is firstly updated
its label with the label of node 17. Then, nodes 16, 9, 15, 14, 13 will be updated with label 17
and node 12 in a tiebreak strategy may be updated with label 17. Likewise, node 11 can be
updated with label 17 and node 10 is consequently updated with label 17. At the end, all nodes
in the blue community are labeled with 17 and the gray community is labeled with 3. On the
other hand, let us consider another updating order as order 13, 14, 12, 11, 15, 16, 17, 18, 9,
and 10, respectively. As shown in Figure 3, suppose that the node 13 chooses the label of node 9
in a tiebreak strategy in Step 1. Therefore, in Step 2, node 14 is also updated with label 9. In
Step 3, node 12 may also choose label 9 in tiebreak state. Step 4 shows that the node 11 is
eventually updated with label 9. At the end of Step 9, the outcome will correspond to the true
community partitioning of the network.

This example reveals that the LPA is heavily dependent on the updating order and tiebreak
strategy. In original LPA, a label of a node is randomly updated with one of the labels of
neighbors that make instable decisions in finding community structure. Correspondingly, an-
other weakness of original LPA is the production of monster communities, shown in Step 9 of
Figure 2.

16

17

9 

15

14

13

1210

3 

3

3

3

3

3 

3
3

11

3

Step 1

17

9 

15

14

13

1210

3 

3

3

3

3

3 

3
3

11

Step 2

3

3

9 

15

14

13

1210

3 

3

3

3

3

3 

3
3

11

Step 3

3

3

3

15

14

13

1210

3 

3

3

3

3

3 

3
3

11

Step 4

3

3

33

14

13

1210

3 

3

3

3

3

3 

3
3

11

Step 5

3

3

3

3

3

3 

3

3

3

3

3 

3
3

Step 9

3

3

3

3

3

3

3 3

3

3

Figure 2 An example of unsuccessful updating order (18, 16, 17, 9, 15,

14, 13, 12, 11, 14)

3.3 The Proposed LPA-Based Algorithm

As mentioned in Subsection 3.2, LPA has some problems that make it inefficient for many
networks. In this paper, we have proposed an optimized version of LPA that solves problems
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of the original LPA and other LPA-based algorithms such as stability, monster communities,
and low performance.
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Figure 3 An example of successful updating order

In LPA, all nodes have equal importance of selecting and propagating of its label to other
nodes due to using a random method for initial and tiebreaks selections. In fact, it does not
consider the node’s characteristics in starting and updating steps. So, it leads to propagating
labels among different communities randomly that consequently affect the accuracy of LPA.
According to [36], the nodes of a complex network are divided into four groups: 1) Core,
2) Hub, 3) Bridge, and 4) Periphery. For detecting communities using the LPA algorithm, the
hub and bridge nodes have negative effects because of propagating an invalid label to other
communities. On the other side, the core nodes are the most important elements due to their
positive effect on label propagation inside the community. The core nodes have high degree
centrality, eigenvector centrality, and ago betweenness. Therefore, core nodes are suitable nodes
to be used in start and update phases. However, the core nodes must be detected using a local or
semi-local method to avoid further time complexity. In other words, the popularity of original
LPA algorithm is its linear time complexity (O(m)) on account of using a local method for
label propagation. Therefore, we need to preserve the time complexity of LPA in the proposed
algorithm. Nevertheless, nodes inside a community have higher structural similarity than nodes
in other communities[37]. Thus, if the nodes’ importance is used for selecting a node in the initial
step instead of a random selection of LPA, this algorithm will be stable and will prevent the
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formation of monster communities. A pseudo-code for our proposed algorithm is shown in
“Algorithm 1”. In general, the steps of the proposed algorithm are denoted as follows:

Step 1 Initialization – At the starting phase, a unique label is assigned to each node in
the network. Each label reveals the community of the node. We need to remove random node
selection of original LPA in our proposed algorithm. Hence, Equation (1) is used for computing
the link strength. Next, the strength of a node is calculated using Equation (2). Then, these
nodes are sorted in descending order based on their computed node strength. Finally, the node
with the highest strength is selected as the initial node.

Step 2 Label propagation – In label updating for nodes, we use the node’s preference
according to Equation (3). All nodes in the network are iteratively updated in descending order
of node’s strength value. In each iteration, the label of each node is determined by the label
of its neighbor with the highest link strength among neighboring nodes. If the tie-breaks state
is happening, the algorithm will select an edge whose target node has a higher strength than
other neighbors. In other words, if there are several edges with equal but highest weight, a
node label is chosen based on maximum node’s strength among neighbors.

Step 3 Nodes with the same label are assigned to the same community.

Algorithm 1: The proposed LPA-based community detection algorithm
Input : network G = (N, E)
Output: Community structures C = {C1, C2, · · · , CK}
Assign a unique label to each node in the network and Set t = 1.1

Calculate the link strength and node strength using Equations (1) and (2), respectively2

While the label of nodes change or t < max iteration do:3

Arrange node in ascending order of node strength and put the results on the vector4

X .
For each node vi ∈ X vector, update its labels according to Equation (3).5

If tiebreak state happens, choose the neighbor node who has higher node’s strength.6

t = t + 1.7

End While8

Construct communities based on the similar label.9

Return community structures.10

Example 3.5 (Testing the proposed algorithm on the network of Figure 1) At the start,
the link strength is calculated using semi-local centrality (Equation (1)). The node’s strength
is then computed for each node based on link strength by Equation (2). As it can be seen
in Figure 4, all nodes are uniquely labeled in the beginning. Then, the node 1 is selected for
updating its label because of its higher node’s strength value. It takes the node’s label from
its neighbors which have a higher edge’s strength. However, in some nodes, several edges have
same strength value among the target node and its neighbors (tiebreak state). In this case, it
selects the label of a neighbor which has a higher node’s strength value. For example, the link
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strength between node 1 with nodes 7, 2, and 5 is the same. Therefore, it updates its label with
the label of node 7 due to its higher node’s strength value. After node 1, node 9 is updated.
It updates its label with the label of node 16 because of higher link strength between nodes 9
and 16 than other neighbors. Likewise, all other nodes also update their labels according to
their strength value, likewise. At the end of iteration 1, nodes 1 to 8 are gathered in the same
community because they receive the label of node 7. And, the nodes 9 to 18 are assembled in
another community because their label is updated with the label of node 16. This process is
repeated in iterations 2 and 3 until the global optimum is reached. In most cases, however, for
small networks, iterations 1 and 2 are enough in most of the time.

Table 1 Iterations of our algorithm based on Example 3.5

Node
Iteration 1 Iteration 2 Iteration 3

Order up-

dating

Current

label

New

label

Order up-

dating

Current

label

New

label

Order up-

dating

Current

label

New

label

1 1 1 7 1 7 7 1 7 7

2 9 9 16 9 16 16 9 16 16

3 7 7 7 7 7 7 7 7 7

4 2 2 7 2 7 7 2 7 7

5 16 16 16 16 16 16 16 16 16

6 6 6 7 6 7 7 6 7 7

7 3 3 7 3 7 7 3 7 7

8 4 4 7 4 7 7 4 7 7

9 5 5 7 5 7 7 5 7 7

10 15 15 16 15 16 16 15 16 16

11 14 14 16 14 16 16 14 16 16

12 17 17 16 17 16 16 17 16 16

13 13 13 16 13 16 16 13 16 16

14 11 11 16 11 16 16 11 16 16

15 18 18 16 18 16 16 18 16 16

16 8 8 7 8 7 7 8 7 7

17 10 10 16 10 16 16 10 16 16

18 12 12 16 12 16 16 12 16 16

3.4 Computational Complexity of the Proposed Algorithm

We assume that the number of nodes in a social network is n, and the number of edges or
link is m. For analyzing time complexity, we process it in several isolated steps. Each step
individually runs on a different time complexity. The nodes are initially labeled in time O(n).
The next step is calculating node and link strength. For calculating link strength, we need
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to have access to neighbors and neighbor of neighbors. Therefore, its time complexity for all
nodes is O(nk2) which is equal to O(m) because complex networks often have a massive graph
with a very small number of neighbors. Therefore, the number of neighbors does not have an
effect on total time complexity. The node strength is also computed in O(nk) due to the fact
that only the neighbors are taken into consideration. The third step is, ranking nodes based on
node strength that has time complexity O(n) (due to the possibility of using radix and bucket
sorting algorithm in a linear time). The next step is the label propagation process. The time
complexity of label update according to weight link neighbor is O(nk) which is equal to O(m).
Finally, the time complexity of assigning the nodes with the same label to their own community
is O(2n). Since scale-free networks have sparsity property, the number of links is nearly equal
to the number of nodes. Therefore, The time complexity of O(m) ≈ O(n). Consequently, the
total time complexity is

T (n) = O(nk2 + nk + 4n + m) ≈ O(m).
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Figure 4 An example of the label propagation process by our proposed

algorithm on the network of Figure 2

4 Experiments

In this section, we evaluate the efficiency of our proposed algorithm with other state-of-
the-art community detection algorithms such as CNM[23], Infomap[28], BGLL[24], and original
LPA[16]. CNM and BGLL algorithms are selected for comparison due to their higher accuracy
among modularity-based methods. We also consider LPAm+and LPA-CNP as improve method
LAP proposing recently. Our algorithm is programmed in C++ with the GCC compiler. All
experiments were conducted on a PC with an Intel core i5 CPU (2.8 GHz) and 6.0 GB of
memory.

4.1 Datasets

We have conducted our experiments on two types of datasets, computer-generated network
(LFR) datasets and ten real network datasets. Girvan and Newman (GN)[15] benchmark net-
works are not used in this evaluation because all the node degrees follow a Poisson distribution
in GN benchmarks that make them non-real networks. Therefore, LFR networks are adequate
for this experiment.
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4.1.1 Artificial Datasets

LFR Benchmark network: LFR Benchmark was proposed by Lancichinetti, et al.[38]. It
represents the realistic properties similar to real-world networks because of the controlled power-
law node degree distribution, and community size distribution. In LFR, we can produce different
datasets by varying the parameters of the network. Some important parameters are detailed
are presented in Table 2.

Table 2 The main parameters of LFR datasets

Parameter name Description

N Number of nodes

K Average degree

max(k) The maximum degree

γ The exponent for the degree distribution

β The exponent for community size distribution

min(c) The minimum community size

max(c) The maximum community size

μ Mixing parameter

μ is the mixing parameter which shows the fraction of the link for each node connected to
other communities using Equation (4):

μ(n ∈ C) =

∑
∀C′∈P,C′C com(n, C′)

d(n)
, (4)

where d(n) is the number of edges of node n, com(n, C′) is the compatibility of node n to
community C′ (or the number of direct neighbors of node n in C′). A larger value of μ indicates
a less clear community structure of the network.

We generate six groups of LFR benchmark networks. Each group contains eight networks
with μ ranging from 0.1 to 0.8 and common parameters N , K, min(c), and max(c). In other
words, these parameters are the same in networks of each group but different in networks of
other groups. The other parameters are set to default values. The details are shown in Table 3.

Table 3 The parameters of six groups of LFR networks

Networks N K max(k) min(c) max(c) μ

N1 5000 15 40 10 40 0.1–0.8

N2 5000 15 40 40 80 0.1–0.8

N3 10000 20 50 20 50 0.1–0.8

N4 10000 20 50 50 100 0.1–0.8

N5 50000 40 100 50 100 0.1–0.8

N6 50000 40 100 100 200 0.1–0.8
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4.1.2 Real Datasets

The next experiment is based on ten standard real networks. Detailed information of each
network is shown in Table 4. In these networks, N is the number of vertices, E is the number
of edges and C is the number of communities. The parameter C is unknown for networks E5
to E10.

Table 4 The parameters of six groups of LFR networks

Network ID Network Name N E C Refrences

E1 Karate Club of Zachary 34 78 2 [39]

E2 Dolphins 62 159 2 [40]

E3 American College Football network 115 613 12 [15]

E4 Political Books network 105 441 3 [41]

E5 Jazz 198 2742 — [42]

E6 C.Elegans 453 2032 — [43]

E7 Email 1133 5451 — [44]

E8 Netscience 1589 2742 — [45]

E9 PowerGrid 4941 6494 — [46]

E10 Internet 22936 48436 — [48]

Karate Club of Zachary (E1) The Karate Club of Zachary is a social network consisting
of friendships among 34 people with 78 relationships in a karate club at a US university, as
described by Wayne Zachary in 1977. At some point, the club president had a dispute with an
instructor that led to the split of the club into two separate groups, supporting the instructor
and the president, respectively. Figure 7 represents the original karate club network.

Dolphins (E2) This dataset is the complex network of bottlenose dolphins reported by
Lusseau. It is an undirected social network with 62 nodes and 159 edges; each node denotes a
dolphin and each edge between two dolphins reveals the frequent contact between two dolphins,
living in Doubtful Sound Gulf, New Zealand. The dolphin dataset is originally divided into two
communities. Figure 9 Represents the original dolphin network.

American College Football network (E3) This network consists of 11 different regular
conferences of participating teams, except for 8 independent teams. Sometimes, these 8 teams
are considered as the 12th conference. There are 115 Division I-A teams (nodes) that play 613
games (edges) during the regular fall season of 2000. Each node denotes a football team and an
edge between two nodes shows a game played by these teams. Each team approximately plays
a total of 7 intra- and 4 inter-conference games in the season.

Political Books Network (E4) This network, compiled by Krebs, consists of the political
books about US politics in 2004 presidential election that were published around 2004 and sold
by Amazon. A node represents a political book and a link between two nodes represents frequent
co-purchasing of books by the same buyers.
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Jazz (E5) This dataset is a collaboration network among Jazz musicians that was created
in 2003. Each node is a Jazz musician and an edge indicates the relationship between two
musicians. The relationship is established between two musicians while they were performing
together in a band.

C. Elegant (E6) This network shows metabolism interactions for a typical worm, called
C.Elegant. This dataset has 453 nodes (metabolites) and 2032 edges. Each edge represents a
metabolic reaction between two nodes.

Email (E7) This dataset consists of 1669 users including faculty members, researchers,
technicians, managers, administrators, and graduate students. Each user has an email in the
email dataset. In this network, each email address is defined as a node and email communication
between two nodes is considered as an edge. Out of the total 1669 nodes, 1133 belong to the
giant component.

Netscience (E8) Co-authorship in science network or netscience is a network with 1589
co-authors or scientists that are skilled in network theory and practice. It was compiled by M.
Newman in May 2006. Each node is a scientist and an edge represents the relationship among
scientists. This network consists of 1589 node and 2742 edges.

PowerGrid (E9) It is an undirected and unweighted network. This network illustrates
the topology of the Western States Power Grid of the United States. The power grid dataset
includes 4,941 nodes and 6,594 edges. A node is a generator, a transformation, or a substation
and an edge represents a power supply line.

Internet (E10) A symmetrized snapshot of the structure of the Internet at the level of
autonomous systems, reconstructed from BGP tables posted by the University of Oregon Route
Views. This snapshot was created by Mark Newman using the available data in July 22, 2006.

4.2 Evaluation Criteria

In this section, we describe Normalized Mutual Information (NMI) and modularity (Q)
criteria as the evaluation metrics, currently popular in measuring the performance of network
clustering algorithms. Normalized Mutual information: The NMI is computed using Equa-
tion (5)[47]:

NMI(A, B) =
2I(A, B)

H(A) + H(B)
, (5)

where A and B denote two partitions of the network, H(A) and H(B) are the entropies of
each partition and I(A, B), ranging from 0 to 1, represents the mutual information between
A and B. If NMI=1, it means that partition A is identical to partition B. If partition A is
totally independent of partition B, for example when the entire network is found as just one
community, then I(A, B) = 0.

Modularity (Q) It is a criterion which rates the quality of a network clustering. Modularity
metric is computed by Equation (6). If the Q is closer to 1 it reveals high-quality clustering
(communities). Modularity compares the actual number of intra community edges to the ex-
pected number of edges in a random graph with the same degree distribution. The modularity
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(Q) is defined as:

Q =
1

2m

∑

ij

(
Aij − didj

2m

)
× δ(ci, cj), (6)

where m represents the number of edges, Aij is an adjacency matrix, where Aij = 1 if node i

is linked to node j. Otherwise, Aij = 0. δ(ci, cj) is a piecewise function is defined as ci = cj ,
then δ(ci, cj) = 1, else δ(ci, cj) = 0.

5 Experimental Results and Discussion

At first, the artificial datasets are tested by mentioned five algorithms. The obtained results
are illustrated in Figures 6 to 11. These six figures show the NMI of the proposed algorithm and
other compared methods on six groups of LFR benchmark networks (N1∼N6). The abscissa
represents the parameter μ from 0.1 to 0.8. Next, we have evaluated our algorithm on real
well-known networks.

5.1 Analysis of the Synthetic Networks

Since our proposed algorithm is a developed version of LPA, we compare it with the original
LPA on the datasets for a reliable validation of stability and accuracy based on NMI metric.
In these experiments, we have implemented LPA algorithm in 100 runs on datasets N1 to N6
because of its random nature and sensitivity of initial inputs. The fluctuation of LPA is shown
in these figures. As mentioned above, the proposed algorithm tries to avoid a random decision;
as a result, it does not have any fluctuations. Therefore, it is more and more stable than LPA-
based algorithms such as CNM, BGLL, LPA-CNP and LPAm+. However, our algorithm is also
run 100 times to validate the stability. The obtained results have also verified our algorithm’s
claimed stability.

Figure 5 shows the results of six algorithms in LFR networks using different parameters listed
in Table 1. These figures illustrate the comparison of NMI metric for community detection of our
algorithm and other five algorithms. These experiments prove that our algorithm significantly
outperforms other algorithms based on NMI metric. All the methods, except for Fastgreedy
algorithm, have better performance when the mixing parameter’s value (μ) is small.

When μ is increased, the network is more complex and it becomes more difficult to reveal
the community. For example, the performance of CNM algorithm in μ � 0.7, BGLL algorithm
in μ � 0.6, LPA-CNP algorithm μ � 0.4 LPAm+ algorithm in μ � 0.3, LPA algorithm in
μ � 0.5 drops for all datasets N1 to N6. Needless to say, our algorithm’s performance is better
than compared methods in all LFRs. In LFR N1, our algorithm’s performance is similar to
BGLL in μ = 0.6. However, for other values of μ, our algorithm is better than compared
methods. In LFR N2, our algorithm’s performance is similar to BGLL, LPA. For other values,
the performance of our algorithm is better than other algorithms. In LFR N3 and N4, it can be
seen that the NMI value for our algorithm is higher than other algorithms for all μ’s possible
values. As shown in figures of LFR N5 and N6, the performance of our algorithm is similar
to BGLL. Needless to say, our proposed method also has a better performance than other
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algorithms for all μ values. Consequently, our algorithm is not weaker than any compared
methods. It significantly outperforms the compared method in all LFR datasets.
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Figure 5 The experimental results on networks LFR N1, LFR N2, LFR

N3, LFR N4, LFR N5, and LFR N6

5.2 Analysis on Real-World Networks

In this section, the performance of our algorithm is compared with the other algorithms in
real-world networks using the modularity metric. To assess the accuracy of our algorithm, we
first carry out experiments on two popular real-world networks, Zachary’s karate club network,
and Dolphin, with more details.

Initially, we have considered Karate (E1) for analyzing. The real-world Karate network
originally has two predefined communities, with colors blue and red, which is demonstrated
in Figure 6. After testing our algorithm on this dataset, the result is illustrated in Figure 7.
It can be seen that our proposed algorithm can detect two major communities like original
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communities. However, this algorithm finds a small community for just two nodes 25 and 26.
Since this minor community has just two nodes if it is considered inside the community with
node 34, it is like an original network. Nevertheless, LPA-CNP, BGLL, LPA, and CNM can
detect three communities in the Karate network. The modularity measure is obtained for this
algorithm in Table 5. As it is seen in this table, the modularity value for our algorithm is
Q = 0.392 which is better than a CNM algorithm with Q = 0.380, BGLL with Q = 0.381,
LPA-CNP with 0.302, and LPA with Q = 0.391. However, it is a little lower than LPAm+ with
Q = 0.410. In general, our algorithm can detect communities with good modularity and higher
stability.
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Figure 7 The result of our algorithm

on karate club

The second real network is Dolphin network (E2) which is represented in Figure 8. The orig-
inal Dolphin network has two communities. After running our algorithm on Dolphin dataset,
three communities were detected (Figure 9) which is better than BGLL (5 communities), CNM
(4 communities), LPA-CNP (3 communities), LPAm+ (3 communities) and LPA (4 communi-
ties). Furthermore, the modularity metric (Q) is calculated in Table 5 for our proposed method
and other compared algorithms. The evaluation of modularity metric in this dataset reveals
that our proposed method (with Q = 0.552) outperform CNM, BGLL, LPA-CNP, LPAm+ and
LPA algorithms. All other algorithms are weaker than our method in both discovered number
of communities and modularity value.

In addition, in Football dataset (E3), our proposed algorithm can detect 13 communities
for 12 football conferences. In comparison with other algorithms, the obtained results are satis-
factory and better. The analysis of modularity metric also shows that our proposed method has
a better modularity value than LPA, CNM and BGLL methods. In addition, it is comparable
to the LPAm+ algorithm.

In Political Books dataset (E4), the obtained results for our proposed algorithm is nearly
similar to other compared methods. It is better than CNM, LPA-CNP and LPA methods.
Furthermore, its modularity value is nearly similar to LPAm+ and BGLL algorithms. In
datasets E5 to E10, we discuss the modularity metrics only since the number of communities
is unknown. The evaluation of modularity value proves that our algorithm outperforms other
compared algorithms on datasets E6, E7, E9 and E10 due to its Q value. All other algorithms
have a remarkably weaker performance on these datasets. Moreover, in datasets E6 and E8,
the modularity value for our algorithm is better than LPA-CNP and LPA. However, it is a little
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lower than BGLL and CNM.
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Figure 8 The real community structures of Dolphins
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Figure 9 The result of our algorithm on Dolphins



A LINK-BASED SIMILARITY FOR IMPROVING COMMUNITY DETECTION 755

Consequently, the experimental results of this paper show that, generally speaking, CNM
has poor performance in finding communities and modularity metrics. In addition, LPA has
a significant fluctuation problem in the obtained results that make it an unstable method.
Also, LPA, in general, has a weaker performance than our algorithm, BGLL, and LAPm+.
Moreover, our proposed method outperforms BGLL and LPAm+ algorithms in 8 out of 10 real
datasets. The experimental results mostly show that our method has better efficiency with
higher modularity than other algorithms.

Table 5 Result of modularity obtain on algorithms in real data set

Data CNM BGLL LPA-CNP LPAm+ LPA Proposed

Sets Q Num. Q Num. Q Num. Q Num. Q Num. Q Num.

E1 0.380 3 0.381 3 0.302 3 0.410 2 0.391 ±0.25 3±1 0.392 3

E2 0.495 4 0.418 5 0.466 3 0.524 3 0.410 ±0.280 4±1 0.552 3

E3 0.549 6 0.603 10 0.606 12 0.603 12 0.571 ±0.180 10±3 0.602 13

E4 0.501 4 0.520 4 0.451 8 0.526 6 0.481 ±0.141 5±1 0.520 6

E5 0.438 5 0.441 5 0.431 4 0.445 4 0.291 ±0.230 4±1 0.402 4

E6 0.408 14 0.440 10 0.429 12 0.452 14 0.215 ±0.159 5±1 0.473 14

E7 0.489 17 0.541 13 0.480 25 0.582 33 0.500 ±0.200 12±5 0.542 39

E8 0.955 403 0.959 406 0.932 441 0.941 319 0.901 ±0.210 454±6 0.953 334

E9 0.934 40 0.936 40 0.810 694 0.928 536 0.800 ±0.100 488±5 0.941 769

E10 0.601 49 0.6608 46 0.603 209 0.638 196 0.4108±0.29 380±15 0.691 215

NMI is another comparison metric for evaluating the accuracy rate found in the known
community (Equation (2)). NMI produces the values between 0 and 1, with 1 corresponding
to a faultless matching. The obtained results for NMI measure are shown in Table 6 for all
algorithms with optimal parameters.

Table 6 Result of modularity obtain on algorithms in real data set

Data Proposed LPA BGLL Infomap CNM

Sets NMI Nd Nc NMI Nd Nc NMI Nd Nc NMI Nd Nc NMI Nd Nc

(E1) 0.68 3 2 0.581±0.110 3±1 2 0.59 3 2 0.69 3 2 0.69 3 2

(E2) 0.56 3 2 0.491±0.091 4±1 2 0.48 5 2 0.53 6 2 0.55 4 2

(E3) 0.82 13 12 0.654±0.124 10±3 12 0.88 10 12 0.97 12 12 0.75 6 12

(E4) 0.53 6 3 0.494±0.081 5±1 3 0.51 4 3 0.49 6 3 0.53 4 3

The first evaluation is between our algorithm and original LPA. The results show that our
algorithm outperforms LPA in all datasets. The NMI of our proposed method is also higher
than BGLL in all datasets, except for the E3 dataset. Furthermore, our algorithm has higher



756 BERAHMAND KAMAL · BOUYER ASGARALI

NMI than Infomap in datasets E2 and E4. It also is better than Fastgreedy in datasets E2,
E3, and E4. In addition, the NMI of our algorithm is nearly similar to Infomap and Fastgreedy
in data set E1. Comparing the NMI measure and number of detected communities reveals that
our algorithm outperforms other algorithm.

6 Conclusion

In the recent decade, community detection algorithms based on label propagation strategy
have become a hot research topic in the realm of complex networks. However, these methods
have some major disadvantages in performance and stability metrics. In this paper, we proposed
an improved version of LPA algorithm by changing the initial node selection strategy, the
updating order and rule update strategy. The algorithm firstly calculates the link and node
strength values and ranks the node in the descending order based on link strength value. It
initially selects the nodes which have the highest node strength value. Then, it processes label
updating based on the highest link strength value among neighbors. In tiebreak state, it uses the
highest node strength among neighbors. This modification helps the traditional LPA algorithm
avoid random selection and label propagation. Experiments were tested on synthetic benchmark
networks and several real-world networks. The obtained results show that our algorithm can
detect communities in networks and achieve higher accuracy and better stability. In the future,
we believe that it is helpful to apply this method when analyzing multidimensional real networks
like Flicker, Delicious, and IMDB networks. Furthermore, this method can clearly discriminate
hub and core from the bridge and periphery nodes. It, therefore, can be used for influence
maximization problem in complex networks.
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