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Abstract This paper addresses the consensus problem of general linear multi-agent systems with per-

sistent disturbances by distributed output feedback. Suppose that states of agents can not be obtained

directly. Several estimators are designed to observe states of agents and the unknown disturbances.

A protocol is proposed to drive all agents achieve consensus. Based on the method of model trans-

formation and the property of permutation matrix, sufficient conditions for consensus are obtained in

terms of linear matrix inequalities. Finally, simulations are given to show the effectiveness of presented

results.
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1 Introduction

Over past several decades, the distributed coordination control problem of multi-agent sys-
tems has been an active research area in the field of systems and control theory. A lot of
meaningful results have been reported[1]. The core problem of distributed coordination control
is consensus problem, and more and more scholars from various fields, such as control, computer
science, physics and mathematics, are paying tremendous attention to this problem. The re-
sults reported until now focus primarily on the design methods of control protocols and stability
analysis of multi-agent systems with first-order, second-order and mixed-order dynamics[2–7].
However, there are more complex dynamical behaviors in actual physical systems, which cannot
be modeled by the low order dynamics. Hence, it is important to investigate the consensus prob-
lem of linear multi-agent systems. Recently, many results about consensus have been extended
to linear multi-agent systems[8–13] and they assumed that there is no any external disturbance
along with system input.
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In reality, agents are usually under uncertain environments, where exist various external
disturbances such as actuator bias, measurement or/and calculation errors, the variation of
communication links and noises. This may lead to the divergency of the closed-loop systems.
Hence, it is an important issue to study the consensus problems for multi-agent systems with
external disturbances. There are two kinds of methods to contend with these situations. One
is the stochastic analysis method, and the other one is the robust H∞ control method. By
using the tools of stochastic analysis, some sufficient conditions for mean-square consensus
were obtained[14–16]. On the other hand, the H∞ consensus problems were solved by using
the tools of robust H∞ control[17–20] and some sufficient conditions were derived for making
all agents achieve consensus with H∞ performance. By investigating recent literatures, the
dynamic behaviors of agents and uncertainties are two key factors which effect the stability
of the multi-agent systems. In physical systems, agents may share the linear dynamics and
be affected by persistent disturbances[21, 22]. Therefore, it is meaningful to investigate the
consensus problem for multi-agent systems with persistent disturbances, which is a challenging
problem. However, to the best of our knowledge, few works have considered both difficulties
so far. The authors of [23] solved such problems for leader-following multi-agent systems, but
their analysis method is invalid for leaderless networks due to the singularity of system matrix,
and the time-varying consensus state can not be found. In [24, 25], the consensus problems
were solved for multi-agent systems with persistent disturbances by state feedback, while the
case for absence of state information has not been considered.

In this paper, we investigate the robust consensus problem of general linear leaderless multi-
agent systems with unknown persistent disturbances when the neighbors’s state information
cannot be obtained directly. Several observers are designed to estimate the disturbances and
states by using output information of systems. A distributed protocol is proposed to force
the multi-agent systems to achieve robust consensus. By the method of model transformation
and the property of permutation matrix, the consensus problems are first changed into the
problems of simple matrices stability, which are easier to understand and even more essential.
Then the sufficient conditions for robust consensus are obtained. Finally, the effectiveness
of presented results is demonstrated by simulations. Compared with the existing works, this
paper has the following advantages: 1) In contrast to the consensus problem of linear multi-
agent systems[8–13, 16], the disturbances were considered in this paper, hence, the results of
this paper is more valuable in applications. 2) In contrast to the existing results[14–20], where
the effect of external disturbance can only be decreased and the system cannot achieve fully
consensus, in this paper, the closed-loop systems can achieve precise consensus. 3) In contrast to
the existing results[22, 23], where the leader following consensus problems have been solved, this
paper extends these results to leaderless networks, this is not a trivial work due to the singularity
of closed-loop system matrix, and the consensus state is obtained too. 4) In contrast to our
previous works in [24, 25], where state feedback controllers were adopted to solve the consensus
problem, this paper deals with the output feedback situations.
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2 Preliminaries

2.1 Graph Theory

To solve the coordination problems, graph theory is useful[26]. Consider a multi-agent system
consists of N agents. Regarding N agents as N nodes, let V = {vi, i = 1, 2, · · · , N} be the set
of nodes and the undirected graph G = {V, ε} represent communication topology of N agents,
where ε ⊂ V × V is the set of edges of the graph. If (vi, vj) ∈ ε, we call vi is a neighbor of
vj . Let Ni = { j | (vi, vj) ∈ ε} denotes the set of labels of those agents who are neighbors
of agent i (i = 1, 2, · · · , N). Let A = [aij ] ∈ RN×N be the weighted adjacency matrix of the
graph G, which is defined as aii = 0 and aij > 0 if (i, j) ∈ ε, otherwise, aij = 0 for i �= j,
and D = diag{d1, d2, · · · , dN} ∈ RN×N be its degree matrix, where di =

∑N
j=1 aij . Then

the Laplacian of the weighted graph is defined as L = D − A, which is symmetric. A path
that connects vi and vj in the graph G is a sequence of distinct vertices vi0 , vi1 , · · · , vim , where
vi0 = vi, vim = vj and (vir , vir+1 ) ∈ ε, 0 ≤ r ≤ m − 1. If there exist a path between any two
vertices vi and vj (i �= j), then the graph is said to be connected.

2.2 System Model

Consider a network of N agents with general linear dynamics. The dynamics of agents are
given as follows: ⎧

⎨

⎩

ẋi(t) = Axi(t) + B[ui(t) + di(t) + wi],

yi(t) = Cxi(t), i = 1, 2, · · · , N,
(1)

where xi ∈ Rn, ui ∈ Rq, di(t) ∈ Rq, wi ∈ Rq and yi ∈ Rr are the state, control input, external
disturbance, unknown constant disturbance and control output of agent i, respectively. And
matrices A, B, C have appropriate dimensions, N ≥ 3.

Definition 1 The robust consensus of multi-agent system (1) is said to be achieved by
protocols ui(t), i = 1, 2, · · · , N if for any initial condition, we have

lim
t→∞ ‖xi(t) − xj(t)‖ = 0, ∀i, j = 1, 2, · · · , N.

The objective of this paper is to give the designing method of output feedback control proto-
col for driving all agents achieve consensus. To continue, we make the following assumptions[23].

Assumption 1 The pair (A, B) is stabilizable and the pair (A, C) is detectable.
Assumption 2[23] The external disturbances subject to the following two conditions: 1)

di(t) ∈ L2[0,∞), and 2) limt→∞ ḋi(t) = 0.
Assumption 3 The communication topology G is undirected and connected.
Remark 1 By Assumption 1, it is easy to see that there exist F ∈ Rn×n, G ∈ Rn×r

(see [27] for details), such that F = A − GC, and F is Hurwitz.
Remark 2 In this paper, several observers will be proposed to estimate the states and

disturbances for all agents. So Assumption 1 is necessary. In Assumption 2, the external
disturbances di(t) are assumed to be unknown but have limited energy and wi is an unknown
constant disturbance[21], which might be presented in real physical systems, for example, in
the control of the torque of motors[29], slipping can be approximately modeled as unknown
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constant disturbance. In reality, we need to regard the entirety di(t)+wi as the external distur-
bances, such as the external disturbances in the MAGnetic LEViation (MAGLEV) suspension
system[30]. Hence, Assumption 2 is validated. When di(t) = 0, the external disturbances de-
grade into the constant disturbances, the corresponding multi-agent system becomes a special
case of this paper.

Remark 3 In this paper, we assume that the communication topology G is undirected
and connected. Our future work will focus on how to extend our results to the case of jointly
connected and directed topologies and how to apply our results to real physical systems.

3 Main Results

In order to solve the robust consensus problem of System (1), we need the following lemmas.
Lemma 1[26] Let G be a graph on N nodes with Laplacian L. Let λ1, λ2, · · · , λN be the

eigenvalues of L and λ1 ≤ λ2 ≤ · · · ≤ λN . Then λ1 = 0 and 1 = [1, 1, · · · , 1]T ∈ RN is the
eigenvector associated with zero eigenvalue. Moreover, λ2 > 0 if G is connected.

From Lemma 1, there exists an orthogonal matrix U = [ 1
N 1N , U ], U ∈ RN×(N−1) such that

UTLU = Λ := diag{λ1, λ2, · · · , λN}.
Lemma 2[28] Consider the linear systems ż(t) = A1z(t) + B1v(t). If A1 is Hurwitz, and

v(t) is bounded and satisfies that limt→∞ v(t) = 0, then limt→∞ z(t) = 0.
First, we propose the following estimators:

˙̃xi(t) = F x̃i(t) + B[ui(t) + d̃i(t) + w̃i(t)] + Gyi(t) + H1

( N∑

j=1

aij [yi(t) − yj(t)]
)

,

yi(t) = Cx̃i − yi(t),

˙̃
di(t) = H2

( N∑

j=1

aij [yi(t) − yj(t)]
)

− ld̃i(t),

˙̃wi(t) = H3

( N∑

j=1

aij [yi(t) − yj(t)]
)

,

(2)

where x̃i ∈ Rn, d̃i ∈ Rq, w̃i ∈ Rq are the estimated values of xi, di, wi, and yi ∈ Rr is the
observed output. F, G are defined in Remark 1, H1, H2, H3 are feedback gain matrices with
appropriate dimensions, and l > 0 is a feedback gain constant.

To solve the consensus problem of the multi-agent network (1), we propose the following
protocol:

ui(t) = K̃

N∑

j=1

aij [x̃i(t) − x̃j(t)] − d̃i(t) − w̃i(t), i = 1, 2, · · · , N, (3)

where K̃ is the feedback gain matrix with appropriate dimension.
Define w = [wT

1 , wT
2 , · · · , wT

N ]T, x̃(t) = [x̃1(t)T, x̃2(t)T, · · · , x̃N (t)T]T, d̃(t) = [d̃1(t)T, d̃2(t)T,

· · · , d̃N (t)T]T, w̃(t) = [w̃1(t)T, w̃2(t)T, · · · , w̃N (t)T]T, x(t) = [x1(t)T, x2(t)T, · · · , xN (t)T]T. Let
εx(t) = [εx1(t)T, εx2(t)T, · · · , εxN(t)T]T = x̃(t)−x(t), εd(t) = [εd1(t)T, εd2(t)T, · · · , εdN(t)T]T =
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d̃(t) − d(t), εw(t) = [εw1(t)T, εw2(t)T, · · · , εwN(t)T]T = w̃(t) − w. Noted that F = A − GC, we
have ⎡

⎢
⎢
⎢
⎢
⎢
⎣

ẋ(t)

ε̇x(t)

ε̇d(t)

ε̇w(t)

⎤

⎥
⎥
⎥
⎥
⎥
⎦

= M
w

⎡

⎢
⎢
⎢
⎢
⎢
⎣

x(t)

εx(t)

εd(t)

εw(t)

⎤

⎥
⎥
⎥
⎥
⎥
⎦

+

⎡

⎢
⎢
⎢
⎢
⎢
⎣

0

0

−IN ⊗ Iq

0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

(ḋ(t) + ld(t)), (4)

where

M
w

=

⎡

⎢
⎢
⎢
⎢
⎢
⎣

IN ⊗ A + L ⊗ BK̃ L ⊗ BK̃ −IN ⊗ B −IN ⊗ B

0 IN ⊗ F + L ⊗ H1C IN ⊗ B IN ⊗ B

0 L ⊗ H2C −IN ⊗ lIq 0

0 L ⊗ H3C 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

.

Let ⎡

⎢
⎢
⎢
⎢
⎢
⎣

x(t)

εx(t)

εd(t)

εw(t)

⎤

⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎣

UT ⊗ In 0 0 0

0 UT ⊗ In 0 0

0 0 UT ⊗ Iq 0

0 0 0 UT ⊗ Iq

⎤

⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎣

x(t)

εx(t)

εd(t)

εw(t)

⎤

⎥
⎥
⎥
⎥
⎥
⎦

. (5)

Then System (4) can be changed into the following form:
⎡

⎢
⎢
⎢
⎢
⎢
⎣

ẋ(t)

ε̇x(t)

ε̇d(t)

ε̇w(t)

⎤

⎥
⎥
⎥
⎥
⎥
⎦

= M̃w

⎡

⎢
⎢
⎢
⎢
⎢
⎣

x(t)

εx(t)

εd(t)

εw(t)

⎤

⎥
⎥
⎥
⎥
⎥
⎦

+

⎡

⎢
⎢
⎢
⎢
⎢
⎣

0

0

−UT ⊗ Iq

0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

(ḋ(t) + ld(t)), (6)

where

M̃w =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

I ⊗ A + Λ ⊗ BK̃ Λ ⊗ BK̃ −IN ⊗ B −IN ⊗ B

0 IN ⊗ F + Λ ⊗ H1C IN ⊗ B 0

0 Λ ⊗ H2C −IN ⊗ lIq 0

0 Λ ⊗ H3C 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

.

Let x(t) = [x1(t)T, xr(t)T]T, εx(t) = [εx1(t)T, εr
x(t)T]T, εd(t) = [εd1(t)T, εr

d(t)
T]T, εw(t) =

[εw1(t)T, εr
w(t)T]T, xr(t) = [x2(t)T, x3(t)T, · · · , xN (t)T]T, εr

x(t) = [εx2(t)T, εx3(t)T, · · · , εxN (t)T]T,

εr
d(t) = [εd2(t)T, εd3(t)T, · · · , εdN (t)T]T, εr

w(t) = [εw2(t)T, εw3(t)T, · · · , εwN (t)T]T. Then the
closed-loop system (6) can be divided into the following two subsystems with no coupling.

ẋ1(t) = Ax1(t) − Bεd1(t) − Bεw1(t),

ε̇x1(t) = Fεx1(t) + Bεd1(t) + Bεw1(t),

ε̇d1(t) = −lεd1(t) +
1
N

N∑

j=1

(ḋ(t) + ld(t)),

ε̇w1(t) = 0,

(7)
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and ⎡

⎢
⎢
⎢
⎢
⎢
⎣

ẋ
r
(t)

ε̇
r
x(t)

ε̇
r
d(t)

ε̇
r
w(t)

⎤

⎥
⎥
⎥
⎥
⎥
⎦

= Mw

⎡

⎢
⎢
⎢
⎢
⎢
⎣

xr(t)

εr
x(t)

εr
d(t)

εr
w(t)

⎤

⎥
⎥
⎥
⎥
⎥
⎦

+

⎡

⎢
⎢
⎢
⎢
⎢
⎣

0

0

−U
T ⊗ Iq

0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

(ḋ(t) + ld(t)), (8)

where

Mw =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

I ⊗ A + Λ ⊗ BK̃ Λ ⊗ BK̃ −IN ⊗ B −IN ⊗ B

0 IN ⊗ F + Λ ⊗ H1C IN ⊗ B IN ⊗ B

0 Λ ⊗ H2C −IN ⊗ lIq 0

0 Λ ⊗ H3C 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

and Λ = diag{λ2, λ3, · · · , λN}.
Next, let we state our main result of this paper.
Theorem 1 Consider the multi-agent network (1). Suppose that Assumptions 1–3 hold. If

there exist positive definite matrix P1 ∈ Rn×n and P2 ∈ R(n+2q)×(n+2q) such that the following
two linear matrix inequalities hold:

AP1 + P1A
T − 2BBT < 0, (9)

P2F + F
T
P2 − 2C

T
C < 0. (10)

Then the robust consensus problem of multi-agent network (1) can be solved by estimator (2)
and protocol (3), where K̃ = −τBTP−1

1 , [HT
1 HT

2 HT
3 ]T = −μP−1

2 C, τ > 1
λ2

, μ > 1
λ2

, F =
[

F B B
0 −lIq 0
0 0 0

]
and C = [C 0 0].

Proof Note that the permutation matrix is an orthogonal matrix and the eigenvalues can not
be changed when both sides of Mw are multiplied by an orthogonal matrix and its transposition,
we have Mw is Hurwitz if and only if Mw

i , i = 2, 3, · · · , N are Hurwitz, which are equivalent to
both A + λiBK̃ and

F i :=

⎡

⎢
⎢
⎣

F + λiH1C −B −B

λiH2C −lIq 0

λiH3C 0 0

⎤

⎥
⎥
⎦ = F + λi

⎡

⎢
⎢
⎣

H1

H2

H3

⎤

⎥
⎥
⎦C, i = 1, 2, · · · , N

are Hurwitz. From (9), it is easy to prove that A + λiBK̃ is Hurwitz. Thus, we only need to
prove F i is Hurwitz, equivalently, there exists a positive definite matrix P2 ∈ R(n+2q)×(n+2q)

such that P2F
i + F iT P2 < 0, i.e.,

P2F + λiP2

⎡

⎢
⎢
⎣

H1

H2

H3

⎤

⎥
⎥
⎦C + F

T
P2 + λi

⎛

⎜
⎜
⎝

⎡

⎢
⎢
⎣

H1

H2

H3

⎤

⎥
⎥
⎦C

⎞

⎟
⎟
⎠

T

P2 < 0. (11)
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Noted that [HT
1 HT

2 HT
3 ]T = −μP−1

2 C
T

and μ > 1
λ2

, it is easy to prove that (11) can be deduced
by linear matrix inequality (10). So Mw is Hurwitz and limt→∞ xr(t) = 0, limt→∞ εr

x(t) = 0,
limt→∞ εr

d(t) = 0 and limt→∞ εr
w(t) = 0. According to Lemma 2, we have limt→∞ εd1(t) = 0

and εw1(t) = εw1(0) for any t > 0. By the invertibility of (5), we have limt→∞ x(t) =
limt→∞(U ⊗ In)

[
x1(t)

0

]
= 1

N (1N ⊗ In) limt→∞ x1(t) = 1
N (1N ⊗ In) limt→∞[eAt 1

N

∑N
j=1 xj(0)−

∫ t

0 eA(t−s)B 1
N

∑N
j=1 εwj(0)ds], which implies that limt→∞ ‖xi(t) − xj(t)‖ = 0. Therefore, the

robust consensus problem of multi-agent network (1) can be solved by estimator (2) and pro-
tocol (3).

Remark 4 Theorem 1 not only presents the consensus conditions, but also gives the
ultimate stable state of each agent. Compared with [23], where the consensus problem was
considered for multi-agent systems with a leader and the analysis method therein is hard to
understand, while this paper considers the multi-agent systems without leaders, the analysis
method in [23] is invalid here due to the existence of zero eigenvalue of the closed-loop system
matrix. Hence, this paper is different from [23] and a new method is proposed to overcome
this difficulty. Besides, the method in this paper can be easily developed to solve the other
distributed coordination control problem, such as formation, flocking, and so on.

Remark 5 As we know, it is hard to solve linear matrix inequality (10) in general, maybe
we have following concerns. From the proof of Theorem 1, we can see that

F
i
=

⎡

⎣
F + λiH1C −B

λiH2C −lIq

⎤

⎦

is Hurwitz. So there exists a positive definite matrix P11, such that P11F
i
+ F

iT
P11 < 0. And

then we can choose P12 such that PT
12 [ B

0 ] + [ BT 0 ] P12 < 0. Then, we can choose P22 > 0
such that P2 =

[
P11 P12

PT
12 P22

]
> 0. It is need to point out that P22 always exists. In fact, we can

take P22 = δIq, δ > 0. Then P11 − P12P
−1
22 PT

12 = P11 − 1
δ P12P

T
12 > 0 always holds if δ > 0 is

large enough. So P2 > 0 by Schur Complement Lemma (see [31] for details). At last, we test
Inequality (10).

Remark 6 In this paper, we don’t need to require that (A, B) is controllable. From
Inequality (9), it is clear that (A, B) is stabilizable.

4 Simulations

In this section, we present some numerical simulations to illustrate the theoretical results
obtained in the previous sections. Figure 1 shows a graph with N = 5 nodes, which represents
the communication topology of multi-agent systems.
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4

1

3

5 2

Figure 1 Network with five agents

Suppose that matrices in System (1) are as follows[23]:

A =

⎡

⎣
0 1

−1 0

⎤

⎦ , B =

⎡

⎣
1

1

⎤

⎦ , C =
[

1 0
]
.

It is easy to obtain F =
[−3 1
−2 0

]
, G = [ 3

1 ] , by the method in [27], we have F = A − GC and
F is Hurtwiz.

By solving the linear matrix inequality (9), we have P1 = [ 1 0
0 2 ]. So we can choose K̃ =

−τ [ 1 1 ]
[

1 0
0 1

2

]
, and take τ = 1, which satisfies τ > 1

λ2
, where λ2 = 1.3820. By solving (10), it

is easy to obtain that

P2 =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

1 −0.4 −0.3 −0.1

−0.4 0.8 −0.3 −0.2

−0.3 −0.3 1.5 −0.2

−0.1 −0.2 −0.2 2

⎤

⎥
⎥
⎥
⎥
⎥
⎦

,

and then

H1 =

⎡

⎣
−1.6395

−1.1003

⎤

⎦ ,

H2 = −0.5813, H3 = −0.2501. The external disturbances are selected as: d1 = e−0.5t, d2 =
e−0.5t, d3 = e−0.05t, d4 = e−0.05t, d5 = e−0.005t and wi = 1, i = 1, 2, · · · , 5. With the initial
values x1 = [ 4

4 ] , x2 = [ 2
2 ] , x3 =

[−2
−2

]
, x4 =

[−3
−3

]
, x5 =

[−1
−1

]
, Figures 2, 3 and 4 show the

state xi(t), the state error exi(t) and the disturbance error edi(t) of each agent i respectively.
Simulation results agree well with the theoretical results obtained before.

5 Conclusions

In this paper, we mainly investigate the robust consensus problems for general linear multi-
agent systems with persistent disturbances. A class of distributed state estimators and dis-
turbances estimators were designed to estimate the disturbances and states by using output
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information of agents. Based on the estimated information, a new control protocol was pro-
posed to force the multi-agent systems to achieve robust consensus. In the process of consensus
analysis, the method of model transformation and the property of permutation matrix were
used to change the consensus problem into a simple matrices stability problem, which is eas-
ier to understand and even more essential compared with the existing method. Finally, the
effectiveness of presented results were demonstrated by simulations. Future work will focus
on the real applications of the results given in this paper and the consensus problem of linear
multi-agent systems with persistent disturbances, time-delay and directed switching topologies.
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