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Abstract This paper addresses a nonlinear feedback control problem for the chaotic arch micro-

electro-mechanical system with unknown parameters, immeasurable states and partial state-constraint

subjected to the distributed electrostatic actuation. To reflect inherent properties and design controller,

the phase diagrams, bifurcation diagram and Poincare section are presented to investigate the nonlinear

dynamics. The authors employ a symmetric barrier Lyapunov function to prevent violation of constraint

when the arch micro-electro-mechanical system faces some limits. An RBF neural network system

integrating with an update law is adopted to estimate unknown function with arbitrarily small error.

To eliminate chaotic oscillation, a neuro-adaptive backstepping control scheme fused with an extended

state tracking differentiator and an observer is constructed to lower requirements on measured states and

precise system model. Besides, introducing an extended state tracking differentiator avoids repeated

derivative for the virtual control signal associated with conventional backstepping. Finally, simulation

results are presented to illustrate feasibility of the proposed scheme.

Keywords Arch micro-electro-mechanical system, chaos suppression, Neuro-adaptive backstepping,

nonlinear feedback control, uncertainty.

1 Introduction

The micro-electro-mechanical system (MEMS) has received considerable attention in the do-
main of platform stabilization, activity monitoring, sport equipment, robotics, filters, etc.[1−5].
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The works focusing on nonlinear dynamics of the arch micro-electro-mechanical system have
been reported. The transient finite electro-elasto-dynamic deformations of the electrically con-
ducting undamped clamped-clamped beam is studied[6]. The nonlinear dynamics of the arch
micro-electro-mechanical system in the manner of experiment and theory is investigated and
this system is recommended to use in band pass filters[7,8]. Chaotic oscillation of the arch
micro-electro-mechanical system is studied with aid of analytical and numerical methods under
the harmonic AC and static DC electrostatic actuation[9]. Chaos behaviors of the harmonically
excited curved carbon nanotube are presented based on numerical simulations[10]. Researchers
have spent much effort on realm of chaos. Then various methods have been reported to realize
the chaos controlling. To get a critical value, a Melnikov function in a resonant gas sensor
is employed under harmonic electrostatic load[11]. A chaos prediction scheme for the micro-
electro-mechanical system with both symmetric and asymmetric double-well potential functions
is developed[12]. A Melnikov method is introduced to distinguish chaotic phenomenon of the
micro-electro-mechanical system and then a fuzzy control method with an adaptive law is pro-
posed to suppress chaos[1].

The OGY method[13], linear and nonlinear feedback control[14,15], adaptive control[16] and
time-delay feedback control[17] are considered as efficient tools for controlling chaotic vibration.
However, these methods hardly achieve the goal of precision control when the micro-electro-
mechanical system faces many uncertainties due to manufacturing defects and environmental
variations. Sliding mode control (SMC) is an effective method to solve issues like time-varying
properties, nonlinearities and bounded disturbances[18−20]. An SMC approach for a simu-
lated microelectromechanical gyroscope system is proposed to measure angular velocity[21].
An adaptive SMC scheme of the micro-electro-mechanical gyroscope is presented to guarantee
the system to track the given signal[22]. Unfortunately, its chattering phenomenon degrades
the system performance. On this point, the terminal SMC is a finite-time control scheme as
an improvement tool. A fast terminal SMC controller is designed to suppress chaos of the
micro-electro-mechanical system with uncertainty and external disturbance[23]. But if we ig-
nore issues such as inaccurate mathematical models and unmeasured variables limited by the
micro-machined sensors, the nonlinear feedback control becomes meaningless.

For immeasurable states, the state observer is an effective resolution for the control syst-
em[24,25]. The Kalman filter as an optimal estimator is used to minimize the observation
error in the presence of measurement noises and internal noises[26]. A parameterized state
observer is developed for nonlinear dynamic systems with uncertain dead-zone nonlinearity[27].
An extended state observer which can cope with uncertainties, disturbances and sensor noises
in nonlinear system is developed to achieve goal of active disturbance rejection control[28].
The arch micro-electro-mechanical system can suffer from state constraints such as physical
stoppages, saturations and safety requirements in real conditions. This constraint violation
leads to serious hazard for system stability. The existing solutions to deal with constraints
are the model predictive control and barrier Lyapunov function[29]. The stabilization problem
for a class of nonlinear strict-feedback systems with disturbances and time delays is solved[30].
However, this method leaves us with a problem, how to overcome “explosion of complexity”.
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For this issue, many useful tools like fuzzy logic system, extended state observer, filter and
neural network can be adopted to avoid repeated computation of derivative function[25,31,32].

Some achievements have been made, but some key issues have not been settled appropri-
ately. Now the achievements mainly gather together in nonlinear dynamics and chaos prediction
in this type of arch micro-electro-mechanical system. To the best knowledge of the authors,
chaos and nonlinear feedback control of the arch micro-electro-mechanical system have not been
investigated. We design a nonlinear feedback controller for the arch micro-electro-mechanical
system which is characterised by fully unknown parameters, chaotic vibration, state constraint
and unmeasured states. The indicators like phase diagrams, bifurcation diagram, Poincare sec-
tion, etc. reveal that the arch micro-electro-mechanical system has chaotic characteristics. In
the controller design, a state observer which lowers the requirements of physical sensors is em-
ployed to observe unmeasured system states, and a radial basis function (RBF) neural network
which lifts restrictions on accurate models and parameters is introduced to achieve estimation
of unknown function. An extended state tracking differentiator is used to deal with the “ex-
plosion of complexity” of traditional backstepping. By fusing observer, tracking differentiator
and neural network into adaptive backstepping controller can realize nonlinear feedback control
and suppress chaotic vibration. It is proved that the constraint is not transgressed with help of
barrier Lyapunov function and all signals in the closed-loop system are bounded. Simulation
results verify the effectiveness of our scheme.

2 System Modeling and Mathematical Preliminaries

The schematic diagram of the arch micro-electro-mechanical system is shown in Figure 1.
Based on Euler-Bernoulli beam, the non-dimensionalized math equation of the arch micro-
electro-mechanical system is expressed as[9,33]

q̈ (t)+μq̇ (t)+
(
1 + 2h2α1

)
q (t)− β (1 + 2R cos (ω0t))

2b11
√

(1 + h− q (t))3
−3α1hq

2 (t)+α1q
3 (t)+u (t) = 0, (1)

where μ, h, α1, β, R, b11 are the dimensionless parameters, q (t) denotes the state variable, ω0

represents for the frequency and u (t) is the control input.
Let x1 = q (t), x2 = q̇ (t) be new variables, then (1) is rewritten as

⎧
⎪⎪⎨

⎪⎪⎩

ẋ1 = x2, y = x1

ẋ2 = −μx2 −
(
1 + 2h2α1

)
x1 +

β (1 + 2R cos (ω0τ ))

2b11
√

(1 + h− x1)
3

+ 3α1hx
2
1 − α1x

3
1 + u (t) , (2)

where the system output satisfies the constraint condition, that is, |y| ≤ kc1, where kc1 > 0.
The estimation value f̂rbf (X) of unknown nonlinear item frbf (X) can be defined by RBF

neural network such that[34]

f̂rbf (X, θ (t)) = θT (t) ξ (X) , (3)

where θ = [θ1, θ2, · · · , θl]
T ∈ Rl denotes weight vector with node number l > 1, X ⊂ Rn

denotes input vector, and ξ (X) =[ξ1 (X) , ξ2 (X) , · · · , ξl (X)]T ∈ Rl with ξi (X) being Gaussian
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functions which can be expressed as

ξi (X) = exp

[

− (X − μi)
T (X − μi)

2σ2
i

]

, i = 1, 2, · · · , l, (4)

where σi means the width of Gaussian function, and μi =[μi1, μi2, · · · , μin]T denotes the center
of receiving area.

Figure 1 Schematic diagram of the arch micro-electro-mechanical system

We obtain a neural network in the form of (3) such that

sup
X∈DX

∣
∣frbf (X) − θT (t) ξ (X)

∣
∣ ≤ ε, (5)

where ε > 0, Ωθ and DX denote the compact set of suitable bounds of θ (t) and X , respectively.
Let ideal parameter θ∗ equal to

arg min
θ∈Ωθ

[
sup

X∈DX

∣
∣
∣frbf (X) − f̂rbf (X, θ)

∣
∣
∣
]
.

θ̃ (t) = θ (t) −θ∗ (t) exists.
Assumption 2.1 The reference trajectory xr is bounded by xr ≤ |xu| and ẋr is also

bounded.
Lemma 2.1 (see [29]) For kbi > 0, i = 1, 2, · · · , n, define Z := {s ∈ R

n : |si| < kbi , i = 1, 2,
· · · , n} ⊂ R

n and N := R
l × Z → R

l+n as open sets.
Consider the system

η̇ = he (t, η) , (6)

where η := [w, s]T ∈ N , and he : R+ × N → R
l+n is piecewise continuous in t and locally

Lipschitz in Z. It has U : R
l → R+ and Vi : si → R+ such that

Vi (si) → ∞ as |si| → kbi , μ1 (‖w‖) ≤ U (w) ≤ μ2 (‖w‖) , (7)

where μ1 and μ2 are class K∞ functions.
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Figure 2 Phase diagrams for different R
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Figure 3 Time histories for different R
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Figure 4 Poincare section for different R
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Figure 5 The largest Lyapunov exponent

Suppose that V (η) :=
∑n

i=1 Vi (si) + U (w) and si ∈ (−kbi , kbi). If the inequality holds

V̇ =
∂V

∂η
he ≤ 0, (8)

then si remains in the set si ∈ (−kbi , kbi) , ∀t ∈ [0,∞) .
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We study nonlinear dynamics of the arch micro-electro-mechanical system by setting pa-
rameters α1 = 7.993, β = 119.9883, h = 0.3, R = 0.02, μ = 0.1, ω0 = 0.4706 and u (t)= 0.
And we use the fourth-order Runge-Kutta algorithm to solve the differential equation system.
Figures 2–3 show chaotic vibration of the arch micro-electro-mechanical system by using phase
diagrams and time histories under different excitation amplitude R. The Poincare map exposes
the route of chaotic vibration. In Figures 4(a), (c), (e) and (f), there exist the fixed points.
In Figures 4(i) and (h), the attracting invariant orbit expands as R decreases. As R further
decreases, the invariant orbit begins to distort from Figures 4(g) and (d). When R reaches to
0.02, the phase is unstable and chaos appears in Figure 4(b).

The Lyapunov exponent which is plotted in Figure 5 presents the positive value in a short
time. It is obvious that the arch micro-electro-mechanical system involves “chaotic vibration”.
In Figure 6, the bifurcation diagram of the arch micro-electro-mechanical system which shows
the state x1 versus the excitation amplitude R is given to analyze periodic oscillation states
and chaos motions. Then the dynamic behavior from regular motion and irregular motion is
observed more completely.

Chaotic oscillation associated with the arch micro-electro-mechanical system inevitably leads
to the deterioration of the system performance. So it becomes very important to provide an
effective control scheme to suppress chaotic oscillation of the arch micro-electro-mechanical
system.
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Figure 6 Bifurcation diagram
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3 Nonlinear Feedback Controller Design

We use an extended state observer to estimate immeasurable variables as[28]
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ζ̇0 = ς0, ς0 = −k0|ζ0 − fr (t)|n/(n+1)sign (ζ0 − fr (t)) + ζ1,
...

ζ̇n−1 = ςn−1, ςn−1 = −kn−1|ζn−1 − ςn−2|0.5sign (ζn−1 − ςn−2) + ζn,

ζ̇n = −knsign (ζn − ςn−1) ,

(9)

where ζ0 denotes the estimator of the given signal fr (t), ki > 0, i = 1, 2, · · · , n.
By using (9) to obtain the information of state variables, the extended state observer for

the arch micro-electro-mechanical system can be written as
⎧
⎪⎪⎨

⎪⎪⎩

˙̂x1 = ς0 ˙̂x1 = ς0, ς0 = −k0|x̂1 − x1|2/3 sign (x̂1 − x1) + x̂2,

˙̂x2 = ς1 + u (t) , ς1 = −k1|x̂2 − ς0|0.5 sign (x̂2 − ς0) + x̂3,

˙̂x3 = −k2 sign (x̂3 − ς1) .

(10)

The finite-time convergence of (10) is guaranteed when the observing errors x̃i = x̂i−xi, i =
1, 2, 3 satisfy |x̂i − xi| ≤ l, where x̂i, i = 1, 2, 3 are the estimation of xi, i = 1, 2, 3, l > 0.

We adopt an extended state tracking differentiator to get a better evaluation of uncertain
item as ⎧

⎨

⎩
�̇j1 = �j2 − βj1fal (δe, ηej) ,

�̇j2 = −βj2fal (δe, ηej)
(11)

with nonlinear function

fal (δe, ηej) =

⎧
⎨

⎩

ηej

δ1−αe
e

, |ηej | ≤ δe,

|ηej |αesign (ηej) , |ηej | > δe,

where βji, j = 1, 2, · · · , n, i = 1, 2 denote the feedback gain, ηej is the tracking differentiator
error, δe > 0, αe > 0.

Define the first error function as s1 = x1 − xr . Choose the symmetric barrier Lyapunov
function candidate[29]

V1 =
1
2

ln
k2

b1

k2
b1

− s21
, (12)

where kb1 = kc1 − xu and the constraint |s1| < kb1 is not violated.
Because the state variable x2 is immeasurable, we employ an extended state observer to

evaluate it. Define the second error function as ŝ2 = x̂2 − α2, where α2 denotes the virtual
control.

The derivative of V1 along the solutions of (2) is calculated as

V̇1=
s1 (ŝ2 + α2 − ẋr − x̃2)

κ1
, (13)

where κ1=k2
b1

− s21.
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Then, the virtual control can be obtained as α2 = −κ1c1s1 + ẋr, where c1 > 0. It has

V̇1 ≤ −c1s21 +
ŝ2s1
κ1

+ l

∣
∣
∣∣
s1
κ1

∣
∣
∣∣ . (14)

The derivative of ŝ2 is given as

˙̂s2 = fun (·) + u (t) + ˙̃x2 − α̇2, (15)

wherefun (·) = − (
1 + 2h2α1

)
x1 + β(1+2R cos(ω0t))

2b11
√

(1+h−x1)
3
− μx2−α1x

3
1 + 3α1hx

2
1.

Note that fun (·) has complicated nonlinear characteristics. The derivative of α2 increases
the design complexity and computation load, and the system parameters such as μ, h, α1, β, ω0, R,

b11 may be unknown or less precise because of impacts from manufacturing defects, external
environmental variations, modeling error, etc. Meanwhile, Tajaddodianfar, et al.[9] revealed
that the system parameters variations resulted in chaotic vibration. Given these, it is desper-
ately searching for ways to overcome negative factors and nonlinear characteristics in controller
design. We employ the RBF neural network to approximate nonlinear function such that
fun (·) = θT2 (t) ·ξ2 (x1, x̂2) + ε2 (x1, x̂2), where ε2 (x1, x̂2) > 0.

To reduce the computation burden, we take actions to decrease the number of weight vector
for the RBF neural network. Using the Young’s inequality, one has[35]

θT2 (t) ξ2 (x1, x̂2) =
1

2ν2
2

ψ2 (t) ξT2 (x1, x̂2) ξ2 (x1, x̂2) +
ν2
2

2
, (16)

where ψ2 (t)=
∥
∥θT2 (t) θ2 (t)

∥
∥, ν2 > 0, ψ̃2 (t) = ψ̂2 (t) − ψ2 (t) holds, ψ̂2 (t) is the estimation of

ψ2 (t).
Select the Lyapunov function candidate

V2 = V1 +
1
2
ŝ22 +

1
2γ2

ψ̃2
2 (t) , (17)

where γ2 > 0.
Introducing an extended state tracking differentiator to evaluate α̇2, the time derivative of

V2 can be written as

V̇2 = V̇1 + ŝ2

(
f2 (·) + u (t) + ˙̃x2 −�22

)
+

1
γ2
ψ̃2 (t) ˙̂

ψ2 (t) . (18)

From (11), we get ηe2 = �21−α2. There exists an inequality as |�22 − α̇2| ≤ ηx. According
to (10), ˙̃x2 is obtained as

˙̃x2 = −k1|x̂2 − ς0|0.5 sign (x̂2 − ς0) + x̃3. (19)

Substituting(14) and (19) into (18) yields

V̇2 ≤ −c1s21 + ŝ2

(
1

2ν2
2

ψ2 (t) ξT2 (x1, x̂2) ξ2 (x1, x̂2) ŝ2 +
1
2
ŝ2 + ε2 + u (t) −�22 +

s1
κ1

)

+
1
γ2
ψ̃2 (t) ˙̂

ψ2 (t) +
ν2
2

2
+ l

∣
∣
∣∣
s1
κ1

∣
∣
∣∣ + |ŝ2| l, (20)
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where |ε2 (x1, x̂2)| ≤ ε2.
Finally, the actual control with an update law is designed as

u (t) = −
(
c21 +

1
2

)
ŝ2 − s1

κ1
− 1

2ν2
2

ψ̂2 (t) ξT2 (x1, x̂2) ξ2 (x1, x̂2) ŝ2 +�22 − c22signŝ2, (21)

˙̂
ψ2 (t) =

γ2

2ν2
2

ξT2 (x1, x̂2) ξ2 (x1, x̂2) ŝ22 −m2ψ̂2 (t) , (22)

where c21 > 0, c22 > 0, m2 > 0.
Substituting (21) and (22) into (20) yields

V̇2 ≤ −c1s21 − c21ŝ
2
2 + ε2ŝ2 − c22 |ŝ2| − m2

γ2
ψ̃2 (t) ψ̂2 (t) +

ν2
2

2
+ l

∣
∣
∣
∣
s1
κ1

∣
∣
∣
∣ + |ŝ2| l. (23)

Note −m2
γ2
ψ̂2 (t) ψ̃2 (t) ≤ −m2

2γ2

∣
∣∣ψ̃2 (t)

∣
∣∣
2

+ m2
2γ2

|ψ2 (t)|2. According to Lemma 2.1 and Young’s
inequality, (23) is simplified as

V̇2 ≤ (−c1 + 0.5) s21 + (−c21 + 0.5) ŝ22 −
m2

2γ2

∣
∣
∣ψ̃2 (t)

∣
∣
∣
2

+
ν2
2

2
+
m2

2γ2
|ψ2 (t)|2 + l2. (24)

Theorem 3.1 Consider the arch micro-electro-mechanical system with unknown parameters,
chaotic vibration, immeasurable states and partial state-constraint subjected to the distributed
electrostatic actuation. If a third-order extended state observer is constructed as (10), and the
nonlinear feedback controller integrated with an update law (22) and an extended state tracking
differentiator (11) is designed as (21), then all signals of the closed-loop system are uniformly
ultimately bounded and the output constraint is never violated.

Proof Define the Lyapunov function as V = 1
2 ln

k2
b1

k2
b1

−s2
1
+ 1

2 ŝ
2
2+

1
2γ2

ψ̂2
2 (t). Then, its derivative

is derived as

V̇ = V̇2

≤ − (c1 − 0.5) s21 − (c21 − 0.5) ŝ22 −
m2

2γ2

∣
∣
∣ψ̃2 (t)

∣
∣
∣
2

+ δ0

≤ −ϑ0V + δ0, (25)

where ϑ0 = min {2 × (c1 − 0.5) , 2 × (c21 − 0.5) ,m2} and δ0 = ν2
2
2 + m2

2γ2
|ψ2 (t)|2 + l2.

Applying integral transformation for (25), one has

0 ≤ V (t) ≤ δ0
ϑ0

+
(
V (t0) − δ0

ϑ0

)
e−δ0(t−t0) ≤ δ0

ϑ0
+ V (t0). (26)

Therefore, s1, ŝ2 and ψ̃2 (t) are affiliated with a compact set

Ωx =
{(

s1, ŝ2, ψ̃2 (t)
)
|V ≤ V (t0) +

δ0
ϑ0
, ∀t ≥ t0

}
. (27)

From (26) it yields

lim
t→∞ s21 ≤ 2δ0

ϑ0
. (28)

Since y (t)=s1 (t)+xr, |s1 (t)| < kb1 and |xr| ≤ xu, it can be inferred that |y (t)| < kb1 +xu =
kc1. Hence, a conclusion can be drawn that the output y remains within the given constraint.
Up to now, the proof of Theorem 3.1 is finished.
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4 Simulation

Following the instructions presented in Section 3, online-debugging is finished. The reference
trajectory is selected as xr = 0.4 sin (2t) and the output constraint is subject to |y| < kc1 = 0.43.
From the description above, we can see that |s1 (t)| < kb1 = 0.03 holds. The parameters of
the proposed controller are chosen as c1= 8, c21 = 8, c22 = 0.1, γ2 = 1, m2 = 10, ν2= 5.
The parameters of the extended state observer are designed as k0= 10, k1= 10, k2 = 10.
The extended state tracking differentiator is adopted by appropriate selection of parameters as
β21=3, β22=300, δe=0.022, αe = 0.3. The initial value of ψ̂2 (t) is 0.02. Moreover, the RBF
neural network includes 9 nodes with the centers μi ∈ [−6, 6] and the width σi=3.

Figures 7(a)–(c) exhibit the results of the first error function for various R. It is obvious
that tracking performance between the reference trajectory and actual trajectory is achieved.
Figures 7(d)–(f) show that the tracking errors are less than ±0.03. |y| < kc1 is guaranteed when
the symmetric barrier Lyapunov function is introduced. Furthermore, comparing with phase
diagrams presented in Figure 2 and time histories shown in Figure 3, the arch micro-electro-
mechanical system immediately attains a steady state and its chaotic vibration subjected to
the distributed electrostatic actuation is completely suppressed.
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Figure 7 Tracking performance for different R
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Figure 9 Observer performance between x2 and x̂2

Figures 8–9 reveal performance of the extended state observer for xi, i =1, 2. It can be seen
that the extended state observer precisely evaluates actual signal, and then lifts the restric-
tions about sensors. Although the arch micro-electro-mechanical system has the characteristics
of fully unknown parameters, partial state-constraint and chaotic vibration, observer errors
converge to zero quickly with less oscillation.

Figure 10 depicts the control input of the arch micro-electro-mechanical system loaded by
static DC voltage and harmonic AC actuation for various R. It can be seen that four curves
of the arch micro-electro-mechanical system can remain consistent at a fast rate. It illustrates
that the proposed controller has better anti-disturbance ability.
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Figure 10 Control input for different R

5 Conclusion

The nonlinear feedback control scheme for the arch micro-electro-mechanical system which
has features including fully unknown parameters, chaotic vibration, partial state-constraint and
immeasurable states is the core of the present research based on the symmetric barrier Lyapunov
function. The useful tools like phase diagrams, bifurcation diagram, Poincare section, etc. reveal
that the arch micro-electro-mechanical system has the characteristics of chaotic oscillation. In
the nonlinear feedback control, an extended state observer is employed to observe immeasurable
variables and an RBF neural network system is introduced to evaluate unknown function with
tiny error. The extended state tracking differentiator solves the “explosion of complexity” of
the conventional backstepping. Then, by incorporating an observer, a tracking differentiator
and an RBF neural network system into a neuro-adaptive backstepping controller can make
system state to approximate the given signal precisely and suppress chaotic vibration. It is
proved that the asymptotic tracking is achieved without constraint transgression, and that the
closed-loop signals keep bounded. Finally, the performance of our scheme is demonstrated by
simulation results.
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