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Abstract Compared with the traditional consensus problem, this paper deals with the mean square

average generalized consensus (MSAGC) of multi-agent systems under fixed directed topology, where

all agents are affected by stochastic disturbances. Distributed protocol depending on delayed time

information from neighbors is designed. Based on Lyapunov stability theory, together with results

from matrix theory and Itô
′
s derivation theory, the linear matrix inequalities approach is used to

establish sufficient conditions to ensure MSAGC of multi-agent systems. Finally, numerical simulations

are provided to illustrate the theoretical results.

Keywords Mean square average generalized consensus, multi-agent systems, stochastic disturbances,

time delays.

1 Introduction

In recent years, the problem of consensus of multi-agent systems has attracted compelling
attention from various scientific communities owing to its extensive applications in real-world
distributed computation, wireless sensor networks, satellite formation, the direction of fish or
birds, distributed sensor filtering value, cooperative surveillance, and so on[1–4]. During the
past decades, several different kinds of consensus have been investigated, such as, mean-square
consensus[5–7], leader-following consensus[8, 9], cluster consensus[10] and quantized consensus[11].

The synchronization of chaotic systems has been intensively studied, which was introduced
by Pecora and Carroll[12]. In complete synchronization, the dynamics of two coupled systems
totally coincide with each other. In generalized synchronization[13–15], the states of the response
system synchronize that of the drive system through a nonlinear smooth functional mapping and
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certain known or unknown functional relation exists between dynamics of two coupled systems
which are usually nonidentical. Therefore, generalized synchronization has more applications
than complete synchronization. Generalized synchronization has been deeply researched in
complex networks[16–19]. On the basis of these studies, the concept of generalized consensus
was proposed in [20], which is an extension of many types of standard consensus, where there
exists certain functional relations among all agents in network. Generalized consensus may be
more practical to describe coherence in biological and physical systems consisting of multiple
interacting components.

In real systems, time delays always exist due to finite communication speed, which make
it difficult or impossible for a networked agent to obtain timely and accurate information of
its neighbors. One important challenge is to deal with the influence of time delays in the
inter-agent information flows. The recent work of Liu, et al.[21] studied stochastic consensus
seeking with communication delays. Olfati-Saber and Murray[22] proposed the average con-
sensus of multi-agent systems with constant and uniform communication time delays under
fixed topology. Moreover, stochastic disturbances are unavoidable in the real world, multi-
agent systems will be affected by them from external environment. Some related results have
been proposed. Hu, et al.[8] investigated the leader-following consensus of multi-agent systems
with stochastic disturbances. Yang, et al.[23] and Zhang and Liu[24] studied the consensus of
second-order multi-agent systems with exogenous disturbances. All these results can be seen
that to study on the consensus problem for multi-agent systems with time delays and stochastic
disturbances is necessary and meaningful. However, there are no results concerning the issue of
mean square average generalized consensus (MSAGC) for multi-agent systems with time delays
and stochastic disturbances.

In response to the above discussion, this paper investigates the MSAGC of multi-agent sys-
tems which are often influenced by time delays and external stochastic disturbances in directed
topology. Meanwhile, under the updated distributed protocol, it is meaningful that each agent
moves to the average of the functional relation of states of its neighbors and the final stable
state of systems is generalized consensus in the mean square, which is mainly different from the
traditional methods and will lead to less conservative results. Based on the Lyapunov function
and the stochastic theory, sufficient conditions for guaranteeing the MSAGC of multi-agent
systems are derived.

The rest of the paper is organized as follows. In Section 2, some preliminaries and the model
description of novel protocols are given. The main results of distributed consensus are discussed
in Section 3. In Section 4, some numerical examples are given to illustrate the theoretical results.
Conclusions are finally drawn in Section 5.

Throughout the paper, let R
N×N be the N ×N real matrix space. IN (ON ) represents the

N -dimensional identity (zero) matrix, and 1N (0N) indicates the N -dimensional column vector
with each entry being 1 (0). Superscript “T” stands for matrix transposition. diag{·} means
diagonal matrix and tr{A} denotes the trace of matrix A. For a matrix Γ ∈ R

N×N , ‖ Γ ‖
represents norm of Γ , ⊗ denotes Kronecker product.
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2 Preliminaries and Model Formulation

A directed graph G = (V, ε, A) consists of a set of vertices V = {v1, v2, · · · , vN}, and a set of
directed edges ε ∈ V ×V , and A = [aij ]N×N is an adjacency matrix. An edge eij in graph G is
denoted by the ordered pair of vertices (vj , vi), where vj and vi are called the parent and child
vertices, respectively, and eij ∈ ε if and only if aij > 0. For simplicity, denote G = (V, ε, A)
by G(A). A path between nodes vi and vj in G is a sequence of edges (vi, vi1), (vi1, vi2), · · ·
(vil, vj). A directed graph is called strongly connected if and only if there is a directed path
between any pair of distinct vertices. The graph Laplacian matrix L of the network is defined
by lii =

∑N
j=1,j �=i aij and lij = −aij . For more details of network topology theory, one can

see [2, 13, 18, 25].
Classically, the multi-agent system with each agent dynamics is described as

ẋi(t) = ui(t), i = 1, 2, · · · , N, (1)

where xi(t) ∈ R
n is the state of the ith agent and ui(t) ∈ R

n is the control input of the ith agent
which is only based on the information of its neighbors. A typical consensus control protocol is
ui(t) = α

∑N
j=1 aij [xj(t) − xi(t)], where aij is the (i, j)th entry of the corresponding adjacency

matrix, α is the control parameter.
Firstly, the definition of generalized consensus is presented.

Definition 2.1 (see [16]) System (1) is said to reach generalized consensus if for any
initial conditions,

lim
t→∞ ‖hj(xj(t)) − hi(xi(t))‖ = 0

for all i = 1, 2, · · · , N . where hi(xi) : xi = (xi1 , xi2 , · · · , xin) ∈ R
n → (hi(xi1), hi(xi2 ), · · · ,

hi(xin)) ∈ R
n are smooth and invertible functions.

If hi(xi) = xi/ki (ki �= 0 are constants) for all i = 1, 2, · · · , N, then System (1) achieves linear
generalized consensus; if at least one of hi(xi) (i = 1, 2, · · · , N) is nonlinear, then System (1)
achieves nonlinear generalized consensus.

Based on Definition 2.1 and [6], we propose the following definition.

Definition 2.2 The agents in the networks are said to reach MSAGC if E‖hi(xi(t))‖2 <

∞ and there exists a random variable x∗(t) such that limt→∞ E‖hi(xi(t))− x∗(t)‖2 = 0, for all
i = 1, 2, · · · , N .

Consider a model of networks consisting of N agents. The dynamics of the ith agent is
described as

ẋi(t) = (h′
i(xi(t)))−1σi(hi(t, xi(t)))n(t) + ui(t), (2)

where (h′
i(xi))−1 = diag((h′

i(xi1 ))−1, (h′
i(xi2 ))−1, · · · , (h′

i(xin ))−1)n, σi(·, ·)R ×R
n → R

n is the
noise intensity function vector. n(t) is a scalar zero mean Gaussian white noise process. Recall
that the time derivative of a Wiener process (Brownian motions) is a white noise process, we
have dw(t) = n(t)dt.
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Correspondingly, we put forward the updating protocol of (2):

ui(t) = α(h′
i(xi))−1

N
∑

j=1

aij [hj(xj(t − τ)) − hi(xi(t − τ))]. (3)

Substituting (3) into (2) gives

ẋi(t) = (h′
i(xi(t)))−1σi(hi(t, xi(t)))n(t)

+α(h′
i(xi(t)))−1

N
∑

j=1

aij [hj(xj(t − τ)) − hi(xi(t − τ))]. (4)

Remark 2.3 The stochastic Brownian motions affect the dynamics of agents. σi(hi(t,
xi(t)))dw(t), i = 1, 2, · · · , N , in our model is used to reflect the noises affected by functions
hi(·), which is different from the deterministic cases used in [22, 23].

Remark 2.4 Based on the delayed-input approach, delay is considered in the consensus
protocol, which is more objective to study is the generalized term in the noise environment.
Clearly, if generalized consensus can be achieved, it is natural to require a generalized consensus
state x0(t) ∈ R

n of the system (4) satisfied that hi(xi(t)) → x0(t). Especially, if hi(xi(t)) =
xi(t)/ki for all i = 1, 2, · · · , N , then System (4) is expressed as follows:

ẋi(t) = αki

N
∑

j=1

aij [xj(t − τ)/kj − xi(t − τ)/ki] + kiσi(hi(t, xi(t)))n(t). (5)

Before stating the main results, we also need the following lemmas and assumption.

Lemma 2.5 (see [26]) Suppose that a directed graph G(A) is strongly connected. Then,
its Laplacian matrix L is irreducible and satisfies L1N = 0. Furthermore, there exists a positive
vector ξ = (ξ1, ξ2, · · · , ξN )T such that ξTL = 0 and ξT1N = 1.

Lemma 2.6 (see [25, 27]) Suppose that x ∈ R
n, P = PT ∈ R

n×n, and H ∈ R
m×n such

that Rank(H) = l < n. Then, the following statements are equivalent:
1) xTPx < 0, ∀x ∈ {x : Hx = 0, x �= 0},
2) H⊥T

PH⊥ < 0, where H⊥ is the kernel of H, i.e., HH⊥ = 0.

Assumption 2.7 (see [28]) The noise intensity function vector σi : R × R
n → R

n, i =
1, 2, · · · , N , satisfies the Lipschitz condition, i.e., there exists a constant matrix Σ of appropriate
dimensions such that the following inequality

(σi(t, u) − σ0(t, v))T(σi(t, u) − σ0(t, v)) ≤ ||Σ(u − v)||2

holds for all i = 1, 2, · · · , N and u, v ∈ Rn.

3 Main Results

In this section, we analyze the consensus properties of the dynamics of System (4).
Let δi(t) = hi(xi(t)) − x0(t) represent the position vector of the ith agent relative to the

weighted average position of all the agents in System (4), where x0(t) =
∑N

j=1 ξjhj(xj(t)),
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ξ = (ξ1, ξ2, · · · , ξN )T is the positive left eigenvector of Laplacian matrix L associated with its
zero eigenvalue, satisfying ξT1N = 1. Then, one has the following error dynamical system:

δ̇i(t) = h′
i(xi(t))ẋi(t) −

N
∑

j=1

ξjh
′
j(xj(t))ẋj(t)

= −α
N

∑

i=1

lijhj(xj(t − τ)) −
N

∑

j=1

ξj

[

− α
∑

k=1

ljkhk(xk(t − τ))
]

+
[

σ(hi(xi(t))) −
∑

j=1

ξjσ(hj(xj(t)))
]

n(t)

= −α

N
∑

j=1

lij(hj(xj(t − τ)) − x0(t − τ))

+
[

σ(hi(xi(t))) −
∑

j=1

ξj(hj(xj(t)))
]

n(t). (6)

Let δ(t) = [δT
1 (t), δT

2 (t), · · · , δT
N (t)]. Then, System (6) can be written as

dδ(t) = −α(L ⊗ In)δ(t − τ)dt + σ(δ(t))dw(t). (7)

Theorem 3.1 Suppose that the network G(A) is strongly connected and Assumption 2.7
holds. The MSAGC for the system (4) is achieved if there exist a scalar λ > 0 and symmetric
matrices P, R ∈ R

N×N such that ETPE > 0, ETRE > 0, and the following linear matrix
inequalities hold:

P < λI, (8)
⎡

⎣

λETΣTΣE − αETLTPE − αETPLE ∗
λETΣTΣE − αETPLE λETΣTΣE − α

τ ETRE

⎤

⎦ < 0, (9)

where

E =

⎡

⎣

IN−1

− ξ
T

ξN

⎤

⎦ ∈ R
N×(N−1), (10)

ξ = [ξ1, ξ2, · · · , ξN−1]T ∈ R
N−1, and ξ = [ξ1, ξ2, · · · , ξN ]T is the positive left eigenvector of

Laplacian matrix L associated with its zero eigenvalue, satisfying ξT1N = 1.

Proof Construct the following Lyapunov-Krasovskii functional:

V (δ(t), t) = δT(t)(P ⊗ In)δ(t)

+α

∫ 0

−τ

∫ t

t+θ

δ̇T(s)(R ⊗ In)δ̇(s)dsdθ, (11)

where symmetric matrices P and R ∈ R
N×N satisfy ETPE > 0 and ETRE > 0, with

E =

⎡

⎣

IN−1

− ξ
T

ξN

⎤

⎦ ∈ R
N×(N−1),
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where ξ = [ξ1, ξ2, · · · , ξN−1]T ∈ R
N−1, ξ = [ξ1, ξ2, · · · , ξN ]T ∈ R

N is the positive left eigenvector
of Laplacian matrix L associated with its zero eigenvalue, satisfying ξT1N = 1.

By Itô’s differential formula, the stochastic derivative of V (δ(t), t) along (7) can be obtained
as follows:

dV (δ(t), t) = £V (δ(t), t)dt + 2δT(t)(P ⊗ In)σ(δ(t))dw(t). (12)

Furthermore, we have

£V (δ(t), t) = 2δT(t)(P ⊗ In)[−α(L ⊗ In)δ(t − τ)] + ατδ̇T(t)(R ⊗ In)δ̇(t)

−α

∫ t

t−τ

δ̇T(s)(R ⊗ In)δ̇(s)ds + tr[σT(δ(t))(P ⊗ In)σ(δ(t))]. (13)

It follows from Jensen’s Inequality[29] that

−α

∫ t

t−τ

δ̇T(s)(R ⊗ In)δ̇(s)ds ≤ −α

τ
[δ(t) − δ(t − τ)]T(R ⊗ In)[δ(t) − δ(t − τ)]. (14)

Next, it follows from the condition (8) and Assumption 2.7 that

tr(σT(t, δ(t))(P ⊗ In)σ(t, δ(t)) ≤ λmax(P ⊗ In)tr(σT(t, δ(t))σ(t, δ(t)))

≤ λδT(t))(Σ ⊗ In)T(Σ ⊗ In)δ(t). (15)

Let δ(t) − δ(t − τ) = μ(t). Then, according to (13) to (15), one gets

£V (δ(t), t) ≤ −2αδT(t)(P ⊗ In)(L ⊗ In)δ(t − τ) + ατδ̇T(t)(R ⊗ In)δ̇(t)

−α

τ
μ(t)T(R ⊗ In)μ(t) + λδT(t)(Σ ⊗ In)T(Σ ⊗ In)δ(t). (16)

Let y(t) = [δ̇T(t), δT(t), δT(t − τ), μT(t)]T. Then,

£V (δ(t), t) ≤ yT(t)(Ω ⊗ In)y(t), (17)

where

Ω =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

ατR 0 0 0

0 λΣTΣ −αPL 0

0 −αLTP 0 0

0 0 0 −α
τ R

⎤

⎥

⎥

⎥

⎥

⎥

⎦

.

Furthermore, it follows from the fact [(1T
4 ⊗ ξT) ⊗ In]y(t) = 0 that Ay(t) = 0(N+4)n, where

A =

⎡

⎣

S

T

⎤

⎦ ⊗ In, S =
[

0N IN −IN −IN

]

∈ R
N×4N , T = [IT

4 ⊗ ξT] ∈ R
4×4N .

System (4) is asymptotically stable if for all y(t) satisfying Ay(t) = 0, so one has

yT(t)(Ω ⊗ In)y(t) < 0. (18)
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According to Lemma 2.6, yT(t)(Ω ⊗ In)y(t) < 0 is equivalent to

A⊥T
(Ω ⊗ In)A⊥ < 0, (19)

where

A⊥ =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

0 0

E E

E 0

0 E

⎤

⎥

⎥

⎥

⎥

⎥

⎦

⊗ In. (20)

Thus, Inequality (18) can be rewritten as
⎡

⎣

λETΣTΣE − αETLTPE − αETPLE ∗
λETΣTΣE − αETPLE λETΣTΣE − α

τ ETRE

⎤

⎦ < 0. (21)

Therefore, £V (δ(t), t) < 0. Taking the mathematical exception operator of both sides of (12),
we have

dEV (δ(t))
dt

≤ 0. (22)

It can now be concluded from Lyapunov stability theory that the error system (7) is glob-
ally, asymptotically stable in the mean square, which implies that the mean square average
generalized consensus in System (4) is achieved. The proof is completed.

4 Simulations

In this section, some numerical simulations are provided to validate the effectiveness of the
theoretical results.

Example 4.1 (Linear case) Consider multi-agent system (5) with the topology G(A1) as
in Figure 1. The noise intensity function satisfies the Lipschitz condition, there exists a matrix
Σ = diag{0.01, 0.02, 0.01, 0.01, 0.02, 0.01, 0.01, 0.02}. Let the coupling strength α = 0.50. By
resorting to some standard software in Matlab, the matrix inequalities in (8) and (9) are solv-
able with a feasible solution as follows: λ = 1.6988,

P =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0.4948 0.1350 0.0456 −0.0945 −0.0803 −0.0250 0.0419 0.0069

0.1350 0.5256 0.1329 −0.0937 −0.1259 −0.0677 0.0260 0.0110

0.0456 0.1329 0.4846 0.0360 −0.1347 −0.1100 0.0133 0.0128

−0.0945 −0.0937 0.0360 0.4555 0.0601 −0.0691 0.0020 0.0092

−0.0803 −0.1259 −0.1347 0.0601 0.4718 0.0971 0.0075 0.0130

−0.0250 −0.0677 −0.1100 −0.0691 0.0971 0.4765 0.0590 0.0375

0.0419 0.0260 0.0133 0.0020 0.0075 0.0590 0.1957 0.0551

0.0069 0.0110 0.0128 0.0092 0.0130 0.0375 0.0551 0.0363

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,
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R =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

−18.36 −36.71 −71.95 −44.94 −118.28 −58.23 −58.65 −9.52

−36.71 −70.26 −140.11 −86.08 −232.76 −112.67 −114.76 −17.77

−71.95 −140.11 −260.21 −179.79 −399.81 −219.67 −205.93 −43.55

−44.94 −86.08 −179.79 −98.11 −318.76 −138.62 −151.89 −16.53

−118.28 −232.76 −399.81 −318.76 −538.15 −358.65 −298.58 −89.87

−58.23 −112.67 −219.67 −138.62 −358.65 −177.88 −178.48 −29.82

−58.65 −114.76 −205.93 −151.89 −298.58 −178.48 −158.01 −39.71

−9.52 −17.77 −43.55 −16.53 −89.87 −29.82 −39.71 −0.05

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

Let the linear projective parameters are k = (k1, k2, · · · , k8) = (−1.8, 1, 4, 5.5, 1.1,−2, 8, 9).
The projective position states of all agents are obtained as shown in Figure 2, respectively,
with the any given initial conditions x(0) = (−1,−2.1, 0.6, 4, 1.5, 0.8, 0, 3). The stable state
are x(t) → (−0.6180, 0.3426, 1.3674, 1.8842, 0.3765,−0.6848, 2.7412, 3.0826), here the weighted
average position x0(t) → 0.3425 by simulation as t → +∞. Figure 3 shows the global error
√

∑7
i=1(

xi(t)
ki

− xi+1(t)
ki+1

)2 → 0 and the linear MSAGC is achieved.

Figure 1 Communication topology G(A1)
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Figure 2 Linear MSAGC is achieved for Example 4.1
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Figure 3 The evolution of global error e =
√

∑7
i=1(

xi(t)
ki

− xi+1(t)

ki+1
)2

Example 4.2 (Nonlinear case) Consider multi-agent system (4) with topology G(A2)
as in Figure 4. Suppose that there is a virtue leader labeled V in System (4). Let x∗ = 4,
h1(x) = 4x, h2(x) = x2, h3(x) = 4

3x, h4(x) = 2x − 4, h5(x) =
√

x + 11, Figure 5 shows
that the stable state are x(t) → (h−1

1 (x∗), h−1
2 (x∗), h−1

3 (x∗), h−1
4 (x∗), h−1

5 (x∗)) = (1, 2, 3, 4, 5)
as t → +∞, with the any given initial conditions x(0) = (−1, 0.6,−0.3, 0, 1.2). Figure 6 shows
the global error

√

√

√

√

4
∑

i=1

(hi(xi(t)) − hi+1(xi+1(t)))2 → 0,

the nonlinear MSAGC is achieved.

V

Figure 4 Communication topology G(A2)
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Figure 5 Nonlinear MSAGC is achieved for Example 4.2
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Figure 6 The evolution of global error e =
√

∑4
i=1(hi(xi(t)) − hi+1(xi+1(t)))2

5 Conclusions

In summary, we have given a new concept of MSAGC in continuous-time multi-agent sys-
tems. External stochastic disturbances and time delays increase the difficulty of stability analy-
sis in some ways. Then the MSAGC problem is investigated based on Lyapunov stability theory
and the stochastic theory. Sufficient conditions are established in terms of a set of linear matrix
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inequalities. The mean square stability of the error dynamics is shown to guarantee generalized
consensus of our model. Finally, simulation examples of linear and nonlinear cases have been
given to illustrate the generalization of the theoretical results. Our future works will focus on
the MSAGC of more practical models, such as second-order multi-agent systems. Continued
research would be desirable.
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