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Abstract To investigate the impacts of demographics on the spread of infectious diseases, a susceptib-

le-infectious-recovered (SIR) pairwise model on heterogeneous networks is established. This model is

reduced by using the probability generating function and moment closure approximations. The basic

reproduction number of the low-dimensional model is derived to rely on the recruitment and death

rate, the first and second moments of newcomers’ degree distribution. Sensitivity analysis for the basic

reproduction number is performed, which indicates that a larger variance of newcomers’ degrees can

lead to an epidemic outbreak with a smaller transmission rate, and contribute to a slight decrease of

the final density of infectious nodes with a larger transmission rate. Besides, stochastic simulations

indicate that the low-dimensional model based on the log-normal moment closure assumption can well

capture important properties of an epidemic. And the authors discover that a larger recruitment rate

can inhibit the spread of disease.

Keywords Complex networks, demographic process, moment closure approximation, probability gen-

erating function.

1 Introduction

Mathematical models play an important role in understanding the spread and control of
infectious diseases, among which well-mixed models[1–5] and network-based models[6–18] have
been widely studied. From the perspective of network topological structure, the former is es-
sentially based on homogeneous networks in which each individual has the same probability to
contact others, while the latter is based on heterogeneous networks in which contacts between
individuals are heterogeneous. The well-mixed models allow one to easily incorporate many
factors such as the demographic effects into epidemic models, but it ignores the heterogene-
ity of contacts between individuals. Networks are introduced as an attempt to make up for
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this deficiency by denoting nodes as individuals and edges as contacts between individuals.
Such network-based models give a better understanding of the role of contact heterogeneity in
epidemic spreading, and thus receive significant attention from researchers.

Current studies about epidemic models on networks mostly focus on static networks. Many
interesting results have been obtained in this area[6, 8, 11–13]. Particularly, Pastor-Satorras and
Vespignani[6] found that there is no epidemic threshold in scale-free networks following a power-
law degree distribution p(k) ∝ k−γ with exponents 2 < γ � 3. However, the demographic
process of individuals are not considered in these models. In fact, for a long-course epidemic,
such as hepatitis, individuals’ contact pattern varies on a time scale comparable to that of the
epidemic spreading process. Specifically, newborn individuals join the network and dead indi-
viduals leave the network during an epidemic. These demographic dynamics have a significant
effect on the network structure which in turn affects the epidemic spreading. Since this complex
interplay raises great challenges for mathematical modelling and analysis, research on this topic
has been scare, except for a few notable examples. By using the probability generating func-
tion, Kamp proposed an SID model and an SI1I2D model of HIV epidemics to investigate the
interplay between epidemic spreading and network dynamics[19, 20]. Jin, et al.[21] established
an SIS epidemic model with demographics and analyzed the stability of the model. Moreover,
Piccardi, et al.[22] investigated the effects of birth and death processes on the network structure
and the spread of epidemics. They found that the most likely to be infected nodes are those
with intermediate degrees for the SIR process in most networks, but the ERN (Erdős-Rényi
network[23]) case is an exception. Unlike the above models, we will investigate the effects of
demographics on epidemic spreading by the pairwise model.

Pairwise models have been a popular approach to study the dynamics on networks[10, 24–27].
Considering the fact that the disease can be transmitted only when a susceptible individual
contacts with an infectious one, pairwise models track how the number of such contacts varies
with time. The number of pairs depends further on the number of triples, making the model
analytically intractable. To close the pairwise models, the number of pairs and triples are
estimated by numerous moment closure methods, such as the deconvolution of individuals[10]

and the triple closure[25]. Pairwise models have been successfully used in static networks, but
there has been no work in studying the epidemic dynamics with demographics, inspiring our
investigation. A pairwise model with demographics on heterogeneous networks is established.
It is a high dimensional model and takes huge difficulties for mathematical analysis in theory.
In order to obtain a low-dimensional model, the pairwise model is expressed with another form
depending on the moments of the susceptible degree distribution. However, the equation for
a given moment is coupled to the equations of higher order moments, leading to an infinite
but countable number of equations. To truncate the model at a low dimension, the log-normal
moment closure assumption in [28, 29] is used. With the low-dimensional model, the effects of
demographics on the network structure and epidemic spreading are investigated.

The remainder of this paper is organized as follows: Section 2 proposes the SIR epidemic
model with demographics on heterogeneous networks. The basic reproduction number of the
model and its relationship with recruitment rate are derived in Section 3. Stochastic and
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numerical simulations are performed to verify the analytical results in Section 4. Finally,
Section 5 presents the major conclusions of this paper.

2 SIR Epidemic Models with Demographics on Heterogeneous Net-

works

2.1 Pairwise Model

A pairwise SIR epidemic model with demographics on heterogeneous networks is established
in this section. We model the population as a time-varying network with N(t) nodes (i.e.,
individuals). The links connecting nodes represent the contacts between individuals. The
number of links one node has is defined as the degree of this node. Each node can be in one
of the three states: Susceptible S, infectious I, and recovered R. For A,B,C ∈ {S, I,R}, we
set [Ak] to be the expected number of nodes with degree k in the network, [AkBl] to be the
expected number of Ak −Bl pairs in the network, i.e., the number of links from nodes in state
A with degree k to nodes in state B with degree l, [AkBlCm] to be the expected number of
Ak − Bl − Cm triples in the network, i.e., the number of relationships for which the central
node has state B with degree l and the other two neighboring nodes have state A with degree
k and state C with degree m, respectively. When there is no subscript, it represents the sum of
all possible degrees, such as [AkB] =

∑
l[AkBl] and [AB] =

∑
k[AkB]. This counting method

indicates that pairs are counted once in each direction such that [AB] = [BA] and that [AA] is
even. Similarly, [ABA] is even. More notations used are summarized in Table 1.

During the epidemic spreading over a network, a susceptible node can be infected by its
neighboring infectious nodes with a per link transmission rate λ, and infectious nodes recover
to full immunity at a rate γ. In addition, each node, together with its links, departs from
the network due to death with a rate d. Meanwhile, each node gives birth to another node
at a rate b, irrespective of its epidemic state. A new node randomly establishes k contacts to
existing nodes with probability πk, whose probability generating function is ψ(x) =

∑
k πkx

k.
New nodes are immunized with probability p, thus they are recovered with probability p or
susceptible with probability 1 − p. We then consider the variation of nodes in each class in a
short time interval Δt from the following four independent processes:

Infection Susceptible nodes are infected by their infectious neighbors, resulting in λ[SkI]Δt
susceptible nodes of degree k becoming infectious nodes of degree k.

Recovery Each infectious node recovers and enters the recovered class with probability
γΔt, resulting in γ[Ik]Δt infectious nodes of degree k becoming recovered nodes of degree k.

Death process The death of nodes causes a loss of nodes in Ak by d[Ak]Δt. Meanwhile,
the removal of links alters the degree of the connecting nodes, resulting in dk[Ak]Δt nodes in
Ak becoming nodes in Ak−1.

Recruitment process The total number of newcomers in a short time interval Δt is bNΔt.
Because newcomers are immunized with probability p and have degree k with probability πk, the
number of newly susceptible and recovered nodes of degree k is (1 − p)bNπkΔt and pbNπkΔt,
respectively. Besides, the degree of a node in Ak will change from k to k+ 1 when a newcomer
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attaches to it. Since the average degree of newcomers is ψ′(1), the total number of links
introduced by newcomers is bNψ′(1)Δt. These new links contact existing nodes randomly,
leading to bψ′(1)[Ak]Δt nodes in Ak entering the class Ak+1.

Table 1 Notations and parameters of the model

b recruitment rate

d death rate

p immunization rate

λ transmission rate per S − I link

γ cure rate

πk probability that a newcomer has k contacts

N total number of nodes in the network

[Ak] the number of nodes in state A with degree k

[A] =
∑
k[Ak] total number of nodes in state A

[AB] the number of pairs with one node in state A and

the other node in state B

[AA] double the number of unique A−A links

[ABC] the number of A−B −C triple in the network

[ABA] double the number of unique A−B −A triples

[AkB] ≈ pabk[Ak] the number of links with one node in state A with degree k

and the other node in state B

[Ak·] = k[Ak] the number of links emanating from nodes in state A with degree k

[A·] =
∑
k k[Ak] the number of links emanating from nodes in state A

pk = Nk
N

probability that a randomly selected node has a degree k

pab = [AB]∑
k k[Ak]

probability that a link starting from a node in state A

to point to a node in state B

pak = [Ak]
[A]

probability that a node in state A has degree k

ga(x, t) =
∑
k pakx

k probability generating function of pak

g(x, t) =
∑
k pkx

k probability generating function of pk

ψ(x) =
∑
k πkx

k probability generating function of πk

ψ′(1) = ∂ψ(x)
∂x

∣
∣
x=1

the average degree of newcomers

ψ′′(1) = ∂2ψ(x)

∂2x

∣
∣
x=1

ψ(m)(1) = ∂mψ(x)
∂mx

∣
∣
x=1

To give an intuitive representation of the above processes, a flow diagram of this model is
shown in Figure 1.
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Figure 1 Flow diagram of transmission dynamics for the

number of nodes in different state and degree

According to Figure 1, the SIR epidemic model is given by the following equations:

[Ṡk] =(1 − p)bNπk − λ[SkI] − d[Sk] + bNψ′(1)
(

[Sk−1]
N

− [Sk]
N

)

− d (k[Sk] − (k + 1)[Sk+1]) , (1)

[İk] =λ[SkI] − (d+ γ)[Ik] + bNψ′(1)
(

[Ik−1]
N

− [Ik]
N

)

− d(k[Ik] − (k + 1)[Ik+1]), (2)

[Ṙk] =pbNπk − d[Rk] + γ[Ik] + bNψ′(1)
(

[Rk−1]
N

− [Rk]
N

)

− d(k[Rk] − (k + 1)[Rk+1]). (3)

Assuming that given a node in state A with degree k, the state of connected node is inde-
pendent of k and therefore independent of the local structure[10], it has

[AkB] ≈ [AB]
k[Ak]∑
mm[Am]

. (4)

Then Equations (1)–(3) become

[Ṡk] =(1 − p)bNπk − λ[SI]
k[Sk]∑
mm[Sm]

− d[Sk] + bψ′(1)([Sk−1] − [Sk])

− d(k[Sk] − (k + 1)[Sk+1]), (5)

[İk] =λ[SI]
k[Sk]∑
mm[Sm]

− (d+ γ)[Ik] + bψ′(1)([Ik−1] − [Ik]) − d(k[Ik] − (k + 1)[Ik+1]), (6)

[Ṙk] =pbNπk − d[Rk] + γ[Ik] + bψ′(1)([Rk−1] − [Rk]) − d(k[Rk] − (k + 1)[Rk+1]). (7)

Obviously, these equations are not closed since [SI] is an unknown quantity. Similar to [10],
the dynamical equation for [SI] is derived by

˙[SI] = −λ[SI] − λ[ISI] + λ[SSI] − γ[SI] − 2d[SI] + (1 − p)bψ′(1)[I]. (8)
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In Equation (8), the first term indicates that a susceptible node in the S − I pair is infected
by its infectious neighbor within the pair, while the second term indicates that it is infected by
infectious neighbors outside the pair. Similar to the second term, the third term means that
an S − S pair turns into an S − I pair due to the infection of S by one of their infectious
neighbors outside this S − S pair. The forth term represents that the infectious node in the
S − I pair recovers. The term −2d[SI] indicates that one of the nodes in the S − I pair dies,
leading to the disappearance of S − I pair. For the last term, the total number of newcomers
in one time step Δt is bNΔt. Because each of them has an average degree of ψ′(1) and takes a
vaccination with probability p, the total number of edges starting from susceptible newcomers
is (1 − p)bNψ′(1)Δt. Since newcomers link to existing nodes randomly, the number of newly
formed S − I pairs is (1 − p)bψ′(1)[I]Δt.

Note that the number of nodes depends on the number of pairs, and the number of pairs
depends on the number of triples. In this manner, the model is closed only when it reaches
the network size if we continue to write higher-order equations for triples and so on. In order
to obtain a low-dimensional model, we need the approximations of [SSI] and [ISI] triples in
terms of the number of pairs and nodes. Intuitively, assuming that the number of A− Sk − I

triples can be counted by considering all (k − 1)[ASk] stubs emanating from Sk nodes which
are already connected to a node in state A and multiplying the probability that such stubs will
connect to an infectious node (i.e., [SkI]

k[Sk] ). Following [25], the triple closure is given by

[ASkI] ≈ (k − 1)[ASk]
[SkI]
k[Sk]

.

Furthermore, one has

[ASI] =
∑

k

[ASkI] ≈
∑

k

(k − 1)[ASk]
[SkI]
k[Sk]

. (9)

This closure is under the assumption that the number of susceptible neighbors of a susceptible
node with degree k is binomially distributed, that is, knowing that one neighbor is susceptible
tells us nothing about the status of another neighbor[30]. Combining this assumption with
Equation (4) yields

[SSI] ≈ [SS][SI]
∑
k(k − 1)k[Sk]

(
∑

mm[Sm])2
, (10)

[ISI] ≈ [SI]2
∑
k(k − 1)k[Sk]

(
∑

mm[Sm])2
. (11)

Furthermore, the dynamical equation for [SS] is obtained by the following equation

˙[SS] = 2(1 − p)bψ′(1)[S] − 2λ[SSI] − 2d[SS]. (12)

Thus, substituting Equations (10) and (11) into Equations (5)–(8) and (12) leads to the following
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closed pairwise model
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[Ṡk] = (1−p)bNπk−λ[SI ]
k[Sk]∑
mm[Sm]

−d[Sk]+bψ′(1)([Sk−1]−[Sk])

−d(k[Sk]−(k + 1)[Sk+1]),

[İk] = λ[SI ]
k[Sk]∑
mm[Sm]

− (d+ γ)[Ik] + bψ′(1)([Ik−1] − [Ik]) − d(k[Ik] − (k + 1)[Ik+1]),

[Ṙk] = pbNπk − d[Rk] + γ[Ik] + bψ′(1)([Rk−1] − [Rk]) − d(k[Rk] − (k + 1)[Rk+1]),

˙[SI ] =−λ[SI ]−λ[SI ]2
∑
l(l−1)l[Sl]

(
∑
mm[Sm])2

+λ[SS][SI ]

∑
l(l−1)l[Sl]

(
∑

mm[Sm])2

−2d[SI ]−γ[SI ]+(1−p)bψ′(1)[I ],

˙[SS] = 2(1 − p)bψ′(1)[S] − 2λ[SS][SI ]

∑
l(l − 1)l[Sl]

(
∑

mm[Sm])2
− 2d[SS].

(13)

However, the dimension of Model (13) is high, and even infinity if the degree of node follows
a power-low distribution. This motivates us to reduce the model size.

2.2 A High-Dimensional Model Based on the Probability Generating Function

In this section, we will use the probability generating function to express Model (13). Similar
to [19, 20], we introduce the probability that an edge emanating from a susceptible node points
to an infectious node, i.e.,

psi =
[SI]

∑
mm[Sm]

. (14)

Moreover, let the degree distribution of susceptible nodes at time t be

psk
(t) =

[Sk](t)
[S](t)

, k = 1, 2, · · · .

The probability generating function of psk
(t) is denoted as gs(x, t) with the form

gs(x, t) =
∑

k

psk
(t)xk, (15)

where x is a dummy variable. For convenience, we denote the partial derivative with respect to
time and the dummy variable by a dot and a prime, respectively, through out this paper. That
is,

ġs(x, t) =
∂gs(x, t)

∂t
, g′s(x, t) =

∂gs(x, t)
∂x

, g(m)
s (x, t) =

∂mgs(x, t)
∂xm

,

where g(m)
s (x, t) denotes the mth partial derivative with respect to the dummy variable. Thus,

g′s(1, t) = ∂gs(x,t)
∂x |x=1 is the average degree of susceptible nodes at time t.



1110 JING WENJUN · JIN ZHEN · ZHANG JUPING

Focusing on the dynamical process of the total number of nodes in each state, we sum
Equations (5)–(7) for all k respectively and obtain

˙[S] = (1 − p)bN − λpsi[S]g′s(1, t) − d[S], (16)
˙[I] = λpsi[S]g′s(1, t) − (d+ γ)[I], (17)
˙[R] = pbN − d[R] + γ[I]. (18)

A flow diagram of the total number of nodes in each state is shown in Figure 2. To close
Equations (16)–(18), it is necessary to derive the dynamical equation for psi and gs(x, t).

S I R
'[ ] (1, )p S g tsi sλ [ ]Iγ

[ ]d S [ ]d I [ ]d R

(1 )p bN− pbN

Figure 2 Flow diagram of the transmission dynamics for

the total number of nodes in different state

It follows from the definition of psi that

ṗsi =
˙[SI]

[S·] −
˙[S·]

[S·]psi. (19)

On the other hand, equation for [ṠI] in Model (13) can be rewritten as

˙[SI] = − λ[SI]
(

psi
g′′s (1, t)
g′s(1, t)

− pss
g′′s (1, t)
g′s(1, t)

)

− (λ+ 2d+ γ)[SI] + (1 − p)bψ′(1)[I]. (20)

Multiplying Equation (5) by k and summing up over k, one obtains

˙[S·] = bψ′(1)((1 − p)N + [S]) − λpsi[S](g′′s (1, t) + g′s(1, t)) − 2d[S·]. (21)

Substituting Equations (20)–(21) into Equation (19) yields

ṗsi =λpsipss
g′′s (1, t)
g′s(1, t)

− (λ + γ − λpsi)psi

+
bψ′(1)

[S]g′s(1, t)
[(1 − p)[I] − ((1 − p)N + [S])psi] . (22)

Note that equation of ṗsi contains another variable pss. Similar to the derivation of ṗsi, the
dynamical equation for pss can be derived as

ṗss = − λpsipss
g′′s (1, t)
g′s(1, t)

+ λpsipss +
bψ′(1)

[S]g′s(1, t)
(2(1 − p)[S] − ((1 − p)N + [S])pss) . (23)

Now we derive the dynamical equation for gs(x, t). It follows from (15) that

ġs(x, t) =
∑

k

(
[Ṡk]
[S]

− Ṡ

[S]
psk

)

xk. (24)
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Inserting Equations (5) and (16) into Equation (24) yields

ġs(x, t) =(1 − p)b
N

S
(ψ(x) − gs(x, t)) − λpsi(xg′s(x, t) − g′s(1, t)gs(x, t))

− b(1 − x)ψ′(1)gs(x, t) + d(1 − x)g′s(x, t). (25)

As the derivatives of gs(x, t) only for x = 1 are needed in ṗsi and ṗss, the partial equation (25)
can be reduced to a set of ordinary differential equations. This means that ġ(m)

s (1, t), the mth
partial derivative of ġs(x, t) with respect to x at x = 1, is needed, where

ġ(m)
s (1, t) =

∑

k

k(k − 1) · · · (k −m+ 1)

(
˙[Sk]

[S]
−

˙[S]
[S]

psk

)

. (26)

Applying Equations (5) and (16) into Equation (26) results in

ġ(m)
s (1, t) = − λpsi

(
g(m+1)
s (1, t) +mg(m)

s (1, t) − g′s(1, t)g
(m)
s (1, t)

)

+mbψ′(1)g(m−1)
s (1, t) −mdg(m)

s (1, t) + (1 − p)b
N

[S]

(
ψ(m)(1) − g(m)

s (1, t)
)
. (27)

Then differential equations (16)–(18), (22), (23) and (27) compose a closed model as follows
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

˙[S] = (1 − p)bN − λpsi[S]g′s(1, t) − d[S],

˙[I] = λpsi[S]g′s(1, t) − (d+ γ)[I],

˙[R] = pbN − d[R] + γ[I],

ṗsi = λpsipss
g′′s (1, t)
g′s(1, t)

−(λ+γ−λpsi)psi+ bψ′(1)
[S]g′s(1, t)

[(1−p)[I]−((1−p)N+[S])psi] ,

ṗss = −λpsipss g
′′
s (1, t)
g′s(1, t)

+ λpsipss +
bψ′(1)

[S]g′s(1, t)
[2(1 − p)[S] − ((1 − p)N + [S])pss] ,

ġ(m)
s (1, t) = −λpsi

(
g(m+1)
s (1, t) +mg(m)

s (1, t) − g′s(1, t)g
(m)
s (1, t)

)

+mbψ′(1)g(m−1)
s (1, t) −mdg(m)

s (1, t)

+(1 − p)b
N

[S]

(
ψ(m) − g(m)

s (1, t)
)
.

(28)

It is observed from Model (28) that the evolution of g(m)
s (1, t) depends on g(m+1)

s (1, t), forming
an infinite number of differential equations. Hence, it is intractable to obtain the precise
solutions. To solve this problem, the log-normal moment closure assumption will be used to
truncate this model at a low dimension.

2.3 Reduction of Model (28) Based on Moment Closure Assumption

To reduce the dimension of Model (28), we use the moment closure assumptions which are
frequently used to estimate the high order moments of a probability distribution in terms of
its lower order moments based on some distributions[28, 29, 31–34]. One simple assumption is
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to set the second central moment as zero (namely, zero variance assumption), then the model
can be closed at the level of g′s(1, t). One advantage of this assumption is that a positive
equilibrium of the model can be derived. But this assumption can not capture the variation of
the variable. To get a more accurate estimation, one can specify an appropriate distribution
for the variable, and then estimate the third moment by the first and second moments based
on this distribution. Among these assumptions, Poisson distribution and normal distribution
are commonly used. However, as mentioned in [33], all cumulants of a Poisson random variable
are equal to the mean value[28, 34], and normal moment assumption can not characterize highly
skewed probability distribution[35]. Thus truncation of high order moments based on these
two distributions may lead to non-valid or undesirable values. In addition to Poisson and
normal distributions, many other approximate distributions have been suggested, such as the
log-normal distribution[28, 29]. As the log-normal distribution has nonnegative support and
nonzero skewness, which are important properties in the context of nonlinear epidemic models,
we will use it to reduce the dimension of Model (28). Next we give the models based on two
special moment closure assumptions: The zero variance assumption and log-normal moment
closure assumption.

Firstly, substituting m = 1 and m = 2 into Equation (27) respectively yields

ġ′s(1, t) =(1 − p)b
N

[S]
(ψ′(1) − g′s(1, t))

− λpsi(g′′s (1, t) + g′s(1, t) − g′s(1, t)
2) + bψ′(1) − dg′s(1, t) (29)

and

ġ′′s (1, t) = − λpsi(g(3)
s (1, t) + 2g′′s (1, t)) + (1 − p)b

N

[S]
(ψ′′(1) − g′′s (1, t))

+ 2bψ′(1)g′s(1, t) − 2dg′′s (1, t) + λpsig
′
s(1, t)g

′′
s (1, t). (30)

Then we are able to close these equations if g(3)
s (1, t) can be expressed in terms of g′s(1, t) and

g′′s (1, t) or the third moment of psk
can be approximated by its first two moments.

Case 1: Log-normal moment closure assumption (LNMCA)
Ekanayake and Allen[29] assumed that when the quasi-stationary distribution of variable X

is approximately log-normal, then

E(Xj) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(
E(Xm+1)
E(Xm)

)2m+1

, j = 2m+ 1,

(
E(Xm+1)
E(Xm−1)

)m
, j = 2m,

(31)

where E(Xm) is the mth moment of X . Specially, when m = 1, it has

E(X3) =
(
E(X2)
E(X)

)3

. (32)
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Let gx(z) be the probability generating function of the random variable X , then

g(3)
x (1) = E(X3) − 3E(X2) + 2E(X). (33)

Combining Equations (32)–(33) gets

g(3)
x (1) =

(
E(X2)
E(X)

)3

− 3E(X2) + 2E(X). (34)

Here, it follows from Equation (34) that

g(3)
s (1, t) =

(
g′′s (1, t) + g′s(1, t)

g′s(1, t)

)3

− 3g′′s (1, t) − g′s(1, t). (35)

Inserting it into Equation (30) yields

ġ′′s (1, t) = − λpsi

((
g′′s (1, t) + g′s(1, t)

g′s(1, t)

)3

− g′′s (1, t) − g′s(1, t)

)

+ (1 − p)b
N

[S]
(ψ′′(1) − g′′s (1, t)) + 2bψ′(1)g′s(1, t)

− 2dg′′s (1, t) + λpsig
′
s(1, t)g

′′
s (1, t). (36)

Thus, Equations (16)–(18), (22), (23), (29), and (36) compose a closed epidemic model
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

˙[S] = (1 − p)bN − λpsi[S]g′s(1, t) − d[S], (37a)

˙[I ] = λpsi[S]g′s(1, t) − (d+ γ)[I ], (37b)

˙[R] = pbN − d[R] + γ[I ], (37c)

ṗsi = λpsipss
g′′s (1, t)

g′s(1, t)
− (λ+ γ − λpsi)psi +

bψ′(1)
[S]g′s(1, t)

((1 − p)I − ((1 − p)N + [S])psi), (37d)

ṗss = −λpsipss g
′′
s (1, t)

g′s(1, t)
+ λpsipss +

bψ′(1)
[S]g′s(1, t)

(2(1 − p)[S] − ((1 − p)N + [S])pss) , (37e)

ġ′s(1, t) = (1 − p)b
N

[S]
(ψ′(1) − g′s(1, t)) − λpsi(g

′′
s (1, t) + g′s(1, t) − g′s(1, t)

2)

+bψ′(1) − dg′s(1, t), (37f)

ġ′′s (1, t) = −λpsi
((

g′′s (1, t) + g′s(1, t)
g′s(1, t)

)3

− g′′s (1, t) − g′s(1, t)

)

+ (1 − p)b
N

[S]
(ψ′′(1) − g′′s (1, t))

+2bψ′(1)g′s(1, t) − 2dg′′s (1, t) + λpsig
′
s(1, t)g

′′
s (1, t). (37g)
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Case 2: Zero variance assumption E(X2) = (E(X))2

The variance of X being zero leads to E(X2) = (E(X))2. Furthermore, g′′s (1, t) = gs(1, t)2−
gs(1, t). Therefore, Model (28) is reduced to

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

˙[S] = (1 − p)bN − λpsi[S]g′s(1, t) − d[S], (38a)
˙[I] = λpsi[S]g′s(1, t) − (d+ γ)[I], (38b)
˙[R] = pbN − d[R] + γ[I], (38c)

ṗsi = λpsipss
(g′s(1, t))

2 − g′s(1, t)
g′s(1, t)

− (λ + γ − λpsi)psi

+
bψ′(1)

[S]g′s(1, t)
((1 − p)[I] − ((1 − p)N + [S])psi), (38d)

ṗss = −λpsipss (g
′
s(1, t))

2 − g′s(1, t)
g′s(1, t)

+ λpsipss

+
bψ′(1)

[S]g′s(1, t)
(2(1 − p)[S] − ((1 − p)N + [S])pss) , (38e)

ġ′s(1, t) = (1 − p)b
N

[S]
(ψ′(1) − g′s(1, t)) + bψ′(1) − dg′s(1, t). (38f)

Compared with Model (38), it is easy to observe that Model (37) has one more equation. It
can capture the effects of variance of newborn’s degree, while Model (38) can only present the
effects of the average degree of newcomers. From the biological point of view, the model based
on the log-normal moment assumption will perform better.

3 The Basic Reproduction Number

The basic reproduction number, denoted as R0, is defined as the average number of sec-
ondary infections generated by a single infectious individual introduced into a totally susceptible
population during the course of its infectious period[36]. In this section, the basic reproduction
numbers of Models (37) and (38) are calculated by analyzing the local stability of the disease-
free equilibrium and analyzing the existence of the endemic equilibrium, respectively. As the
population size tends to be zero when b < d or infinity when b > d, we do not consider these
two situations. In what follows, we assume that the population is at equilibrium, which requires
d = b and N(t) ≡ N0.

3.1 The Basic Reproduction Number of Model (37)

The basic reproduction number of Model (37) will be derived by analyzing the local asymp-
totic stability of the disease-free equilibrium.

It is easy to prove that Model (37) always exists a disease-free equilibrium:

E0 = ((1 − p)N0, 0, pN0, 0, 1 − p, ψ′(1), αψ′(1)) ,
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where α = ψ′′(1)+2ψ′2(1)
3ψ′(1) . The Jacobian matrix J0 at E0 is

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−b 0 0 j1 0 0 0

0 −(b+ γ) 0 j2 0 0 0

0 γ −b j3 0 0 0

0 b
N0

0 j4 0 0 0
b
N0

0 0 j5 −2b 0 0

0 0 0 j6 0 −2b 0

− 2b(ψ′′(1)−ψ′2(1))
3(1−p)N0

0 0 j7 0 2bψ′(1) −3b

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

where j1 = −λ(1− p)N0ψ
′(1), j2 = λ(1− p)N0ψ

′(1), j3 = 0, j4 = λ(1− p)α− (λ+ γ+2b), j5 =
−λ(1−p)α+λ(1−p), j6 = −λψ′(1) (α+ 1 − ψ′(1)), j7 = −λ((α+ 1)3−(α+1)ψ′(1)−αψ′2(1)).
Then the characteristic equation is

(z + 2b)2(z + 3b)(z + b)2f(z) = 0, (39)

where
f(z) = (z + b+ γ) (z − λ(1 − p)α+ λ+ γ + 2b) − λb(1 − p)ψ′(1). (40)

Thus, all roots of Equation (39) have negative real parts if and only if

−(b+ γ) (λ(1 − p)α− (λ+ γ + 2b)) − λb(1 − p)ψ′(1) > 0 (41)

and
−(b+ γ) + λ(1 − p)α− (λ+ γ + 2b) < 0. (42)

Condition (41) implies Condition (42). Hence, Inequality (41) ensures that all eigenvalues of
J0 have negative real parts. Then it follows from (41) that we obtain the basic reproduction
number R0 as follows

R0 =
λ(1 − p)
λ+ γ + 2b

(

α+
bψ′(1)
b+ γ

)

. (43)

Thus, all eigenvalues of J0 have negative real parts if R0 < 1, and there is at least one positive
eigenvalue if R0 > 1. Therefore, E0 is locally asymptotically stable if R0 < 1 and unstable if
R0 > 1.

Remark 1 If there is no demographic changes, i.e., b = 0 and p = 0, then

R0 =
λα

λ+ γ
. (44)

Note that α = 〈k2〉−〈k〉
〈k〉 when there is no disease in the network, where 〈km〉 is the mth order

original moment of the network degree distribution. Therefore, we get the same reproduction
number as given by the effective degree model in [15].
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Remark 2 If the degree of newcomers is Poisson distributed with parameter ν, then the
basic reproduction number is

R0 =
λ(1 − p)(2b+ γ)ν

(λ+ γ + 2b)(b+ γ)
.

If it is scale-free distributed as follows

πk = (1 + ν)m1+νk−2−ν , k = m,m+ 1, · · · ,

then,

R0 =

⎧
⎪⎨

⎪⎩

∞, γ � 1,
λ(1 − p)
λ+ γ + 2b

(
νm

3(ν − 1)
+

(5b+ 2γ)(1 + ν)m
3(b+ γ)ν

− 1
3

)

, γ > 1,

where m is the minimum degree.
Remark 3 Denote V as the variance of newcomers’ degrees, then

R0 =
λ(1 − p)
λ+ γ + 2b

(
V + 3ψ′2(1) − ψ′(1)

3ψ′(1)
+
bψ′(1)
b+ γ

)

. (45)

Obviously, R0 is an increasing function of V . Thus, increasing the variance of newcomer’s
degree may lead to the epidemic outbreak even if the transmission rate is small.

3.2 The Basic Reproduction Number of Model (38)

The basic reproduction number of Model (38) will be derived by discussing the condition
for the existence of endemic equilibrium E∗. The endemic equilibrium is given by setting zeros
in the left hand sides of Model (38), and [I] 	= 0. Suppose E∗ = (S∗, I∗, R∗, p∗si, p

∗
ss, g

∗
s ), then

it satisfies
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

S∗ =
(1 − p)bN0

b+ λp∗sig′∗s
, (46a)

I∗ =
λp∗sig

′∗
s

b+ γ
S∗, (46b)

λp∗ss(g
′∗2
s − g′∗s ) − (λ+ γ)g′∗s + λp∗sig

′∗
s +

λb(1 − p)
b+ γ

ψ′(1)g′∗s

−λp∗siψ′(1)g′∗s − 2bψ′(1) = 0, (46c)

−λp∗sip∗ss(g′∗2s − g′∗s ) + λp∗sip
∗
ssg

′∗
s + 2b(1 − p)ψ′(1)

−λp∗sip∗ssψ′(1)g′∗s − 2bψ′(1)p∗ss = 0, (46d)

2bψ′(1) − 2bg′∗s + λp∗sig
′∗
s ψ

′(1) − λp∗sig
′∗2
s = 0. (46e)

Following Equation (46e), it is easy to see that g′∗s = ψ′(1). Substituting it into Equa-
tions (46c) and (46d) yields

−λp∗sip∗ssψ′(1) + λp∗sip
∗
ss + b(1 − p) − bp∗ss = 0 (47)

and
λp∗ssψ

′(1) − λp∗ss − (λ+ γ) + λp∗si +
λb(1 − p)
d+ γ

ψ′(1) − λp∗siψ
′(1) − 2b = 0. (48)
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Then multiplying Equation (47) by pss, and subtracting Equation (48) gets

λ(ψ′(1) − 1)p∗2ss −
(

λ+ γ + b− λb(1 − p)
d+ γ

ψ′(1)
)

p∗ss − b(1 − p) = 0. (49)

Obviously, Equation (49) has one positive solution and one negative solution, with the positive
solution being

p∗ss =
(λ+ γ + b− λb(1−p)

d+γ ψ′(1)) +
√

Δ

2λ(ψ′(1) − 1)
, (50)

where

Δ =
(

λ+ γ + b− λb(1 − p)
d+ γ

ψ′(1)
)2

+ 4b(1 − p)λ(ψ′(1) − 1).

Substituting (50) into Equation (46d) yields

p∗si =
b(p∗ss + p− 1)
λp∗ss(1 − ψ′(1))

. (51)

Then, we obtain

S∗ =
(1 − p)bN0

d+ λp∗siψ′(1)
, I∗ =

λ(1 − p)bN0p
∗
siψ

′(1)
(d+ γ)(d+ λp∗siψ′(1))

, R∗ = N0 − S∗ − I∗.

In order to show that E∗ is an endemic equilibrium, we must prove the condition for the
existence of endemic equilibrium, i.e., 0 < p∗ss < 1 − p. Let

y(pss) = λ(ψ′(1) − 1)p2
ss −

(

λ+ γ + b− λb(1 − p)
d+ γ

ψ′(1)
)

pss − b(1 − p).

Then
y(1 − p) > 0,

which means
λ(1 − p)
λ+ γ + 2b

(

ψ′(1) − 1 +
bψ′(1)
b+ γ

)

> 1.

Denote

R′
0 =

λ(1 − p)
λ+ γ + 2b

(

ψ′(1) − 1 +
bψ′(1)
b+ γ

)

. (∗)

Hence, Model (38) has a unique endemic equilibrium E∗ when R′
0 > 1. Here, R′

0 is defined as
the basic reproduction number of Model (38).

Comparing (*) with (43), there is only one different term in the bracket. Note that they are

derived from different assumptions. R0 is derived under the assumption E(X3) =
(
E(X2)
E(X)

)3

,

while R′
0 is derived under the assumption E(X2) = (E(X))2. In fact, α = ψ′′(1)+2ψ′(1)

3ψ′(1) in

R0 and ψ′(1) − 1 in R′
0 are the values of g′′s

g′s
in the disease-free equilibrium under different

assumptions.
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3.3 Relationship Between Recruitment Rate and the Basic Reproduction Number

In this section, we will discuss the relationship between recruitment rate and the basic
reproduction number of Model (37) in more detail. Because the disease will always die out
when b = 0, only the situation b > 0 is discussed.

Proposition 1 Considering a simple case in which the degree of newcomers is Poisson
distributed and p = 0, then ψ′′(1) = ψ′2(1) and

R0 =
λψ′(1)(2b+ γ)

(λ+ γ + 2b)(b+ γ)
.

Hence, there is a complex relationship between the recruitment rate and R0 as given in Table 2,
and this relationship depends on the average degree of newcomers.

Proof Define

f(b) = 2b2 + (λ + 3γ − 2λψ′(1))b+ γ(λ+ γ − λψ′(1)), (52)

then R0 > 1 (or R0 < 1) corresponds to f(b) < 0 (or f(b) > 0).
Let

� = (λ + 3γ − 2λψ′(1))2 − 8γ(λ+ γ − λψ′(1))

= (2λψ′(1) − λ− γ)2 − 4λγ. (53)

Then f(b) = 0 has the following two roots

b∗1 =
−(λ+ 3γ − 2λψ′(1)) −√�

4
, b∗2 =

−(λ+ 3γ − 2λψ′(1)) +
√�

4
.

Next, we discuss (52) in different situations.
(A) If λ+γ−2

√
λγ

2λ < ψ′(1) < λ+γ+2
√
λγ

2λ , then � < 0. Hence, f(b) > 0 for b > 0.
(B) If ψ′(1) = λ+γ−2

√
λγ

2λ or ψ′(1) = λ+γ+2
√
λγ

2λ , then � = 0 and b∗1 = b∗2.
For ψ′(1) = λ+γ−2

√
λγ

2λ , it has b∗1 = − 1
4 (2γ + 2

√
λγ) < 0. Then f(b) > 0 for b > 0.

For ψ′(1) = λ+γ+2
√
λγ

2λ , it has b∗1 = − 1
2 (γ −√

λγ). Then b∗1 > 0 if λ > γ, otherwise b∗1 � 0.
Hence, if λ � γ, then f(b) > 0 for b > 0. If λ > γ, then f(b) = 0 for b = b∗1, and f(b) > 0 for
b ∈ (0, b∗1) ∪ (b∗1,+∞).

(C) If |2λψ′(1) − λ− γ| > 2
√
λγ and (λ+ 3γ − 2λψ′(1)) �

√�, i.e., ψ′(1) < λ+γ−2
√
λγ

2λ , or
λ+γ+2

√
λγ

2λ < ψ′(1) � λ+γ
λ and λ � γ, then � > 0 and b∗2 � 0. Hence, one has f(b) > 0 for

b > 0.
(D) If ψ′(1) � λ+γ

λ , then � > 0, b∗1 � 0 and b∗2 > 0. Hence, one has f(b) < 0 for b ∈ (0, b∗2)
and f(b) > 0 for b ∈ (b∗2,+∞).

(E) If λ+γ+2
√
λγ

2λ < ψ′(1) < λ+γ
λ and λ > γ, then � > 0 and b∗1 > 0. Hence, one has f(b) < 0

for b ∈ (b∗1, b
∗
2) and f(b) > 0 for b ∈ (0, b∗1) ∪ (b∗2,+∞).

In conclusion, the relationship between recruitment rate and R0 given λ and γ is summarized
as in Table 2.
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Table 2 Relationship between the recruitment rate and R0

λ � γ

ψ′(1) � λ+γ
λ

b ∈ (0,+∞) R0 < 1

b < b∗2 R0 > 1

ψ′(1) > λ+γ
λ

b = b∗2 R0 = 1

b > b∗2 R0 < 1

ψ′(1) < 2
√
λγ+λ+γ

2λ
b ∈ (0,+∞) R0 < 1

ψ′(1) = 2
√
λγ+λ+γ

2λ

b ∈ (0,+b∗2) ∪ (b∗2,+∞) R0 < 1

b = b∗2 R0 = 1

b∗1 < b < b∗2 R0 > 1

λ > γ 2
√
λγ+λ+γ

2λ
< ψ′(1) < λ+γ

λ
b ∈ {b∗1, b∗2} R0 = 1

b ∈ (0, b∗1) ∪ (b∗2,+∞) R0 < 1

b < b∗2 R0 > 1

ψ′(1) � λ+γ
λ

b = b∗2 R0 = 1

b > b∗2 R0 < 1

Figure 3 describes three special cases. It reflects that increasing the recruitment rate may
lead to the change of R0 from R0 > 1 to R0 < 1. As a larger recruitment rate means a larger
death rate, it effectively decreases the number of infectious individuals in the population which
further inhibits the spread of disease. From Figure 3(a), it is observed that a larger recruitment
may change R0 from R0 < 1 to R0 > 1 when λ > γ and ψ′(1) ∈ (2

√
λγ+λ+γ

2λ , λ+γ
λ ). It is due

to the fact that with the increase of recruitment rate, more susceptible individuals enter into
the population which contribute to accelerate the spread of disease. In addition, it is worth
noting that λ+γ

λ is the threshold that determines whether a disease can spread throughout the
network without demographic process. Thus, the recruitment and death of population can lead
to the outbreak of epidemics.
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(a) λ = 0.25, ψ′(1) = 1.35
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(c) λ = 0.02, ψ′(1) = 10

Figure 3 Relationship between recruitment rate (b) and the basic reproduction number (R0)

with parameters: d = b, p = 0, γ = 0.1, ψ′′(1) = ψ′2(1), I(0) = 5, N(0) = 1000

4 Simulation Results

In this section, a series of stochastic and numerical simulations are performed to validate
the theoretical results.

First, stochastic simulations of SIR epidemic model with demographics are performed to
compare with the numerical results of the ODE models. The stochastic simulation process
starts from a network with N(0) nodes, in which I(0) randomly selected nodes are set to be
infectious, and the remaining nodes are set to be susceptible. Then the epidemic process and
demographic process are considered simultaneously in every time step Δt. For the epidemic
process, each node updates its disease state, i.e., nodes in susceptible state are infected with
probability λnΔt, where n is the number of infectious neighbors, and nodes in infectious state
recover with probability γΔt. For the demographic process, we extract two random numbers,
B(t) and D(t), from a binomial distribution Bino(N(t), bΔt). Then D(t) randomly selected
nodes, together with their links, are removed from the network. B(t) new nodes connect to
existing nodes randomly, and the number of links each new node emits is extracted from the
distribution πk. The epidemic and demographic process repeat until the epidemic dies out or
the given simulation time is reached. Finally, the process is repeated 50 times independently,
and each time series of the prevalence is recorded.

Based on the above ideas, we perform the stochastic simulations. Figure 4 provides the
comparison between the numerical results of the ODE models and mean values of stochastic
simulations. It is clear to see that the zero variance assumption can only perform as well as
the log-normal moment closure assumption when the variance of newcomer’s degree is smaller.
Furthermore, the log-normal moment closure assumption performs better when the variance of
newcomer’s degree is larger. This is due to that newcomers contact existing nodes in network
randomly. A larger variance of newcomer’s degree will cause a larger variance of susceptible
nodes’ degrees, which leads to considerable errors when we simply assume the variance as zero.
More importantly, Model (37) closely captures the exponential growth rate and equilibrium
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point of epidemic. So it is more rational to use the log-normal moment closure assumption to
truncate the epidemic model. Excellent agreements between the numerical results of Model (37)
and the mean values of stochastic realizations indicate that Model (37) can be used as an
effective tool to investigate the dynamics of epidemic with demographics.

In Figure 5, we plot the final density of infectious nodes ([I]∗/N) between the mean (ψ′(1))
and variance (V ) of newcomers’ degrees. Figures 5(a)–5(b) indicate that increasing the variance
of newcomer’s degree may promote the disease spread throughout the population when the
transmission rate is small. This is because that a larger variance of newcomer’s degree increases
the heterogeneity of network, which facilitates the spread of epidemic. This finding is consistent
with the analysis of R0, in which a sufficient large variance of newborn’s degree will lead to
R0 > 1 when the transmission rate is small. However, a larger variance of newcomers’ degrees
contributes to a slight decrease of the final density of infectious nodes when the transmission
rate is large. For a larger transmission, a lot of infection is presented. And for a given average
degree of newcomers, if the variance is high, more low degree nodes are born. The “average”
node is likely infected quickly, but there are many nodes which are well above or below the
average. The nodes above average get infected quickly, but that is not really different from
the average nodes. The nodes below average get infected more slowly, explaining the network
effect. This is similar to the observation that higher variance in degree tends to cause smaller
epidemics in static networks. As seen from Figure 1 in [8], with the same mean degree in the
case of large transmission rate, the density of infected nodes in the BA network is smaller than
the one in the WS network.

Figure 6 shows the influence of the recruitment rate on the final density of infectious nodes,
where the row coordinates of red dots are calculated from R0 = 1. Obviously, at lower b, nodes
tend to recover before dying, so it does not affect further transmission significantly. However,
at larger b, nodes tend to die before recovering. Large b means that infectious nodes tend to
die before transmitting. In conclusion, higher birth rate tends to stop the disease. Besides,
Figure 6 verifies the results of Subsection 3.3 where the disease will disappear in the population
if R0 < 1, and it will spread throughout the population if R0 > 1.
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(c) R0 = 3.1819
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(d) R0 = 0.4730
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(e) R0 = 4.1212
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Figure 4 Comparison between the mean values of stochastic simulations and numerical simulations

for dynamics of fraction of infectious individuals with different degree distribution of

newcomers. In these simulations, the parameters are γ = 0.1, b = 0.02, I(0) = 50,

N(0) = 5000, and λ = 0.08 ((a), (c) and (e)), λ = 0.008 ((b), (d) and (f)). In (a)

and (b), the degree of newcomers are Poisson distributed with πk = ψ′(1)k

k!
e−ψ

′(1), where

ψ′(1) = 10. Then ψ′′(1) = 100. In (c) and (d), the degree of newcomers are distributed

as πk = k−2.7
∑k=100

k=3 k−2.7 , k = 3, 4, · · · , 100. Then ψ′(1) = 5.7419, ψ′′(1) = 68.3068. In (e)

and (f), newcomers have the same degree 10, i.e., π10 = 1, and πk = 0 for k �= 10. Then

ψ′(1) = 10, ψ′′(1) = 90
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Figure 5 The effect of the mean (ψ′(1)) and variance (V ) of newcomers’ degrees on the final

density of infectious nodes ( [I]∗
N

). The parameter values are: p = 0, b = 0.02, d = b,

γ = 0.1, and λ = 0.008 ((a) and (b)), λ = 0.08 ((c) and (d))

Finally, Figure 7 indicates that vaccination of newcomers is an effective method to control
the spread of epidemics.
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Figure 6 Relationships between recruitment rate (b) and final densities of infectious nodes

( [I]∗
N

) with parameters: d = b, γ = 0.1, p = 0, ψ′′(1) = ψ′2(1), I(0) = 5, N(0) = 1000

and (a) λ = 0.25, ψ′(1) = 1.35, (b) λ = 0.25, ψ′(1) = 2; (c) λ = 0.02, ψ′(1) = 10
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Figure 7 The effect of vaccination on the density of infectious nodes

with parameters d = b = 0.02, λ = 0.08, γ = 0.1, ψ′(1) = 5

5 Conclusions

For diseases with a long course such that the individuals’ connectivity pattern varies on
a time scale comparable to that of the epidemic spreading process, new born nodes join the
network and meanwhile dead nodes leave the network during the epidemic. This demographic
process changes the network structure, which in turn affects the spread of disease. Hence, it
is important to incorporate the demographic process into an epidemic model. Based on this
consideration, an SIR pairwise epidemic model with demographics is established. This model
is further expressed with another form depending on the moments of the susceptible degree
distribution. Then the log-normal moment closure and zero variance assumptions are adopted
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to obtain two low-dimensional Models (37) and (38), respectively. Furthermore, we derive
the basic reproduction number of Model (37) by analyzing the local stability of the disease-free
equilibrium, and derive the basic reproduction number of Model (38) by analyzing the existence
of the endemic equilibrium. Comparisons between numerical and stochastic simulations show
that the zero variance assumption can perform as well as the log-normal moment assumption
when the variance of newcomers’ degrees is small. The log-normal moment assumption performs
better even if the variance of newborns’ degrees is large. More importantly, the low-dimensional
model based on log-normal assumption closely captures the dynamic properties of disease. So
Model (37) is a good approximation to the stochastic SIR process. Numerical simulation of
Model (37) shows that increasing the variance of newcomers’ degrees may promote the disease
spread throughout the population when the transmission rate is small. It contributes to a slight
decrease of the final density of infectious nodes when the transmission rate is large. Besides, it
is discovered that a large recruitment may hinder the spread of disease.

However, it is assumed that newcomers randomly contact existing nodes in this process. In
fact, newcomers may adjust their behaviors according to the epidemic prevalence. For example,
they may reduce their contacts during epidemic period and recover these contacts after the
epidemic. In this situation, the degree distribution of new nodes may vary with the density of
infectious nodes. Furthermore, newcomers may avoid to contact with infectious nodes. It is of
interest to study the dynamic behaviors in this project. In addition, two friends of a person
are more likely to be friends in real society. Similarly, a new node will link an existing node
with higher probability if it has already made a link to one of its neighbors. This evolution
mechanism will construct a network with clusters, which is worth to study in future.
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