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Abstract This paper considers the estimation problem of distribution functions and quantiles with

nonignorable missing response data. Three approaches are developed to estimate distribution functions

and quantiles, i.e., the Horvtiz-Thompson-type method, regression imputation method and augmented

inverse probability weighted approach. The propensity score is specified by a semiparametric expo-

nential tilting model. To estimate the tilting parameter in the propensity score, the authors propose

an adjusted empirical likelihood method to deal with the over-identified system. Under some regular

conditions, the authors investigate the asymptotic properties of the proposed three estimators for distri-

bution functions and quantiles, and find that these estimators have the same asymptotic variance. The

jackknife method is employed to consistently estimate the asymptotic variances. Simulation studies

are conducted to investigate the finite sample performance of the proposed methodologies.

Keywords Adjusted empirical likelihood, distribution estimation, exponential tilting model, nonig-

norable missing data, quantile.

1 Introduction

Missing data are often encountered in various fields such as social science, survey sampling
and biomedicine. When the missingness data mechanism is nonignorable, it is challenging to
make statistical inference on missing data because the propensity score model is unknown. A
comprehensive overview on nonignorable missing data analysis can refer to Little and Rubin[1]

and Kim and Shao[2].
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There are considerable literatures on nonignorable missing data analysis. For example, Qin,
Leung and Shao[3] proposed a semiparametric empirical likelihood (EL) method to estimate the
propensity score under the assumption that the propensity score is of a parametric structure;
Zhao and Shao[4] presented an approximate conditional likelihood method in a generalized
linear model (GLM) with nonignorable missing responses and covariates. It is well known
that statistical inference on the parametric propensity score model is sensitive to the model
misspecification. To this end, Kim and Yu[5] proposed a robust semiparametric estimation of
mean functions with nonignorable missing response based on an exponential tilting model of
the propensity score; Zhao, et al.[6] and Tang, et al.[7] developed an EL approach for generalized
estimating equations with nonignorable missing data. As Shao and Wang[8] pointed out that the
population may suffer from the well known identification issue without any other assumptions
on the propensity score of Kim and Yu[5]. Moreover, the follow-up sample has often to be
collected for estimating the tilting parameter in the propensity score[5]. However, in many
applications, budget or technical limitations will restrict researchers to collect the additional
sample. To address the above mentioned issues, Wang, et al.[9] studied the identification issue
of Qin, et al.[3]; Shao and Wang[8] investigated the identification issue of the propensity score
model based on the instrumental variable method; Tang, et al.[10] discussed the identifiable
condition under the assumption that the missingness data mechanism model of response only
depends on response variable; Zhao and Shao[11] studied the identifiability and estimation
problem in a GLM with nonignorable responses or covariates; Miao, et al.[12] discussed the
identifiability of normal and normal mixture models with nonignorable missing responses; Fang
and Shao[13] proposed the penalized validation criterion for model selection with nonignorable
nonresponse and studied the procedure to find an instrumental variable, which works well under
the assumption that the propensity score model is unspecified.

Estimation of the distribution function and quantiles of a random variable plays a funda-
mental role in making statistical inference on parameters via the distribution function. Many
approaches have been proposed to estimate the distribution function of a random variable
without missing data (e.g., see [14–17]). When the response is missing at random (MAR),
i.e., the propensity score only depends on the observed data, there exist many works on the
estimation of the distribution functions and quantiles of a random variable (e.g., see [18–20]).
For nonignorable missing responses, based on the exponential tiling model[5], Zhao, et al.[21]

proposed a nonparametric/semiparametric estimation method and an augmented inverse prob-
ability weighted imputation method to estimate the distribution function and quantiles of a
response variable. The main advantage of Zhao, et al’s[21] method is its robustness to the
misspecification of the propensity score model.

Motivated by Shao and Wang[8] and Zhao, et al.[21], we here develop three approaches to
estimate the distribution function and quantiles of a response variable under the assumption
that response is subject to nonignorable missingness, i.e., the Horvtiz-Thompson-type method,
the regression imputation method and the augmented inverse probability weighted method.
By introducing instrumental variables, the propensity score is specified by a semiparametric
exponential tilting model. The adjusted empirical likelihood (AEL) method[22] is employed to
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estimate the tilting parameter in the propensity score. By adding a few artificial observations
to the original data set, the AEL method guarantees the existence of the solution to the cali-
bration conditions with respect to the tilting parameter, and retains some good properties of
the EL method[23]. Under some regular conditions, we investigate asymptotic properties of
the proposed three estimators for the distribution function and quantiles of a response vari-
able with nonignorable missing, which indicates that the proposed three estimators share the
same asymptotic variance to be estimated. The jackknife method is employed to consistently
estimate asymptotic variances of the proposed three estimators.

The rest of this paper is organized as follows. Section 2 introduces three approaches to esti-
mate the distribution function and quantiles of a response variable with nonignorable missing,
and presents an AEL method to estimate the tilting parameter. Asymptotic properties of the
proposed three estimators are investigated in Section 3. The jackknife approach is presented
to estimate asymptotic variances in Section 4. Simulation studies are conducted to investigate
the performance of the proposed methodologies in Section 5. Section 6 provides a brief discus-
sion on the selection of instrumental variables and an extension of the proposed methodologies.
Technical details are given in the Appendix.

2 Methodology

2.1 The Distribution Estimation with Nonignorable Missing Response

Consider an incomplete data set {(xi, Yi, δi), i = 1, 2, · · · , n}, where xi is a vector of co-
variates observed completely, Yi is a response variable that may be subject to missingness, and
δi is an indicator of missing response variable Yi, i.e., δi = 1 if Yi is observed and δi = 0 if
Yi is missing. It is assumed that δi is independent of δj for any i �= j, and δi depends both
on xi and Yi such that the propensity score π(xi, Yi) = Pr(δi = 1|xi, Yi) for i = 1, 2, · · · , n.
Since π(xi, Yi) depends on Yi, the above defined missingness data mechanism is nonignorable.
Following Kim and Yu[5], we consider the following exponential tilting model for the propensity
score function

π(xi, Yi; γ) =
1

1 + exp{g(xi) + γYi} , (1)

where g(xi) is an unknown function of xi, and γ is the tilting parameter to be estimated.
Clearly, when γ = 0, the above defined missingness data mechanism reduces to MAR.

For the model (1), Shao and Wang[8] showed that the population may be unidentifiable
when g(·) and γ are unknown, which is an important and challenging issue in analyzing nonig-
norable missing data. To overcome the difficulty, an instrumental variable method of Shao and
Wang[8] is here adopted. Following Shao and Wang[8], it is assumed that xi has the following
decomposition: xi = (uT

i , z
T
i )T, where zi is referred to as the instrumental variable in the sense

that it is not directly associated with the propensity score but a useful covariate of Yi. Hence,
for identifiability, we define a new propensity score function via the following exponential tilting
model

πi := π(ui, Yi; γ) =
1

1 + exp{g(ui) + γYi} , (2)
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where g(·) is an unknown function of ui, and γ is the tilting parameter to be estimated consis-
tently via the observed data.

For any fixed value of γ in its parameter space, if the propensity score (2) is correctly
specified, we have exp{g(ui)} = E(1 − δi|ui)/E{δi exp(γYi)|ui}. Thus, a kernel regression
estimator of exp{g(ui)} is given by

exp{ĝγ(ui)} =

∑n
j=1(1 − δj)Kh(uj − ui)

∑n
j=1 δj exp(γYj)Kh(uj − ui)

, (3)

where Kh(·) = h−1K(·/h), and K(·) is a symmetric kernel function and h is the bandwidth.
Based on Equation (3), the propensity score can be consistently estimated by

π̂i(γ) = π̂(ui, Yi; γ) =
1

1 + exp{ĝγ(ui)} exp(γYi)
.

When the propensity score model (2) is correctly specified and γ is known, a consistent
estimator of the distribution function of Y is given by

̂F 0
HT (y) =

1
n

n
∑

i=1

δi
π̂i(γ)

I(Yi ≤ y), (4)

which is also referred to as the Horvitz-Thompson-type estimator in the missing data literature
(e.g., see [24]), where I(·) is an indicative function. Also, ̂F 0

HT (y) is a consistent estimator of
F (y) = Pr(Y ≤ y) provided that γ = γ0, which is the true value of γ.

It is well known that the Horvitz-Thompson-type estimator is sensitive to the misspeci-
fication of the propensity score. To address the issue, an imputation method is adopted to
construct a consistent estimator of the distribution function under nonignorable missingness
data mechanism assumption. When the propensity score model (2) is correctly specified, a
regression-imputation-based estimator of the distribution function is defined by

̂F 0
RI(y) =

1
n

n
∑

i=1

{

δiI(Yi ≤ y) + (1 − δi) ̂F0(y|ui)
}

, (5)

where ̂F0(y|ui) is a consistent estimator of F0(y|ui) = Pr(Yi ≤ y|u = ui, δi = 0). Under the
propensity score (2), we have

F0(y|ui) =
E{(1 − δi)I(Yi ≤ y)|ui}

E{(1 − δi)|ui} =
E{δi exp(γYi)I(Yi ≤ y)|ui}

E{δi exp(γYi)|ui} .

Thus, a nonparametric kernel estimator of F0(y|ui) is given by

̂F0(y|ui) := ̂F0(y|ui; γ) =

∑n
j=1 δj exp(γYj)I(Yj ≤ y)Kl(uj − ui)

∑n
j=1 δj exp(γYj)Kl(uj − ui)

, (6)

where Kl(·) = l−1K(·/l), and K(·) is a symmetric kernel function and l is the bandwidth. Note
that the bandwidth l may be different from the bandwidth h defined in Equation (3). Using
the standard kernel regression theory, it can be shown that Pr{limn→∞ ̂F0(y|ui)} = F0(y|ui),
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which indicates that ̂F0(y|ui) is a consistent estimator of F0(y|ui). Further, by the law of the
iterated expectations, we have E{δiI(Yi ≤ y)) + (1 − δi)F0(y|ui)} = F (y), which shows that
the estimator ̂F 0

RI(y) given in Equation (5) is a consistent estimator of F (y).
The augmented inverse probability weighted (AIPW) estimation under the MAR assumption

of missingness data mechanism has been studied well over the past decades (e.g., see [25–28]).
A prominent property of the AIPW estimation is that it can reduce the bias of estimator (e.g.,
see [21]). To this end, under nonignorable missingness data mechanism assumption, we consider
the following AIPW estimator of F (y):

̂F 0
IP (y) =

1
n

n
∑

i=1

{

δi
π̂i(γ)

I(Yi ≤ y) +
(

1 − δi
π̂i(γ)

)

̂F0(y|ui)
}

, (7)

where ̂F0(y|ui) is given in Equation (6). Following the similar argument as ̂F 0
RI(y), it is easily

shown that ̂F 0
IP (y) is a consistent estimator of F (y).

2.2 The Estimation of Tilting Parameter

In many applications, the tilting parameter γ is usually unknown, and has to be estimated
consistently from the sample. To this end, following Shao and Wang[8], we consider the following
calibration condition:

ϕi = ϕi(γ) = ϕ(ui, zi, Yi; γ) =
(

δi
π (ui, Yi; γ)

− 1
)

d(zi) for i = 1, 2, · · · , n, (8)

where d(zi) is an arbitrary user-specified vector with dimension ν ≥ 2. If π(ui, Yi; γ) is correctly
specified, we have E{ϕ(ui, zi, Yi; γ)} = 0. But, it is quite challenging to select the optimal
vector d(zi). Some methods have been developed to solve the problem in recent years. For
example, see Chang and Kott[29]. However, there are considerable questions to be studied on
the selection of the optimal vector d(zi) under Equation (2).

The GMM and EL methods are two powerful tools to deal with over-identified system.
Moreover, the GMM estimator has the well-established asymptotic properties and its compu-
tation is easily implemented, thus Shao and Wang[8] presented a two-step GMM procedure to
estimate the tilting parameter γ when the propensity score model is correctly specified. Also,
as discussed in Newey and Smith[30], the asymptotic bias of the EL estimator does not increase
with the number of moment restrictions, and the bias corrected EL estimator has higher or-
der effect relative to other bias corrected estimators. In addition, the EL method can easily
incorporate the auxiliary information from the sample into the considered moment restrictions,
which can help to improve the estimation efficiency. However, when the sample size is small
or the dimension of estimating equations is high, the ordinary EL[23] estimator may not be the
solutions to estimating equations. To overcome the difficulty, Chen, et al.[22] proposed an AEL
method via adding a few artificial observations to the original data set, which guarantees the
existence of the solutions under some mild conditions, and retains some good properties of the
ordinary EL estimator. Motivated by the above idea, the AEL method is employed to evaluate
the consistent estimation of the tilting parameter.
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We define ϕn = ϕn(γ) = n−1
∑n

i=1 ϕi(γ) for any given γ. For some positive constant an, we
define ϕn+1 = ϕn+1(γ) = −anϕn. Let p1, p2, · · · , pn, pn+1 be the probability weights allocated
to ϕ1, ϕ2, · · · , ϕn, ϕn+1. The adjusted profile EL function is given by

L(γ) = sup

{

n+1
∏

i=1

pi : pi ≥ 0,
n+1
∑

i=1

pi = 1,
n+1
∑

i=1

piϕi = 0

}

.

Following the similar arguments as Qin and Lawless[31] and Chen, et al.[22], the maximum EL
estimator γ̂el of γ can be obtained by

γ̂el = arg max
γ

�(γ) = argmax
γ

{

−2
n+1
∑

i=1

log{1 + λ(γ)Tϕi}
}

, (9)

where λ(γ) satisfies
∑n+1

i=1 ϕi/{1 + λT(γ)ϕi} = 0. Because ϕi = ϕi(γ) contains unknown
function g(ui), the resultant AEL ratio statistic �(γ) cannot be directly used to make statistical
inference on γ. To address the issue, we replace exp{g(ui)} in ϕi(γ) by its kernel regression
estimator exp{ĝ(ui)} given in Equation (3).

Remark 2.1 As discussed in [22], the AEL method retains the first order property of the
ordinary EL estimator provided that an = op(n2/3), and works well for an = max{1, log(n)/2} in
many applications. Liu and Chen[32] further studied the optimal selection of an in implementing
the AEL method. Here, we simply adopt an = max{1, log(n)/2}[22] and find that it works well
in simulation studies.

Substituting γ̂el into Equations (4), (5) and (7), we obtain three estimators of F (y) (denoted
by ̂FHT (y), ̂FRI(y) and ̂FIP (y)) at a fixed point y of interest. Note that ̂Fς(y) is a genuine
distribution function for ς = HT,RI or IP because it is nondecreasing, right-continuous, and
̂Fς(∞) = 1 and ̂Fς(−∞) = 0. Thus, we only require checking that the indicative function
I(Y ≤ y) shares the above three properties.

2.3 Dimension Reduction

The above proposed estimation procedure requires the estimation of the propensity score
πi(γ) and the imputed conditional distribution function F0(y|ui). To this end, we propose the
kernel estimator of πi(γ) and F0(y|ui) given in Equations (3) and (6), respectively. However,
in some applications, when the dimension of ui is high, the kernel-based estimator may suffer
from the well-known curse of dimensionality. To this end, Shao and Wang[8] suggested a non-
parametric method (i.e., the generalized additive model or the sufficient reduction technique),
which can be used to obtain a consistent estimator of exp{g(ui)} when the dimension of ui

is high. For the estimation of F0(y|ui) under the high-dimension assumption of ui, motivated
by [20, 33], we propose the following dimension reduction technique.

Let S be a continuous function from Rdu to R with du being the dimension of u, such that
S = S(u) is univariate and F0(y|ui) = E{I(Yi ≤ y)|u = ui, δi = 0} = E{I(Yi ≤ y)|S(ui), δi =
0} := F0(y|Si) with Si = S(ui). Thus, the kernel-assisted estimator of F0(y|Si) is given by

̂F0(y|Si; γ) =

∑n
j=1 δj exp(γYj)I(Yj ≤ y)Kl(Sj − Si)

∑n
j=1 δj exp(γYj)Kl(Sj − Si)

,
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which is structurally identical to ̂F0(y|ui) except that ui is replaced by Si. Given the estimator
γ̂el, we obtain the following two dimension reduction estimators of F (y):

̂FRI(y;Si) =
1
n

n
∑

i=1

{

δiI(Yi ≤ y) + (1 − δi) ̂F0(y|Si; γ̂el)
}

,

̂FIP (y;Si) =
1
n

n
∑

i=1

{

δi
π̂i(γ̂el)

I(Yi ≤ y) +
(

1 − δi
π̂i(γ̂el)

)

̂F0(y|Si; γ̂el)
}

.

In applications, we assume that the working index S = S(u; β) contains an unknown pa-
rameter vector β. Given an estimator ̂β of β, the dimension reduction estimators ̂FRI(y;Si)
and ̂FIP (y;Si) are constructed by ̂FRI(y; ̂Si) and ̂FIP (y; ̂Si) with ̂Si = S(ui; ̂β), respectively.
Following the same arguments as Hu, et al.[20], we can show that ̂FRI(y; ̂Si) and ̂FIP (y; ̂Si) are
asymptotically equivalent to ̂FRI(y) and ̂FIP (y) provided that ̂β−β = Op(n−1/2), respectively.

3 Asymptotic Properties

In this section, we establish asymptotic properties of the proposed estimators of F (y). We
first present the large sample property of the tilting parameter estimator γ̂el.

Theorem 3.1 Suppose that condition A given in the Appendix holds. Let γ0 be the true
value of γ, A = E{ϕi(γ0)ϕT

i (γ0)} and B = E{∂ϕi(γ)/∂γ|γ=γ0} = E{∂ϕi(γ0)/∂γ}. Then, we
have γ̂el

P→ γ0 and
√
n(γ̂el − γ0)

L→ N(0, (BTA−1B)−1), where P→ and L→ stand for convergence
in probability and convergence in distribution, respectively.

Theorem 3.1 establishes the consistency and the asymptotic normality of the MELE γ̂el.
It follows from the proof of Theorem 3.1 that the asymptotic expansion of γ̂el has the form√
n(γ̂el − γ0) = n−1/2

∑n
i=1 ψi(γ0)+ op(1), where ψi(γ0) = (BTA−1B)−1BTA−1ϕ(ui, zi, Yi; γ0)

is the influence function.
When the propensity score model (2) is correctly specified, we have

Theorem 3.2 Suppose that the conditions given in the Appendix hold and the propensity
score model (2) is correctly specified. For any given y, we obtain

√
n{ ̂Fς(y) − F (y)} L→ N(0, σ2(y)) for ς = HT,RI, IP,

where σ2(y) = var(ηi), ηi = { δi

π(ui,Yi;γ0)
{I(Yi ≤ y) − F0(y|ui)} + F0(y|ui) − F (y) + ψi(γ0)H}

and H = E{(1 − δ){Y −mY (u)}{I(Y ≤ y) − F0(y|u)}} with mY (u) = E(Y |u, δ = 0).

Remark 3.3 Theorem 3.2 shows that the proposed three estimators of F (y) are
√
n−

consistent, and asymptotically distributed as the normal distribution with the same mean and
variance, which indicates that three estimators are asymptotically equivalent that is similar to
the one given in [33, 34]. But they may have different higher order properties.

For 0 < τ < 1, let ξτ be the τth quantile, and ̂ξτ,ς be the τth sample quantile for ς = HT, IP

and RI. Thus, ξτ = F−1(τ) = inf{y : F−1(y) ≥ τ} and ̂ξτ,ς = ̂F−1
ς (τ) = inf{y : ̂F−1

ς (y) ≥ τ}
for ς = HT, IP and RI. The following theorem presents the asymptotic property of the
proposed estimator ̂ξτ,ς with continuous distribution.
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Theorem 3.4 Suppose that the conditions given in the Appendix hold, and the probability
density function F 0(y) of F (y) is bounded away from 0. If the estimator of γ is given in
Equation (9), we have

√
n(̂ξτ,ς − ξτ ) L→ N(0, σ2(ξτ )/(F 0(ξτ ))2) for ς = HT, IP,RI,

where σ2(·) is the variance function given in Theorem 3.2.

4 Estimation of Asymptotic Variance

Theorems 3.2 and 3.4 show that the asymptotic variances of the proposed estimators have
the complicated expressions. It is quite difficult to estimate directly them. Many approaches
have been developed to overcome the difficulty. For example, Shao and Sitter[35] presented a
Bootstrap sampling method for the variance estimation for incomplete data; Wang, et al.[34]

gave a jackknife variance estimator when some responses are missing at random; Wang and
Chen[36] used a Bootstrap procedure to estimate asymptotic variance in which the bootstrap
data set is imputed by the same way as the original data set.

The jackknife procedure is here adopted to approximate the asymptotic variances of ̂FHT (y),
̂FRI(y) and ̂FIP (y). Let ̂F

(−i)
ς (y) be the reduced form of ̂Fς(y) based on the reduced sample

data {(Yj ,xj, δj)}j �=i for i = 1, 2, · · · , n and ς = HT,RI or IP . Let J ς
ni be the jackknife pseudo-

values, i.e., J ς
ni = n ̂Fς(y) − (n − 1) ̂F

(−i)
ς (y) for i = 1, 2, · · · , n. Thus, the jackknife variance

estimator of σ2
ς (y) is defined as σ̂2

ς (y) = 1
n

∑n
i=1(J

ς
ni − J

ς

n)2, where J
ς

n = n−1
∑n

i=1 J
ς
ni. The

100(1 − α)% normal-approximation-based conference interval for F (y) at a fixed point y of
interest is given by ̂Fς(y) ± u1−α/2

√

σ̂2
ς (y)/n, where u1−α/2 is the 1 − α/2 quantile of the

standard normal distribution. For the variance estimation of ̂ξτ,ς , we require estimating F 0(y)
consistently from the observed sample, which can be conducted by using the Horvtiz-Thompson-
type estimation given in [6]. In particular, the kernel-assisted estimator of F 0(y) is given by
̂F 0
HTt(y) = n−1

∑n
i=1 δiKh(y − Yi)/π̂i(γ̂el). Consequently, the consistent variance estimator for

̂ξτ,ς is given by n−1σ̂2(̂ξτ,ς){ ̂F 0
HTt(̂ξτ,ς)}−2 for ς = HT,RI and IP , respectively.

5 Simulation Study

Several simulation studies were conducted to investigate the finite-sample performance of
the proposed methods. In the first simulation study, the data set {yi :, i = 1, 2, · · · , n} was
generated from the following model: yi = ui +zi +εi for i = 1, 2, · · · , n, where zi was generated
from the standard normal distribution N(0, 1); given zi, ui was generated form the normal
distribution N(zi, 1); εi was independently simulated from N(0, 1). The missing indicator δi
for yi was generated from the Bernoulli distribution with probability πi, which was specified by

M1: πi = 1/{1 + exp(β0 + β1ui)}, where (β0, β1) = (−0.85, 0.15);
M2: πi = 1/{1 + exp(β0 + β1ui + γyi)}, where (β0, β1, γ) = (−1.05,−0.55,−0.1);
M3: πi = 1/{1 + exp(β0 + β1 sin(ui) + γyi)}, where (β0, β1, γ) = (−0.85,−0.55, 0.15);
M4: πi = 1/{1 + exp(β0 + β1ui + γ sin(yi))}, where (β0, β1, γ) = (−0.95,−0.45,−0.15);
M5: πi = 1/{1 + exp(β0 + β1ui + γyiui)}, where (β0, β1, γ) = (−0.45, 0.15,−0.15) ;
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M6: πi = 1 − exp{− exp(β0 + β1ui + γyi)}, where (β0, β1, γ) = (0.25, 0.35, 0.15).
The propensity score M1 was MAR, while M2–M6 represented nonignorable missing data

mechanism. Moreover, M1–M3 satisfied the propensity score model given in Equation (2), while
M4–M6 did not satisfy the presented propensity score model and were designed to investigate
the robustness of the proposed estimators under misspecified propensity score assumption. The
average missing proportion was about 30%.

Based on the above generated data set, the previous developed estimation procedure was
used to evaluate the estimation of F (y) at two points of y (e.g., y = 0.5 and 2.5). To compute the
nonparametric kernel-assisted estimates given in Equations (3) and (6), we took the Gaussian
kernel function to be K(u) = exp(−u2/2)/(2π)1/2 and selected the bandwidth to be l = h =
σ̂un

−1/3, where σ̂u is the standard deviation of observations {ui, i = 1, 2, · · · , n}. To estimate
the tilting parameter γ via the proposed AEL method, we considered the following calibration
condition: ϕi(γ) = {δi/π̂i(γ) − 1} (1, zi, z

2
i )T. Results for 1,000 replications with n = 60 and

120 were presented in Table 1, where “Bias” was the absolute difference between the true value
and the mean of the 1,000 estimates for F (y), “RMSE” was the root mean square error between
the true value and the estimates based on 1,000 replications, “SD” was the standard deviation of
the estimates based on 1,000 replications, and “CP” was the empirical coverage probability with
the nominal level 95%. Since the values of SD and RMSE were close to each other, to save space,
we only reported the values of RMSE. In addition, we calculated the 95% pointwise confidence
intervals of F (y) for M2 with n = 150 based on the Wald statistic in which the asymptotic
variance was estimated by the proposed jackknife method. Because ̂FRI(y) and ̂FIP (y) had
almost the same pointwise intervals, we only presented the 95% pointwise confidence intervals
of ̂FIP (y) in Figure 1. Also, we computed three estimations ̂ξτ,ζ of quantiles ξτ for ζ = HT,RI

and IP at τ = 0.5, 0.75 and 0.9 with n = 200. Results were given in Table 2.
Examination of Table 1 indicated that (i) the proposed three estimators had the similar

standard deviation under all the considered cases, which was consistent with that given in
Theorem 3.2; (ii) the inverse probability weighted estimator ̂FHT (y) produced relatively larger
bias than that obtained by the imputation procedures (i.e., ̂FRI(y) and ̂FIP (y)) even if the
propensity score was correctly specified, which implied that the proposed imputation methods
can reduce the bias of estimator; (iii) the proposed two imputation estimators performed well
under all the considered cases; (iv) as n increased, the SD and RMSE values of three estimators
decreased as expected; (v) the empirical CPs based on the proposed three estimators were close
to the nominal level 95% even if sample size was small or the propensity score was misspecified.
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Table 1 Performance of estimators for F (y) in the first simulation study

n y case
̂FHT

̂FRI
̂FIP

Bias RMSE CP Bias RMSE CP Bias RMSE CP

60 0.5 M1 0.017 0.072 0.950 0.005 0.073 0.958 0.007 0.071 0.952

M2 0.039 0.081 0.930 0.008 0.071 0.956 0.005 0.069 0.962

M3 0.022 0.073 0.956 0.013 0.072 0.958 0.008 0.070 0.962

M4 0.032 0.077 0.938 0.009 0.071 0.952 0.007 0.069 0.956

M5 0.015 0.070 0.950 0.005 0.073 0.956 0.007 0.071 0.952

M6 0.041 0.082 0.924 0.020 0.074 0.952 0.016 0.071 0.950

2.5 M1 0.017 0.519 0.960 0.002 0.050 0.918 0.000 0.050 0.930

M2 0.034 0.062 0.948 0.000 0.046 0.942 0.001 0.046 0.948

M3 0.018 0.053 0.964 0.002 0.050 0.926 0.003 0.049 0.922

M4 0.024 0.057 0.958 0.003 0.046 0.936 0.003 0.046 0.934

M5 0.021 0.055 0.958 0.007 0.051 0.934 0.007 0.050 0.940

M6 0.028 0.057 0.960 0.004 0.047 0.944 0.003 0.047 0.944

120 0.5 M1 0.015 0.054 0.940 0.008 0.054 0.936 0.009 0.052 0.938

M2 0.030 0.061 0.924 0.006 0.052 0.944 0.005 0.051 0.942

M3 0.017 0.056 0.938 0.012 0.055 0.940 0.008 0.053 0.938

M4 0.029 0.060 0.928 0.013 0.054 0.934 0.010 0.052 0.938

M5 0.012 0.054 0.950 0.007 0.056 0.942 0.009 0.054 0.934

M6 0.031 0.060 0.924 0.017 0.054 0.936 0.015 0.052 0.938

2.5 M1 0.017 0.041 0.938 0.005 0.039 0.948 0.007 0.039 0.938

M2 0.032 0.049 0.922 0.007 0.034 0.962 0.007 0.034 0.956

M3 0.018 0.043 0.938 0.006 0.038 0.930 0.006 0.038 0.936

M4 0.025 0.045 0.934 0.006 0.036 0.944 0.005 0.035 0.936

M5 0.022 0.043 0.936 0.014 0.041 0.946 0.015 0.041 0.940

M6 0.026 0.044 0.938 0.011 0.036 0.950 0.011 0.036 0.948

Inspection of Figure 1 implied that the confidence intervals based on ̂FIP (y) were slightly
narrower than those based on ̂FHT (y) when response of interest was relatively large, which was
not surprised in a finite sample because the estimation of the distribution function required
more information on sample size when the response point became relatively large and the
estimator ̂FHT (y) did not fully extract the information contained in the observed sample. Also,
the estimated curve of F (y) based on ̂FIP (y) was closer to the true curve of F (y) than that
based on ̂FHT (y). Examination of Table 2 implied that the proposed quantile estimators yielded
the similar results as those for the estimators of distribution functions, which confirmed the
feasibility and validity of the proposed methodologies.
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Figure 1 Normal-approximation-based 95% pointwise confidence interval of F (y) with n = 150

Notes: In Figure 1, solid curve: The true value of F (y); dotted curve: The estimated curve of

F (y) via ̂FIP (y) against its normal-approximation-based confidence interval; dot-dashed curve: The

estimated curve of F (y) via ̂FHT (y) against its normal-approximation-based confidence interval in the

first simulation study.

Table 2 Performance of estimators for quantiles in the first simulation study

τ case
̂ξτ,HT

̂ξτ,RI
̂ξτ,IP

Bias RMSE CP Bias RMSE CP Bias RMSE CP

0.5 M1 0.009 0.245 0.930 0.006 0.242 0.940 0.000 0.241 0.936

M2 0.135 0.287 0.898 0.019 0.243 0.942 0.003 0.241 0.940

M3 0.035 0.255 0.926 0.028 0.250 0.936 0.004 0.247 0.938

M4 0.069 0.258 0.930 0.002 0.242 0.946 0.006 0.242 0.946

M5 0.055 0.263 0.926 0.068 0.265 0.920 0.051 0.260 0.926

M6 0.061 0.260 0.928 0.012 0.261 0.931 0.016 0.251 0.929

0.75 M1 0.024 0.258 0.952 0.017 0.255 0.958 0.002 0.251 0.962

M2 0.161 0.314 0.904 0.005 0.246 0.952 0.002 0.245 0.944

M3 0.049 0.258 0.954 0.013 0.249 0.962 0.003 0.247 0.960

M4 0.066 0.260 0.936 0.018 0.238 0.954 0.018 0.240 0.948

M5 0.028 0.267 0.952 0.005 0.263 0.954 0.011 0.261 0.958

M6 0.205 0.325 0.870 0.101 0.262 0.922 0.084 0.255 0.934

0.9 M1 0.063 0.360 0.932 0.024 0.340 0.926 0.005 0.340 0.928

M2 0.202 0.389 0.898 0.009 0.309 0.928 0.007 0.307 0.930

M3 0.077 0.357 0.932 0.016 0.323 0.946 0.007 0.330 0.940

M4 0.122 0.376 0.924 0.053 0.314 0.910 0.048 0.314 0.912

M5 0.082 0.344 0.932 0.027 0.338 0.924 0.039 0.335 0.922

M6 0.269 0.432 0.874 0.055 0.310 0.936 0.051 0.309 0.934
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To investigate the sensitivity of the estimators to missingness data mechanism assumption,
we conducted the second simulation study. In this simulation study, 1,000 data sets were
generated as done in the first simulation study with the missingness data mechanism specified
by model M2 for γ = 0.0, 0.1, 0.3, 0.5 and 0.7. Note that the tilting parameter γ was a measure of
the amount of the departure from the MAR assumption[5]. Let ̂FMAR

HT (y), ̂FMAR
RI (y) (Cheng and

Chu[18]) and ̂FMAR
IP (y) be the corresponding versions of ̂FHT (y), ̂FRI(y) and ̂FIP (y) under the

MAR assumption, respectively, where the working propensity score was estimated by π̃(ui) =
∑n

j=1 δjKh(uj − ui)/
∑n

j=1Kh(uj − ui). Let ̂ξMAR
τ,HT , ̂ξMAR

τ,RI and ̂ξMAR
τ,IP be the corresponding τth

quantile estimators based on ̂FMAR
HT (y), ̂FMAR

RI (y) and ̂FMAR
IP (y), respectively. Results for F (y)

with n = 60 and y = 2.5, and for ξτ with n = 200 and τ = 0.75 were given in Table 3. The
estimated propensity scores for different values of γ were given in Figure 2.
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Figure 2 Plots of the estimated propensity scores with (i) γ = 0.0 and 0.1 (left panel)

and (ii) γ = 0.0 and 0.7 (right panel) in the second simulation study

From Table 3, we observed that the proposed estimators worked well under the correct
specification of missingness data mechanism in terms of Bias, RMSE and CPs. However, the
proposed estimators behaved poor when missingness data mechanism was misspecified. That is,
the proposed estimation procedure implemented under the MAR assumption yielded misleading
results when the true missingness data mechanism was nonignorable.

To investigate the performance of the proposed methods in multivariate case, we conducted
the third simulation study. In this simulation study, the data set {yi : i = 1, 2, · · · , n} was
generated from the model: yi = exp(ui1 + ui2 + zi) + εi for i = 1, 2, · · · , 200, where ui1 and ui2

were independently sampled from the uniform distribution U(0, 1), zi and εi were independently
simulated from the standard normal distribution N(0, 1). We assumed that ui1, ui2 and zi were
completely observed, but yi’s may subject to missingness. The missing indicator δi for yi was
generated from the Bernoulli distribution with probability πi, which was specified by

M1: πi = 1/{1 + exp(−0.5 − 0.45ui1 − 0.35ui2)};
M2: πi = 1/{1 + exp(−0.1 − 0.35ui1 − 0.35ui2 + γyi)} with γ = −0.1;
M3: πi = 1/{1 + exp(−0.5 − 0.35ui1 − 0.35ui2 − 0.1 sinyi)};



832 DING XIANWEN · TANG NIANSHENG

T
a
b
le

3
P
er

fo
rm

a
n
ce

o
f
es

ti
m

a
to

rs
fo

r
F

(y
)

a
n
d

ξ τ
in

th
e

se
co

n
d

si
m

u
la

ti
o
n

st
u
d
y

γ
̂ F

H
T

̂ F
M

A
R

H
T

̂ F
R

I
̂ F

M
A

R
R

I
̂ F

I
P

̂ F
M

A
R

I
P

B
ia

s
R

M
S
E

C
P

B
ia

s
R

M
S
E

C
P

B
ia

s
R

M
S
E

C
P

B
ia

s
R

M
S
E

C
P

B
ia

s
R

M
S
E

C
P

B
ia

s
R

M
S
E

C
P

0
0
.0

1
2

0
.0

5
1

0
.9

4
5

0
.0

1
3

0
.0

5
1

0
.9

4
5

0
.0

0
7

0
.0

4
9

0
.9

4
0

0
.0

0
8

0
.0

4
8

0
.9

4
1

0
.0

0
6

0
.0

4
8

0
.9

3
5

0
.0

0
7

0
.0

4
8

0
.9

4
4

0
.1

0
.0

1
1

0
.0

5
0

0
.9

4
7

0
.0

0
8

0
.0

4
8

0
.9

4
5

0
.0

0
7

0
.0

4
9

0
.9

4
0

0
.0

0
4

0
.0

4
7

0
.9

4
0

0
.0

0
6

0
.0

4
8

0
.9

3
7

0
.0

0
4

0
.0

4
7

0
.9

4
1

0
.3

0
.0

0
7

0
.0

5
1

0
.9

3
8

0
.0

0
4

0
.0

4
8

0
.9

2
9

0
.0

0
7

0
.0

5
2

0
.9

3
6

0
.0

0
5

0
.0

4
8

0
.9

2
0

0
.0

0
5

0
.0

5
0

0
.9

3
5

0
.0

0
4

0
.0

4
8

0
.9

2
6

0
.5

0
.0

0
0

0
.0

5
3

0
.9

3
6

0
.0

2
1

0
.0

5
2

0
.8

9
5

0
.0

0
6

0
.0

5
6

0
.9

4
3

0
.0

2
1

0
.0

5
2

0
.8

9
0

0
.0

0
1

0
.0

5
3

0
.9

3
6

0
.0

1
8

0
.0

5
1

0
.9

0
5

0
.7

0
.0

1
3

0
.0

6
0

0
.9

0
4

0
.0

4
4

0
.0

6
6

0
.7

7
9

0
.0

0
0

0
.0

6
3

0
.9

2
0

0
.0

4
2

0
.0

6
4

0
.8

0
3

0
.0

0
7

0
.0

6
1

0
.9

1
0

0
.0

3
7

0
.0

6
3

0
.8

1
5

γ
̂ ξ τ

,H
T

̂ ξM
A

R
τ
,H

T
̂ ξ τ

,R
I

̂ ξM
A

R
τ
,R

I
̂ ξ τ

,I
P

̂ ξM
A

R
τ
,I

P

B
ia

s
R

M
S
E

C
P

B
ia

s
R

M
S
E

C
P

B
ia

s
R

M
S
E

C
P

B
ia

s
R

M
S
E

C
P

B
ia

s
R

M
S
E

C
P

B
ia

s
R

M
S
E

C
P

0
0
.1

2
4

0
.2

8
8

0
.9

2
9

0
.1

2
3

0
.2

9
1

0
.9

2
2

0
.0

0
6

0
.2

4
6

0
.9

4
3

0
.0

0
4

0
.2

4
6

0
.9

4
3

0
.0

0
2

0
.2

4
6

0
.9

4
1

0
.0

0
2

0
.2

4
7

0
.9

3
9

0
.1

0
.1

0
2

0
.2

7
4

0
.9

3
3

0
.0

5
4

0
.2

6
1

0
.9

3
6

0
.0

0
8

0
.2

4
5

0
.9

4
4

0
.0

2
7

0
.2

4
8

0
.9

3
6

0
.0

0
3

0
.2

4
5

0
.9

3
9

0
.0

3
1

0
.2

5
0

0
.9

3
5

0
.3

0
.0

7
9

0
.2

7
2

0
.9

3
6

0
.0

7
4

0
.2

6
7

0
.9

2
7

0
.0

1
4

0
.2

5
5

0
.9

4
5

0
.1

1
6

0
.2

7
6

0
.9

0
9

0
.0

0
6

0
.2

5
4

0
.9

3
8

0
.1

1
2

0
.2

7
5

0
.9

1
0

0
.5

0
.0

6
7

0
.2

8
1

0
.9

3
5

0
.2

0
8

0
.3

3
2

0
.8

4
0

0
.0

1
9

0
.2

6
6

0
.9

4
3

0
.2

4
3

0
.3

5
2

0
.8

0
9

0
.0

1
2

0
.2

6
1

0
.9

4
0

0
.2

2
4

0
.3

4
0

0
.8

2
0

0
.7

0
.0

5
9

0
.2

7
7

0
.9

3
3

0
.3

4
8

0
.4

3
0

0
.6

7
7

0
.0

1
7

0
.2

6
7

0
.9

4
2

0
.3

8
9

0
.4

6
0

0
.6

3
1

0
.0

2
6

0
.2

6
6

0
.9

4
4

0
.3

6
1

0
.4

4
0

0
.6

7
3



DISTRIBUTION ESTIMATION UNDER NONIGNORABLY 833

M4: πi = 0.5I(yi ≤ 3.5) + I(yi > 3.5);
M5: πi = Φ(−0.05+0.85ui1−0.35ui2−0.1 sin yi), where Φ(·) is the cumulative distribution

function of the standard normal distribution.
The missingness data mechanism models M1 and M2 satisfied the propensity score model

given in Equation (2), while the models M3–M5 did not satisfy the propensity score model given
in Equation (2) and were designed to investigate the robustness of the proposed estimators to
the misspecified missingness data mechanisms. The average missing proportion was about 30%.

The preceding developed method was used to compute the estimation of F (y) at two fixed
points, i.e., y = 0.5 and 13.5. In evaluating the nonparametric estimations of πi(γ) and F0(y|ui)
via Equations (3) and (6), we took the kernel function to be K(u1, u2) = K(u1)K(u2), and
set the bandwidth to be �1 = h1 = σ̂u1n

−1/3 and �2 = h2 = σ̂u2n
−1/3, respectively, where

K(u) = exp(−u2/2)/(2π)1/2 and σ̂uj was the standard deviation of observations {uij : i =
1, 2, · · · , n} for j = 1 and 2. The tilting parameter γ was estimated via the same calibration
condition as given in the second simulation study. Results for 1,000 replications with n = 200
were reported in Table 4. Also, we computed the corresponding estimations of F (y) at y = 0.5
via the proposed estimators ̂FMAR

HT (y), ̂FMAR
RI (y), ̂FMAR

IP (y), ̂FHT (y), ̂FRI(y), ̂FIP (y) based on
1,000 data sets, which were generated via the model M2 with γ = 0.0,−0.05,−0.15 and −0.25.
The values of Bias, RMSE and CP for the 95% confidence level were given in Table 5.

From Table 4, we observed that when the point of interest was large (e.g., y = 13.5), the
inverse probability weighted estimator ̂FHT (y) yielded larger Bias and RMSE values and lower
CP than those obtained by ̂FRI(y) and ̂FIP (y), which indicated that the proposed imputation
procedure outperformed other two methods. Table 5 showed the same conclusions as observed
in Table 3, hence we omitted the details.

Table 4 Performance of estimators for F (y) in the third simulation study

y case
̂FHT

̂FRI
̂FIP

Bias RMSE CP Bias RMSE CP Bias RMSE CP

0.5 M1 0.007 0.027 0.924 0.002 0.028 0.934 0.002 0.028 0.940

M2 0.011 0.030 0.910 0.002 0.030 0.936 0.005 0.030 0.936

M3 0.009 0.028 0.922 0.004 0.028 0.936 0.004 0.028 0.938

M4 0.006 0.031 0.930 0.019 0.040 0.938 0.008 0.035 0.946

M5 0.008 0.029 0.928 0.003 0.030 0.942 0.002 0.031 0.948

13.5 M1 0.035 0.042 0.776 0.000 0.022 0.926 0.000 0.022 0.914

M2 0.044 0.049 0.614 0.000 0.020 0.928 0.001 0.020 0.928

M3 0.037 0.043 0.756 0.002 0.023 0.926 0.000 0.022 0.926

M4 0.062 0.067 0.328 0.000 0.018 0.940 0.000 0.018 0.940

M5 0.066 0.071 0.464 0.003 0.024 0.920 0.003 0.024 0.908
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Table 5 Performance of estimators for F (y) under different miss-

ingness data mechanism in the third simulation study

γ
̂FMAR

HT
̂FMAR

RI
̂FMAR

IP

Bias RMSE CP Bias RMSE CP Bias RMSE CP

0 0.003 0.030 0.925 0.002 0.030 0.925 0.003 0.031 0.925

−0.05 0.012 0.030 0.915 0.012 0.030 0.915 0.011 0.030 0.930

−0.15 0.022 0.034 0.870 0.022 0.034 0.880 0.022 0.033 0.870

−0.25 0.030 0.037 0.760 0.029 0.037 0.780 0.029 0.037 0.765

γ
̂FHT

̂FRI
̂FIP

Bias RMSE CP Bias RMSE CP Bias RMSE CP

0 0.002 0.029 0.930 0.002 0.029 0.930 0.002 0.030 0.930

−0.05 0.004 0.029 0.935 0.002 0.030 0.940 0.004 0.030 0.930

−0.15 0.006 0.029 0.930 0.001 0.030 0.935 0.005 0.029 0.935

−0.25 0.010 0.028 0.940 0.002 0.028 0.945 0.008 0.028 0.950

6 Discussion

This paper proposes an inverse probability weighted estimator ̂FHT (y) of F (y) when re-
sponses are subject to nonignorable missingness. In applications, if there is the probability
density function f(y) of Y , we can extend the preceding proposed inverse probability weighted
method by considering the smoothness of F (y). In the case, a modified version of the Horvitz-
Thompson-type estimator can be constructed by

̂Fm
HT (y) =

1
n	

n
∑

i=1

δi
π̂(ui, Yi; γ̂el)

H

(

y − Yi

hn

)

,

where H(x) =
∫ x

−∞K(t)dt, K(·) is the kernel function, n	 =
∑n

i=1
δi

π̂(ui,Yi;γ̂el)
and hn is the

bandwidth. Here, we modify n	 =
∑n

i=1
δi

π̂(ui,Yi;γ̂el)
such that the kernel density estimator

̂fn(y) = 1
n�

∑n
i=1

δi

π̂(ui,Yi;γ̂el)
Khn(y − Yi) satisfies

∫

̂fn(y)dy = 1, where Khn(·) = h−1
n K(·/hn).

If we choose d(zi) = (1, ˜d(zi))T in Equation (8) with ˜d(zi) being some known function of zi,
thus we have n	/n → 1 in probability as n goes to infinity, which indicates that ̂Fm

HT (y) is
structurally similar as ̂FHT (y) except that I(Yi ≤ y) is replaced by H(y−Yi

hn
). Similarly, we can

define the imputation estimators for F (y) by considering the smoothness of F (y). The selection
of the bandwidth hn plays a critical role in estimating F (y), which is challenging when responses
are subject to nonignorable missingness. We will investigate the issue in another paper.

To use the proposed methods to estimate the distribution function and quantiles of response
under nonignorable missingness data mechanism assumption of responses, we require choosing
the instrument variable vector z. To this end, we here present a brief discussion on how to
choose instrumental variables. Following the argument of [8], an instrument variable z must
satisfy the following two conditions[8]: (i) z should be related to response variable y; (ii) z can
be excluded from the propensity score model given in Equation (2). If z does not satisfy (i),
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thus the calibration condition reduces to a single function intrinsically, which is insufficient to
estimate unknown function g(·) and γ simultaneously, regardless of whether (ii) is satisfied. On
the other hand, if a variable z satisfies the condition (i) but it does not satisfy the condition (ii),
we have E{ϕi(γ)} �= 0. Thus, the resulting propensity score estimation based on Equation (8),
denoted by π̃(ui, yi), is not a consistent estimator of the true propensity score, which indicates

D =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1
n

n
∑

i=1

δi
π̃(ui, Yi)

xi − 1
n

n
∑

i=1

xi

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(10)

does not converge to zero in probability. Thus, we can choose a variable z such that it leads to
the minimum of D in Equation (10) and satisfies the condition (i). But, it is quite challenging
to choose the best subset of the instrument variables in some applications. A new criterion may
be required to address the issue. We leave it for our future research.
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Appendix

To show the proof of the presented theorems, we fist need some regularity conditions.
Assumption A The estimating equation ϕi(γ) satisfies (i) E{ϕi(γ)ϕT

i (γ)} is positive
definite; (ii) the second derivatives of ϕi(γ), say ∂2ϕi(γ)/∂γ2, is continuous in a neighborhood
A of the true value γ0, |∂ϕi(γ)/∂γ| is bounded by some integrable function G(x, Y ) in A; (iii)
E{||ϕi(γ)||κ} is bounded for some κ > 2 and γ ∈ Θ ; (iv) matrix Γ (γ0) = E[∂ϕi(γ0)/∂γ] is of
full rank.

Assumption B (i) The marginal probability density function f(u) is bounded away from
∞ in the support of u and the second derivative of f(u) is continuous and bounded; (ii) the
probability function π(u, Y ; γ) satisfies min1≤i≤n π(ui, Yi; γ) ≥ c0 > 0 a.s. for some positive
constant c0; (iii) the kernel function K(·) is a probability density function such that (a) it is
bounded and has compact support, (b) it is symmetric with

∫

ω2K(ω)dω < ∞, (c) K(·) ≥ d1

for some d1 > 0 in some closed interval centered at zero, (d) nh→ ∞ and nh4 → 0 as n→ ∞,
and (e) nl → ∞ and nl4 → 0 as n→ ∞.

Remark A.1 Assumption A is the regularity condition for the EL and AEL estimator
(e.g., see [22, 23, 31]); while Assumption B is commonly adopted in the missing data literatures
(e.g., see [1, 8, 21]).

Proof of Theorem 3.1 Because the result is similar to Qin and Lawless[31], Newey and
Smith[30] and Variyath, et al.[22], we only present the sketch of the proof. First, the consistency
of γ̂el can be obtained by using the same argument as given in Theorem 3.1 of Newey and
Smith[30], we here omit the details. Next we show the asymptotic normality of γ̂el. Because γ̂el

is a consistent estimator of γ and the estimating equation ϕi(γ) is a continuous function, γ̂el is
a stationary point of �(γ). Hence, γ̂el is the solution to the following equations:

Q1,n+1(γ,λ) =
1

n+ 1

n+1
∑

i=1

ϕi(γ)
1 + λTϕi(γ)

= 0,

Q2,n+1(γ,λ) =
1

n+ 1

n+1
∑

i=1

1
1 + λTϕi(γ)

(∂ϕi(γ)/∂γ)Tλ = 0.



838 DING XIANWEN · TANG NIANSHENG

Expanding Q1,n+1(γ̂el, ̂λ) and Q2,n+1(γ̂el, ̂λ) at (γ,λ) = (γ0,0) and ignoring the higher order
terms leads to

Q1,n+1(γ̂el, ̂λ) = Q1,n+1(γ0,0) +
∂Q1,n+1(γ0,0)

∂γ
(γ̂el − γ0) +

∂Q1,n+1(γ0,0)
∂λ

̂λ = 0,

Q2,n+1(γ̂el, ̂λ) = Q2,n+1(γ0,0) +
∂Q1,n+1(γ0,0)

∂γ
(γ̂el − γ0) +

∂Q2,n+1(γ0,0)
∂λ

̂λ = 0.

Note that at (γ0,0), we have

∂Q1,n+1(γ0,0)
∂γ

=
∂Q2,n+1(γ0,0)

∂λ
=

1
n+ 1

n+1
∑

i=1

∂ϕi(γ0)
∂γ

P→ B,

∂Q1,n+1(γ0,0)
∂λ

= − 1
n+ 1

n+1
∑

i=1

ϕi(γ0)ϕT
i (γ0)

P→ −A, ∂Q2,n+1(γ0,0)
∂γ

= 0.

Combining the above equations yields

√
n(γ̂el − γ0) = (BTA−1B)−1BTA−1 1√

n

n
∑

i=1

ϕi(γ0) + op(1).

Note that the choice of an together with the moment conditions makes the above equation hold.
Thus, the proof of Theorem 3.1 is completed.

Proof of Theorem 3.2 We first present the asymptotic properties of estimator ̂FHT (y). Let

I1n = n−1/2
n

∑

i=1

{

δi{I(Yi ≤ y) − F0(y|ui)}
π(ui, Yi; γ0)

+ {F0(y|ui) − F (y)}
}

,

I2n = n−1/2
n

∑

i=1

{{

1
π̂i(γ0)

− 1
π(ui, Yi; γ0)

}

δi{I(Yi ≤ y) − F0(y|ui)}
}

,

I3n = n−1/2
n

∑

i=1

{

δi
π̂i(γ0)

− 1
}

F0(y|ui).

Then, we have the following decomposition

n−1/2
n

∑

i=1

{

δiI(Yi ≤ y)
π̂i(γ0)

− F (y)
}

= I1n + I2n + I3n.

Following the similar argument as given in [8] and [21], we have I2n = op(1) and I3n = op(1).
Expanding ̂FHT (y) at γ0 yields

√
n( ̂FHT (y) − F (y))

= n−1/2
n

∑

i=1

{

δiI(Yi ≤ y)
π̂i(γ0)

− F (y)
}

+ n1/2(γ̂el − γ0)
1
n

n
∑

i=1

δiI(Yi ≤ y)
∂π̂−1

i (γ)
∂γ

∣

∣

∣

∣

γ=γ̃

= n−1/2
n

∑

i=1

{

δi{I(Yi ≤ y) − F0(y|ui)}
π(ui, Yi; γ0)

+ {F0(y|ui) − F (y)}
}

+ n1/2(γ̂el − γ0)H + op(1)

= n−1/2
n

∑

i=1

ηi + op(1),
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where ηi = { δi

π(ui,Yi;γ0)
{I(Yi ≤ y) − F0(y|ui)} + F0(y|ui) − F (y) + ψi(γ0)H} and H = E{(1 −

δ){Y −mY (u)}{I(Y ≤ y) − F0(y|u)}} with mY (u) = E(Y |u, δ = 0). Thus, the proof of the
asymptotic property of ̂FHT (y) is completed.

Next, we show the asymptotic property of ̂FRI(y). By the definition of ̂F 0
RI(y), we have

√
n( ̂F 0

RI (y) − F (y)) =
1√
n

n
∑

i=1

{δiI(Yi ≤ y) + (1 − δi) ̂F0(y|ui; γ0) − F (y)}

=
1√
n

n
∑

i=1

δi{I(Yi ≤ y) − F0(y|ui)} +
1√
n

n
∑

i=1

{F0(y|ui) − F (y)}

+
1√
n

n
∑

i=1

(1 − δi){ ̂F0(y|ui; γ0) − F0(y|ui)}

:= J1n + J2n + J3n.

Using the similar arguments as given in the proof of Theorem 1 of Zhao, et al.[21], we have
J3n = n−1/2

∑n
i=1{1−π(ui, Yi; γ)}δi{I(Yi ≤ y)−F0(y|ui)}/π(ui, Yi; γ)+op(1). Then, we have√

n( ̂F 0
RI (y)−F (y)) = I1n + op(1), where I1n is defined in the proof of the asymptotic property

of ̂FHT (y). By the definition of ̂FRI(y), we have

√
n( ̂FRI (y) − F (y)) =

1√
n

n
∑

i=1

{δiI(Yi ≤ y) + (1 − δi) ̂F0(y|ui; γ̂el) − F (y)}

=
1√
n

n
∑

i=1

δi{I(Yi ≤ y) − F0(y|ui)} +
1√
n

n
∑

i=1

{F0(y|ui) − F (y)}

+
1√
n

n
∑

i=1

(1 − δi){ ̂F0(y|ui; γ0) − F0(y|ui)}

+
1√
n

n
∑

i=1

(1 − δi){ ̂F0(y|ui; γ̂el) − ̂F0(y|ui; γ0)}

:= J1n + J2n + J3n + J4n.

Taking the Taylor expansion of J4n yields

J4n =
√
n(γ̂el − γ0)

1
n

n
∑

i=1

(1 − δi)
∂ ̂F0(y|ui)

∂γ
=

√
n(γ̂el − γ0)W,

where W = 1
n

∑n
i=1(1 − δi)∂ ̂F0(y|ui)/∂γ. Following the argument of the proof of Theorem2

in [21], we have W = H + op(1). Combining the above equations leads to
√
n( ̂FRI (y) −

F (y)) = n−1/2
∑n

i=1

{

δi{I(Yi≤y)−F0(y|ui)}
π(ui,Yi;γ0)

+ {F0(y|ui) − F (y)}
}

+n1/2(γ̂el−γ0)H+op(1), which

indicates that the asymptotic property of ̂FRI(y) holds.
Finally, we show the asymptotic property of ̂FIP (y). Note that

√
n( ̂F 0

IP (y) − F (y)) =
1√
n

n
∑

i=1

{

δi
π̂i(γ)

I(Yi ≤ y) +
(

1 − δi
π̂i(γ)

)

̂F0(y|ui) − F (y)
}

= I1n + I2n + ˜I3n,
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where I1n and I2n are defined in the proof of of the asymptotic property of ̂FHT (y), ˜I3n =
n−1/2

∑n
i=1{ δi

π̂i(γ0) − 1}{F0(y|ui) − ̂F0(y|ui)}. Following the similar argument as given in

the proof of Theorem 4 in [21], we have ˜I3n = op(1). Combining the above results yields√
n( ̂F 0

IP (y) − F (y)) = I1n + op(1). Expanding ̂FIP (y) at γ0 results in
√
n( ̂FIP (y) − F (y)) =√

n( ̂F 0
IP (y) − F (y)) +

√
n(γ̂el − γ0)∂ ̂F 0

IP (y)/∂γ + op(1), where

∂ ̂F 0
IP (y)/∂γ =

1
n

n
∑

i=1

δi
∂π̂−1

i (γ0)
∂γ

{I(Yi ≤ y) − ̂F0(y|ui)} +
1
n

n
∑

i=1

(

1 − δi
π̂i(γ0)

)

∂ ̂F0(y|ui)/∂γ.

Using the similar arguments as given in the proof of Theorem 5 in [21], we obtain ∂ ̂F 0
IP (y)/∂γ|γ=γ0

= H + op(1). Thus, we obtain

√
n( ̂FIP (y) − F (y)) =

√
n( ̂F 0

IP (y) − F (y)) +
√
n(γ̂el − γ0)H + op(1)

= n−1/2
n

∑

i=1

{

δi{I(Yi ≤ y) − F0(y|ui)}
π(ui, Yi; γ0)

+ {F0(y|ui) − F (y)}
}

+n1/2(γ̂el − γ0)H + op(1)

= n−1/2
n

∑

i=1

ηi + op(1).

Thus, we finish the proof of Theorem 3.2.
Proof of Theorem 3.4 The proof of Theorem 3.4 can be obtained by the same argument as

given in [21], we here omit the details.


