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Abstract This paper addresses the problem on sensor fault estimation and fault-tolerant control for

a class of Takagi-Sugeno Markovian jump systems, which are subjected to sensor faults and partially

unknown transition rates. First, the original plant is extended to a descriptor system, where the

original states and the sensor faults are assembled into the new state vector. Then, a novel reduced-

order observer is designed for the extended system to simultaneously estimate the immeasurable states

and sensor faults. Second, by using the estimated states obtained from the designed observer, a state-

feedback fault-tolerant control strategy is developed to make the resulting closed-loop control system

stochastically stable. Based on linear matrix inequality technique, algorithms are presented to compute

the observer gains and control gains. The effectiveness of the proposed observer and controller are

validated by a numerical example and a compared study, respectively, and the simulation results reveal

that the proposed method can successfully estimate the sensor faults and guarantee the stochastic

stability of the resulting closed-loop system.
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1 Introduction

Markovian jump systems (MJSs), known as very famous stochastic systems, play an im-
portant role in modeling, as it can describe plants with random abrupt changes. A Markovian
jump system is governed by a Markov process and the switching mode ranges in a finite integer
set. Due to the popularity of MJSs, tremendous results have been reported on MJSs[1−9].

With the increasing demand of reliability, safety and maintainability of automatic systems,
fault estimation (FE) and fault-tolerant control (FTC) have become more and more important
in both theoretical and practical areas. During the past few decades, FE and FTC have at-
tracted considerable attention, and fruitful results can be found in literatures for MJSs[10−19].
Specially, [10] proposed a sensor-fault-estimation method and FTC for time-delayed MJSs with
Lipschitz non-linearity. [11] developed a method on simultaneous estimations of the actuator
and sensor faults by means of sliding mode observer, then designed an actuator fault-tolerant
controller to ensure the stability of the overall system. [16] proposed an integrated FE and
FTC strategy for time-delayed MJSs subjected to actuator fault and sensor fault, where the
sufficient and necessary conditions of the existence of the designed observer were provided. [18]
proposed a method on actuator fault estimation based on adaptive observer, and designed an
FTC scheme by using a similar technique to [10, 11]. [19] considered actuator-fault-estimation
problem for a kind of fuzzy MJSs without reference to sensor fault. In fact, autonomous systems
depend very much on sensors acquisition of certain system information, and in addition, sensor
signals often carry important information for feedback control systems[20]. However, a faulty
sensor signal may lead to poor control performance. Therefore, sensor-fault-diagnoses are be-
coming increasingly important, and certain results have been reported[10,20−26]. For instance,
for a class of Itô stochastic systems, [21] addressed the problems of FE and FTC against sensor
faults.

On the other hand, since most practical systems are nonlinear in nature, FE/FTC appli-
cations to industrial and commercial processes should specifically take nonlinear models into
account. Takagi-Sugeno fuzzy models have proven to be capable of approximating any smooth
nonlinear functions with any specified accuracy. It is fortunate that the T-S model has a
convenient and simple structure based on a set of IF-THEN rules. Hence, by means of T-S
fuzzy models, the existing FE/FTC methods can be extensively performed in nonlinear systems
directly[27−30].

Consider that, in real applications, information of each element of the transition rate matrix
is hardly known[8], hence, the study of integrated sensor-fault-estimation and FTC for a class
of T-S fuzzy MJSs with partial unknown transition rates (PUTRs) is of great significance.
To our best knowledge, such a topic has not been studied yet. Hence, this paper will focus
on the following topics: 1) Design a reduced-order observer for simultaneous estimations of
state and sensor fault; 2) Design an observer-based fault-tolerant controller to guarantee the
stochastic stability of the considered system. The main contributions are listed in three folds:
1) In this paper, we design a novel reduced-order observer to perform the state and sensor fault
estimations. In comparison to full-order designs[10−19], our proposed method gives a simpler
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structure and easier implementation. 2) Unlike the preconditions of the faults considered in [10–
12, 14], the sensor fault discussed in this paper has no constraints, which makes our proposed
method less conservative. 3) The proposed method can be directly applied to MJSs with exact
known transition rates, indicating an improved generality.

The rest of the paper is organized as follows. In Section 2, we formally state the problem
and some preliminaries. The main results are discussed in Section 3. We present numerical
simulations in Section 4 to demonstrate the performance of the proposed approach and draw
conclusions in Section 5.

2 Problem Formulation and Preliminaries

In this section, some preliminaries and the system description are given. Let us consider the
following Markovian jump linear systems described by T-S fuzzy models over the probability
space:

Plant Rule i:
If θ1(t) is νi1 and θq(t) is νiq, then

⎧

⎨

⎩

ẋ(t) = Ai(r(t))x(t) + Bi(r(t))u(t),

y(t) = C(r(t))x(t) + G(r(t))fs(t),
i = 1, 2, · · · , N, (1)

where x(t) ∈ Rn is the state, u(t) ∈ Rm is the control input, y(t) ∈ Rp is the measurement
output. Ai(r(t)) ∈ Rn×n, Bi(r(t)) ∈ Rn×m, Ci(r(t)) ∈ Rp×n and Gi(r(t)) ∈ Rp×w are system
matrices. fs(t) ∈ Rw is the sensor fault. Besides, we assume that G(r) is of full column rank.

Next, we recall some basic of the Markov chain. Let r(t), t ≥ 0 be a right-continuous
Markov chain on the probability space taking values in a finite state space S = {1, 2, · · · , Nr}
with generator Π = (πlj) (l, j ∈ S), which is called transition rate matrix (TRM) given by

P{r(t + Δ) = j|r(t) = l} =

⎧

⎨

⎩

πljΔ + o(Δ), j �= l,

1 + πllΔ + o(Δ), j = l,

where Δ > 0, and limt→0
o(Δ)
Δ = 0, πlj ≥ 0 is the transition rate from state l to j if j �= l and

πll = −∑j �=l πlj .
For r(t) = r ∈ S, the system matrices of rth mode are denoted by Air , Bir, Cr and Gr,

which are real and known. x0 and r0 stand for the initial values of x(t) and r(t), respectively.
By using a standard fuzzy singleton inference method[19], the overall fuzzy MJSs in (1) can

be expressed as:
⎧

⎪

⎪

⎨

⎪

⎪

⎩

ẋ(t) =
N
∑

i=1

ρi(θ(t))(Airx(t) + Biru(t)),

y(t) = Crx(t) + Grfs(t),

(2)

where ρi(θ(t)) = ϑi(θ(t))
∑N

i=1 ϑi(θ(t))
, ϑi(θ(t)) =

∏q
g=1 νig(θg(t)), and νig(θg(t)) is the grade of mem-

bership of θg(t) in νig. According to the theory of fuzzy sets, it is known that ρi(θ(t)) ≥ 0
(i = 1, 2, · · · , N), and

∑N
i=1 ρi(θ(t)) = 1.
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Just as discussed in the introduction part, the transition rates are often partially unknown,
and in this case, the transition rates of the jumping process r(t) are considered to be partially
accessed, i.e., some elements in matrix Π are unknown. For instance, for System (2) with 2
operation modes, the TRM Π may be as

[

π11 ?
? ?

]

, where ? represents the inaccessible element.
For notational clarity, we denote S = Sr

k + Sr
uk with

Sr
k = {j : πrj is known}, Sr

uk = {j : πrj is unknown}.

Throughout this paper, the following definition will be adopted.

Definition 2.1 The Markovian jump system (2) is said to be stochastically stable if, for
u(t) ≡ 0 and fs(t) ≡ 0 and every initial condition x0 ∈ Rn and r0, the following holds:

E
{∫ ∞

0

‖x(t)‖2dt|x0, r0

}

< ∞.

Remark 2.2 The accessibility of the jumping process r(t) in the existing literature is
commonly assumed to be completely accessible (Sr

k = S, Sr
uk = ∅) or completely inaccessible

(Sr
uk = S, Sr

k = ∅). Therefore, the considered TRM is a more general assumption to the
Markovian jump systems thus covers the existing ones.

3 Main Results

If we extend the state x(t) to x(t) =
[

x(t)
fs(t)

]

∈ Rn+w, and correspondingly, denote E =

[ In 0n×w ], Air = [ Air 0n×w ] and Cr = [ Cr Gr ], System (2) can be written in anther representa-
tion as

⎧

⎪

⎪

⎨

⎪

⎪

⎩

Eẋ(t) =
N
∑

i=1

ρi(θ(t))(Airx(t) + Biru(t)),

y(t) = Crx(t).

(3)

Now, System (2) is transformed into a descriptor system of which the state is composed
of the original state and the sensor fault. In order to estimate the state and sensor fault
simultaneously, a novel reduced-order observer will be designed for System (3) in the following
discussion. After getting the estimated states, the observer-based fault-tolerant controller will
be developed.

For design purpose, we denote a new variable as α(t)=Mx(t), where we assume M =
[

M1 0
0 Iw

] ∈ R(n+w−p)×(n+w) and M1 ∈ R(n−p)×n is a known matrix which satisfies Sr =
[

Cr

M1

] ∈
Rn×n being nonsingular. By noticing α(t), the reduced-order observer is constructed as follows:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

ż(t) =
N
∑

i=1

ρi(θ(t))(Nir(r)z(t) + Lir(r)y(t) + TrBiru),

α̂(t) = z(t) + Qry(t),

(4)

where z(t) ∈ Rn+w−p and α̂(t) ∈ Rn+w−p are intermediate variables. Nir ∈ R(n−p+w)×(n−p+w),
Lir ∈ R(n−p+w)×p, Tr ∈ R(n−p+w)×m and Qr ∈ R(n−p+w)×p are observer matrices to be
determined later.
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Define the observation error as e(t) = α(t) − α̂(t), then we have

e(t) = Mx(t) − z(t) − Qry(t) = (M − QrCr)x(t) − z(t).

If the observer matrices Tr and Qr satisfy

TrE + QrCr = M, (5)

we can have
e(t) = TrEx(t) − z(t).

Then, the dynamic equation of the observer error e(t) can be obtained by subtracting (4)
from (3):

ė(t) = TrEẋ(t) − ż(t)

=
N
∑

i=1

ρi(θ(t))(TrAirx(t) + TrBiru(t) − Nirz(t) − Liry(t) − TrBiru(t))

=
N
∑

i=1

ρi(θ(t))(TrAirx(t) + TrBiru(t) − Nirz(t) − Liry(t) − TrBiru(t)

+NirTrEx(t) − NirTrEx(t))

=
N
∑

i=1

ρi(θ(t))(TrAirx(t) − Liry(t) + Nir(TrEx(t) − z(t)) − NirTrEx(t))

=
N
∑

i=1

ρi(θ(t))(Ni(r)e(t) + (TrAir − NirTrE − LirCr)x(t)). (6)

From observing the above equation, we can see that if the observer matrices Nir and Lir

satisfy
TrAir − NirTrE − LirCr = 0, (7)

the observer error dynamic equation (6) becomes

ė(t) =
N
∑

i=1

ρi(θ(t))Nire(t). (8)

Obviously, it is easy to find that Nir and Lir that satisfying

Lir = Kir + NirQr, (9)

NirM + KirCr = TrAir (10)

are a set of solutions of (7) with arbitrary compatible matrix Kir.

Remark 3.1 Combining with (5), the left side of Equation (7) can be first written as

TrAir − NirTrE − LirCr

= TrAir − Nir(M − QrCr) − LirCr

= TrAir − NirM + NirQrCr − LirCr,
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then substitute (9) and (10) into it, and we have

TrAir − NirM + NirQrCr − LirCr

= TrAir − (TrAir − KirCr) + NirQrCr − (Kir + NirQr)Cr

= TrAir − TrAir + KirCr + NirQrCr − KirCr − NirQrCr

= 0.

So this just proves that (9) and (10) are a set of solutions of (7).

Because Gr is of full column rank, so is
[

E
Cr

]

=
[

In 0n×w

Cr Gr

]

. Since Equation (5) can be

transformed into [ Tr Qr ]
[

E
Cr

]

= M , hence, we can calculate the solutions of Tr and Qr from (5):

Tr=M

⎡

⎣

E

Cr

⎤

⎦

+ ⎡

⎣

In

0p×n

⎤

⎦− Zr

⎛

⎝I −
⎡

⎣

E

Cr

⎤

⎦

⎡

⎣

E

Cr

⎤

⎦

+⎞

⎠

⎡

⎣

In

0p×n

⎤

⎦ , (11)

Qr = M

⎡

⎣

E

Cr

⎤

⎦

+ ⎡

⎣

0n×p

Ip

⎤

⎦− Zr

⎛

⎝I −
⎡

⎣

E

Cr

⎤

⎦

⎡

⎣

E

Cr

⎤

⎦

+⎞

⎠

⎡

⎣

0n×p

Ip

⎤

⎦ , (12)

where
[

E
Cr

]+

=
([

E
Cr

]T [
E
Cr

] )−1[
E
Cr

]T

is the Penrose-Moore inverse of
[

E
Cr

]

. Further, we
note (11) and (12) in another form as

Tr = Tr1 − ZrTr2, (13)

Qr = Qr1 − ZrQr2, (14)

by denoting

Tr1 = M

⎡

⎣

E

Cr

⎤

⎦

+ ⎡

⎣

In

0p×n

⎤

⎦ , Tr2 =

⎛

⎝I −
⎡

⎣

E

Cr

⎤

⎦

⎡

⎣

E

Cr

⎤

⎦

+⎞

⎠

⎡

⎣

In

0p×n

⎤

⎦ ,

Qr1 = M

⎡

⎣

E

Cr

⎤

⎦

+ ⎡

⎣

0n×p

Ip

⎤

⎦ , Qr2 =

⎛

⎝I −
⎡

⎣

E

Cr

⎤

⎦

⎡

⎣

E

Cr

⎤

⎦

+⎞

⎠

⎡

⎣

0n×p

Ip

⎤

⎦ .

It can be seen from (10) that

[

Nir Kir

]

⎡

⎣

M

Cr

⎤

⎦ = TrAir (15)
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and we know that since Sr is nonsingular, we have

rank

⎛

⎝

⎡

⎣

M

Cr

⎤

⎦

⎞

⎠ = rank

⎛

⎜

⎜

⎝

⎡

⎢

⎢

⎣

M1 0

0 Iw

Cr Gr

⎤

⎥

⎥

⎦

⎞

⎟

⎟

⎠

= rank

⎛

⎜

⎜

⎝

⎡

⎢

⎢

⎣

0 Iw 0

In−p 0 0

0 −Gr Ip

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

M1 0

0 Iw

Cr Gr

⎤

⎥

⎥

⎦

⎞

⎟

⎟

⎠

= rank

⎛

⎜

⎜

⎝

⎡

⎢

⎢

⎣

0 Iw

M1 0

Cr 0

⎤

⎥

⎥

⎦

⎞

⎟

⎟

⎠

= n + w,

which implies that
[

M
Cr

]

is also nonsingular. Then, we can get the solutions of Nir and Kir by
solving (15):

Nir = TrAir

⎡

⎣

M

Cr

⎤

⎦

−1 ⎡

⎣

In−p+w

0p×(n−p+w)

⎤

⎦ , Kir = TrAir

⎡

⎣

M

Cr

⎤

⎦

−1 ⎡

⎣

0(n−p+w)×p

Ip

⎤

⎦ .

Substitute (13) into the above equation, one can obtain

Nir = Nir1 − ZrNir2, (16)

Kir = Kir1 − ZrKir2, (17)

where

Nir1 = Tr1Air

⎡

⎣

M

Cr

⎤

⎦

−1 ⎡

⎣

In−p+w

0p×(n−p+w)

⎤

⎦ , Nir2 = Tr2Air

⎡

⎣

M

Cr

⎤

⎦

−1 ⎡

⎣

In−p+w

0p×(n−p+w)

⎤

⎦ ,

Kir1 = Tr1Air

⎡

⎣

M

Cr

⎤

⎦

−1 ⎡

⎣

0(n−p+w)×p

Ip

⎤

⎦ , Kir2 = Tr2Air

⎡

⎣

M

Cr

⎤

⎦

−1 ⎡

⎣

0(n−p+w)×p

Ip

⎤

⎦ .

From the previously discussions we can see that the observer matrices Nir, Lir, Tir and Qir

can be computed out once Zr is determined. The selection of suitable Zr that makes the error
dynamic equation (8) is stable will be discussed later.

After getting the estimation of α based on the reduced-order observer (4), we obtain the
estimated sensor fault from ̂fs(t) = [ 0w×(n−p) Iw ] α̂(t). Extend M1x̂(t) as

[

M1x̂(t)
Crx̂(t)

]

, and we can

have
[

M1x̂(t)
Crx̂(t)

]

= Srx̂(t) =
[

[ In−p 0(n−p)×w ]α̂(t)

y(t)−Gr
̂fs(t)

]

. Then, the asymptotical estimations of the
state can be obtained from

x̂(t) = S−1
r

⎡

⎣

[

In−p 0(n−p)×w

]

α̂(t)

y(t) − Gr
̂fs(t)

⎤

⎦

by noticing that Sr is nonsingular.
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Next, we shall focus on the observer-based fault-tolerant controller design for plant (2). We
construct the following observer-based controller as:

u(t) =
N
∑

i=1

ρi(θ(t))
�

Kir x̂(t), (18)

where x̂(t) is the estimated state provided by (4), and
�

Kir will be designed later in the following
analysis.

Substitute (18) into (2), and we can obtain the whole resulting closed-loop system

ẋ(t) =
N
∑

i=1

ρi(θ(t))
N
∑

j=1

ρj(θ(t))((Air + Bir

�

Kjr)x(t) − Bir

�

Kjrex(t)), (19)

where ex(t) = x(t) − x̂(t). If we can find suitable matrix Zr such that system (8) is stable,

then we have ex(t) → 0. Hence, if
�

Kjr can be designed to ensure the stability of the following
system, x(t) will be stable

ẋ(t) =
N
∑

i=1

ρi(θ(t))
N
∑

j=1

ρj(θ(t))((Air + Bir

�

Kjr)x(t)). (20)

The following theorem is the major result of the present paper which provides the existence
conditions of the proposed observer and controller.

Theorem 3.2 If there exist symmetric positive definite matrices Pr ∈ R(n+w−p)×(n+w−p),
Rr ∈ Rn×n, symmetric matrices Xxr ∈ Rn×n and Xer ∈ R(n+w−p)×(n+w−p), and matrices
Yr ∈ R(n+w−p)×(n+p) such that the following matrix inequalities hold
⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

Rr(Air + Bir

�

Kjr) + (Air + Bir

�

Kjr)TRr

+
∑

k′∈Sr
k

πrk′(Rk′ − Xxr)
0

0
PrNir1 − YrNir2 + NT

ir1P r

−(YrNir2)T +
∑

k′∈Sr
k

πrk′(Pk′ − Xer)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

< 0, (21)

Rk′ − Xxr ≥ 0, k′ ∈ Sr
uk, k′ = r, (22)

Rk′ − Xxr ≤ 0, k′ ∈ Sr
uk, k′ �= r, (23)

Pk′ − Xer ≥ 0, k′ ∈ Sr
uk, k′ = r, (24)

Pk′ − Xer ≤ 0, k′ ∈ Sr
uk, k′ �= r, (25)

where Zr = P−1
r Yr, then the observer error system (8) and closed-loop system (19) is stochas-

tically stable.

Proof Consider the Lyapunov candidate function as V (x(t), e(t), r(t)) = xT(t)R(r(t))x(t)+
eT(t)P (r(t))e(t), and for each r ∈ S, take the weak infinitesimal operator along the trajectories
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of (8) and (20), then it follows that

�V (x(t), e(t), r)

=
N
∑

i=1

ρi(θ(t))
N
∑

j=1

ρj(θ(t))
(

xT(t)(Rr(Air + Bir

�

Kjr) + (Air + Bir

�

Kjr)TRr)x(t)

+xT(t)
Nr
∑

k′=1

πrk′Rk′x(t) + eT(t)(PrNir + NT
irPr)e(t) + eT(t)

Nr
∑

k′=1

πrk′Pk′e(t)
)

=
N
∑

i=1

ρi(θ(t))
N
∑

j=1

ρj(θ(t))(xT(t)
(

Rr(Air + Bir

�

Kjr) + (Air + Bir

�

Kjr)TRrx(t)

+xT(t)
∑

k′∈Sr
uk

πrk′Rk′x(t) + xT(t)
∑

k′∈Sr
k

πrk′Rk′x(t) + eT(t)(PrNir + NT
irPr)e(t)

+eT(t)
∑

k′∈Sr
uk

πrk′Pk′e(t) + eT(t)
∑

k′∈Sr
k

πrk′Pk′e(t)
)

, (26)

by noticing S = Sr
k + Sr

uk. It is the fact that
∑

k′∈S

πrk′xT(t)Xxrx(t) = 0 and
∑

k′∈S

πrk′eT(t)Xere(t) = 0,

where Xxr and Xer are symmetric matrices, since
∑

k′∈S πrk′ = 0. Thus, we add the term
−∑k′∈S πrk′xT(t)Xxrx(t) and −∑k′∈S πrk′eT(t)Xere(t) to the right side of (26), and it be-
comes

�V (x(t), e(t), r)

=
N
∑

i=1

ρi(θ(t))
N
∑

j=1

ρj(θ(t))(xT(t)(Rr(Air + Bir

�

Kjr) + (Air + Bir

�

Kjr)TRrx(t)

+xT(t)
∑

k′∈Sr
uk

πrk′Rk′x(t) + xT(t)
∑

k′∈Sr
k

πrk′Rk′x(t) + eT(t)(PrNir + NT
irPr)e(t)

+eT(t)
∑

k′∈Sr
uk

πrk′Pk′e(t) + eT(t)
∑

k′∈Sr
k

πrk′Pk′e(t)) − xT(t)
Nr
∑

k′=1

πrk′Xxrx(t)

−eT(t)
Nr
∑

k′=1

πrk′Xere(t)

=
N
∑

i=1

ρi(θ(t))
N
∑

j=1

ρj(θ(t))(xT(t)(Rr(Air + Bir

�

Kjr) + (Air + Bir

�

Kjr)TRrx(t)

+xT(t)
∑

k′∈Sr
uk

πrk′Rk′x(t) + xT(t)
∑

k′∈Sr
k

πrk′Rk′x(t) + eT(t)(PrNir + NT
irPr)e(t)

+eT(t)
∑

k′∈Sr
uk

πrk′Pk′e(t) + eT(t)
∑

k′∈Sr
k

πrk′Pk′e(t)

−xT(t)
(

∑

k′∈Sr
k

πrk′Xxr +
∑

k′∈Sr
uk

πrk′Xxr

)

x(t)

−eT(t)
(

∑

k′∈Sr
uk

πrk′Xer +
∑

k′∈Sr
k

πrk′Xer

)

e(t)
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=
N
∑

i=1

ρi(θ(t))
N
∑

j=1

ρj(θ(t))(xT(t)(Rr(Air + Bir

�

Kjr) + (Air + Bir

�

Kjr)TRrx(t)

+xT(t)
∑

k′∈Sr
uk

πrk′(Rk′ − Xxr)x(t) + xT(t)
∑

k′∈Sr
k

πrk′ (Rk′ − Xxr)x(t)

+eT(t)(PrNir + NT
irPr)e(t) + eT(t)

∑

k′∈Sr
uk

πrk′(Pk′ − Xer)e(t)

+eT(t)
∑

k′∈Sr
k

πrk′(Pk′ − Xer)e(t). (27)

For unknown the term xT(t)
∑

k′∈Sr
uk

πrk′(Rk′ −Xxr)x(t) and eT(t)
∑

k′∈Sr
k
πrk′(Pk′ −Xer)e(t),

we will argue in four cases:
(I) When r = k′, we have πrk′ ≤ 0, then (22) implies xT(t)

∑

k′∈Sr
uk

πrk′(Rk′ −Xxr)x(t) ≤ 0.
(II) When r �= k′, we have πrk′ ≥ 0, then (23) implies xT(t)

∑

k′∈Sr
uk

πrk′ (Rk′−Xxr)x(t) ≤ 0.
(III) When r = k′, we have πrk′ ≤ 0, then (24) implies eT(t)

∑

k′∈Sr
uk

πrk′(Pk′−Xer)e(t) ≤ 0.
(IV) When r �= k′, we have πrk′ ≥ 0, then (25) implies eT(t)

∑

k′∈Sr
uk

πrk′(Pk′−Xer)e(t) ≤ 0.
Thus, from analyzing Cases (I)–(IV), we can conclude that

xT(t)
∑

k′∈Sr
uk

πrk′(Rk′ − Xxr)x(t) ≤ 0, (28)

eT(t)
∑

k′∈Sr
uk

πrk′(Pk′ − Xer)e(t) ≤ 0. (29)

Substitute (28) and (29) into (27) we have

�V (x(t), e(t), r)

≤
N
∑

i=1

ρi(θ(t))
N
∑

j=1

ρj(θ(t))
(

xT(t)(Rr(Air + Bir

�

Kjr) + (Air + Bir

�

Kjr)TRr)x(t)

+eT(t)(PrNir + NT
irPr)e(t) + xT(t)

∑

k′∈Sr
k

πrk′(Rk′ − Xxr)x(t)

+eT(t)
∑

k′∈Sr
k

πrk′ (Pk′ − Xer)e(t)
)

=
N
∑

i=1

ρi(θ(t))
N
∑

j=1

ρj(θ(t))

⎡

⎣

x(t)

e(t)

⎤

⎦

T

Ωijr

⎡

⎣

x(t)

e(t)

⎤

⎦ , (30)

where Ωijr =
[

Θijr 0
0 Φijr

]

, Θijr = Rr(Air + Bir

�

Kjr) + (Air + Bir

�

Kjr)TRr +
∑

k′∈Sr
k
πrk′(Rk′ −

Xxr), and Φijr = PrNir + NT
irPr +

∑

k′∈Sr
k
πrk′(Pk′ − Xer).

Substitute (16) into (30) and let Yr = PrZr, and one have

�V (x(t), e(t), r) ≤
N
∑

i=1

ρi(θ(t))
N
∑

j=1

ρj(θ(t))

⎡

⎣

x(t)

e(t)

⎤

⎦

T

Ωijr

⎡

⎣

x(t)

e(t)

⎤

⎦ < 0.
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According to (21). Further we can deduce that

�V (x(t), e(t), r) ≤ −
N
∑

i=1

ρi(θ(t))
N
∑

j=1

ρj(θ(t))δ

⎡

⎣

x(t)

e(t)

⎤

⎦

T ⎡

⎣

x(t)

e(t)

⎤

⎦ , (31)

where δ = mini,j,r λmin(−Ωijr).
Integrate on both sides of (31) under zero initial condition, and apply Dynkin’s formula

∫∞
0

�V (x(t), e(t), r)= E{V (x(∞), e(∞), r)} − E{V (x(0), e(0), r0)}, we can yield
∫ ∞

0

�V (x(t), e(t), r)

= E{V (x(∞), e(∞), r)} − E{V (x(0), e(0), r0)}

≤
∫ ∞

0

−
N
∑

i=1

ρi(θ(t))
N
∑

j=1

ρj(θ(t))δ

⎡

⎣

x(t)

e(t)

⎤

⎦

T ⎡

⎣

x(t)

e(t)

⎤

⎦dt

= −δ
∫∞
0

⎡

⎣

x(t)

e(t)

⎤

⎦

T ⎡

⎣

x(t)

e(t)

⎤

⎦ dt.

By noticing
∑N

i=1 ρi(θ(t)) = 1. As V (x(∞), e(∞), r) > 0, we can have from the above
inequality

∫ ∞

0

(

⎡

⎣

x(t)

e(t)

⎤

⎦

T ⎡

⎣

x(t)

e(t)

⎤

⎦

)

dt ≤ E{V (x(0), e(0), r0)}
δ

< ∞,

which implies that
∫∞
0

xT(t)x(t)dt < ∞ and
∫∞
0

eT(t)e(t)dt < ∞. According to Definition 2.1,
we can see that both (8) and (20) are stochastically stable, which in turn ensures the stability
of (19). This completes the proof.

We can obviously find that the matrix inequality conditions (21) are not linear, which
puts obstacle in computing matrices Zr and Kir. Hence, next by using some subtle skills, we
transform (21)–(25) into linear matrix inequalities those can be easily solved to provide the
appropriate Zr and Kir.

Theorem 3.3 If there exist symmetric positive definite matrices Pr ∈ R(n+w−p)×(n+w−p),
Ur ∈ Rn×n, symmetric matrices ˜Xxr ∈ Rn×n and Xer ∈ R(n+w−p)×(n+w−p), and matrices
Yr ∈ R(n+w−p)×(n+p) such that the following linear matrix inequalities hold:

(i) For r /∈ Sr
k,

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

�ijr 0 Ur Ur Ur

∗ ℘ir 0 · · · 0

∗ ∗ −π−1
rlr1

Ulr1

. . . 0

∗ ∗ 0
. . . 0

∗ ∗ 0 0 −π−1
rlrm

Ulrm

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

< 0; (32)



1416 LI XIAOHANG, et al.

(ii) For r ∈ Sr
k, lrm �= r,

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

�ijr 0 Ur Ur Ur

∗ ℘ir 0 · · · 0

∗ ∗ −π−1
rlr1

Ulr1

. . . 0

∗ ∗ 0
. . . 0

∗ ∗ 0 0 −π−1
rlrm

Ulrm

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

< 0, (33)

Uk′ − ˜Xxr ≥ 0, k′ ∈ Sr
uk, k′ = r, (34)

⎡

⎣

− ˜Xxr Ur

Ur −Uk′

⎤

⎦ ≤ 0, k′ ∈ Sr
uk, k′ �= r, (35)

Pk′ − Xer ≥ 0, k′ ∈ Sr
uk, k′ = r, (36)

Pk′ − Xer ≤ 0, k′ ∈ Sr
uk, k′ �= r, (37)

where �ijr = AirUr + Bir

�

KjrUr + (AirUr + Bir

�

KjrUr)T −∑k′∈Sr
k
πrk′ ˜Xxr, ℘ir = PrNir1 −

YrNir2 +NT
ir1P r − (YrNir2)T +

∑S
k′∈Sr

k
πrk′(Pk′ −Xer), �ijr = AirUr +Bir

�

KjrUr +(AirUr+

Bir

�

KjrUr)T − ∑

k′∈Sr
k
πrk′ ˜Xxr+πrrUr, ˜Xxr = UrXxrUr and lrm represents the mth known

element in Sr
k, then the observer error system (8) and closed-loop system (19) is stochastically

stable.

Proof Let Ur = R−1
r , and pre- and post-multiply

[

Ur 0
0 I

]

and Ur on both sides of (21)
and (22)–(23), we have

⎡

⎢

⎢

⎢

⎢

⎢

⎣

AirUr + Bir

�

KjrUr + (AirUr + Bir

�

KjrUr)T

−∑k′∈Sr
k
πrk′UrXxrUr +

∑

k′∈Sr
k
πrk′UrRk′Ur

0

0
PrNir1 − YrNir2 + NT

ir1P r

−(YrNir2)T +
∑

k′∈Sr
k
πrk′(Pk′ − Xer)

⎤

⎥

⎥

⎥

⎥

⎥

⎦

< 0,

Uk′Rk′Uk′ − UrXxrUr ≥ 0, k′ ∈ Sr
uk, k′ = r,

UrRk′Ur − UrXxrUr ≤ 0, k′ ∈ Sr
uk, k′ �= r.

Using Schur complement lemma, (32)–(37) can be easily accessible to by noticing ˜Xxr =
UrXxrUr and πrr < 0. This completes the proof.

The whole design procedures are summarized as follows:
Step 1 Solve LMIs (32)–(37) to get

�

Kir and Zr.
Step 2 Substitute Zr into (13)–(14) and (16) to obtain Tr, Qr, Nir and Kir.
Step 3 Substitute Kir into (17) to get Lir.
Now the observer coefficient matrices Tr, Qr, Nir, Lir and observer-based fault-tolerant

control gain
�

Kir are all obtained. The proposed reduced-order observer and fault-tolerant
control can be constructed.
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Remark 3.4 Although Reference [10–19] concerned the problems of simultaneous fault
estimation methods, they were on the basis of designing full-order (augmented) observers.
However, in this paper, we design a novel reduced-order observer to provide state and sensor
fault estimations, which involves less integrators, compared with adaptive ones[15,16,19], and has
a simpler structure, thus can be easier to implement.

Remark 3.5 Reference [10–12, 14] required the exact boundaries of the faults and their
derivatives, which brought some conservatism, as it is usually difficult to access to the exact
information of the faults in practice. However, in our method, we do not need any priori
information of the faults, thus has a looser pre-conditions.

Remark 3.6 To our best knowledge, most of the fault estimation and fault-tolerant con-
trol methods for MJSs were designed under the assumptions of exact knowing of the transition
rates, however, our proposed method is designed with partial unknown transition rates, which
ensures generality as it can be directly applied to MJSs with exact transition rates, as shown
in the simulation section.

Remark 3.7 In the existing observer-based fault-tolerant control works, the control gain
matrices were determined before the designs, which led to that some control performances can
not be guaranteed well, such as. In the proposed method, the control gain matrix can be
computed online, which brings some freedom to the design.

Remark 3.8 In practical control systems, although sensor faults are common, actuator
faults also occur frequently, however, this manuscript only discusses sensor fault estimation,
which seems limited. So it will make big significance to study simultaneous actuator and sensor
fault estimation based on reduced-order observer. In our next work, we intend to combine
the proposed method with descriptor system theory to accomplish the simultaneous estimation
problems.

4 Simulation

4.1 Numerical Study

We consider the plant (2) associates with Modes (1) and (2) and two fuzzy rules, and the
system data are chosen as follows:

A11 =

⎡

⎣

−1.5 −1.3

−1.1 −2

⎤

⎦ , A21 =

⎡

⎣

−1.5 −0.3

−3 −1

⎤

⎦ , A12 =

⎡

⎣

−5 −0.4

−1 −1.06

⎤

⎦ , A22 =

⎡

⎣

−2.5 −1.4

−2.1 −2.06

⎤

⎦ ,

B11 = B12 = B21 = B22 =

⎡

⎣

−1

0.5

⎤

⎦ , C1 = C2 =
[

0.6 0.4
]

, G1 = G2 = 0.1.

The TRM has the following form Π = (πrj)2×2 =
[−0.5 0.5

? ?

]

. We take the premise variable
θ(t) = [ θ1(t) θ2(t) ··· θq(t) ]T as output, which can be measured online and assume that the mem-
bership functions are ρ1(θ(t)) = 1−sin(y(t))

2 and ρ2(θ(t)) = 1− ρ1(θ(t)), respectively. We choose
M =

[−2 0 0
0 0 1

]

to make sure Sr is nonsingular. According to Step 1, the control gains are ob-
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tained as K11 = K12 = [ 2.1367 −2.1289 ], K21 = [ 2.7909 0.4619 ] , K22 = [ 3.2145 1.7863 ], and we can
also get

Z1 = 104 ×
⎡

⎣

−1.1235 −1.0867 −2.0012

−1.0765 −4.8970 −3.2156

⎤

⎦

and

Z2 = 104 ×
⎡

⎣

−2.1256 1.6987 −1.6578

−8.7485 3.2356 −1.2354

⎤

⎦ .

Finally, we can compute the other observer matrices Tr, Qr, Nir and Lir by following Steps 2–3.
For simulation, the sensor fault is set to be fs(t) = 3 cos(t) + sin(t). The initial state of

System (2) and observer (4) are x(0) = [ 2 1 ] and z(0) = [ 0 4 ], respectively. The estimations of
state, which are activated by the fault-tolerant controller, are shown in Figures 1–2, illustrating
that the closed-loop system is stochastically stable under the designed controller (18). The
sensor fault estimation performance is depicted in Figure 3. Figure 4 shows the switching
signal r(t). It can be seen that both the states and sensor fault can be accurately estimated
and controlled using the proposed method, thus proving the feasibility of the discussed method.

0 10 20 30 40 50 60
time(sec)

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

The actual state x1

The estimated state x1

Figure 1 Stabilization and estimation of x1(t)

0 10 20 30 40 50 60
time(sec)

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

The actual state x2

The estimated state x2

Figure 2 Stabilization and estimation of x2(t)
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0 10 20 30 40 50 60
time(sec)

-4

-2

0

2

4

6

8

10

The actual sensor fault
The estimated sensor fault

Figure 3 Stabilization and estimation of fs(t)

0 10 20 30 40 50 60
time(sec)

0

0.5

1

1.5

2

2.5

3

Switching Signal

Figure 4 Switching signal r(t)

4.2 Compared Study

In order to testify the generality of the proposed method, we assume the transition rate
matrix to be exact known as Π =

[−1 1
2 −2

]

. The existence conditions of the proposed observer
and controller in Theorem 3.2 will become (33) with k′ ∈ S. We obtain that

Z1 = 103 ×
⎡

⎣

0.0014 −0.3529 −0.1504

−0.0896 −2.2666 −1.0226

⎤

⎦ ,

Z2 = 104 ×
⎡

⎣

−0.5293 0.7723 0.0283

−1.7858 2.4672 0.0368

⎤

⎦ ,

from solving the corresponding linear matrix inequalities. The simulation performance is de-
picted in Figures 5–6. From the simulation performance we can clearly see that the proposed
method can be put into use for the MJSs with exact transition rates, as discussed in Remark3.6.
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0 10 20 30 40 50 60
time(sec)

-6

-4

-2

0

2

4

6

The actual state x1

The actual state x2

Figure 5 Stabilization of the states

0 10 20 30 40 50 60
time(sec)

-16

-14

-12

-10

-8

-6

-4

-2

0

2

The observer error of  x1

The observer error of x2

The observer error of sensor fault

Figure 6 Observer errors of state and sensor fault stabilization of the states

5 Conclusions

In this paper, simultaneous estimations of state and sensor fault, together with the design of
fault-tolerant control, are studied for a class of T-S fuzzy MJSs with PUTRs. A novel reduced-
order observer is proposed to estimate the states and sensor faults simultaneously. Based on the
state estimation, a fault-tolerant state-feedback controller is designed to ensure the stochastic
stability for the resulting closed-loop system. Sufficient conditions of the existences of the
observer and controller are given in terms of linear matrix inequalities. The simulation results
show the validation and effectiveness of the proposed observer and controller.
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