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Abstract In this paper, the input-to-state stability (ISS) analysis is addressed for switched nonlinear

delay systems. By introducing a novel Lyapunov-Krasovskii functional with indefinite derivative and

the merging switching signal techniques, some new criteria are established for switched nonlinear delay

systems under asynchronous switching, which extends the existing results to the nonlinear systems

with switching rules and delays. The ISS problem is also considered under synchronous switching for

switched nonlinear systems by employing the similar techniques. Finally, a nonlinear delay model is

provided to show the effectiveness of the proposed results.

Keywords Asynchronous switching, average dwell time, input-to-state stability, Lyapunov-Krasovskii

functional, switched delay system.

1 Introduction

The switched nonlinear system, typically, contains a family of nonlinear subsystems and
a logical rule that handles the switching between the subsystems. It is used to model many
physical or man-made systems displaying switching features and has been extensively studied
in past years[1–5]. Because time delays often occur in many practical control systems such
as communication systems, and often lead to poor system performance even instability of the
systems[6, 7], the influence of time delays for system performance can not be ignored. Switched
systems with time delays are referred to as switched delay systems, which are a brand new type
of systems. A large number of actual systems belong to typical switched delay systems, such
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as network control systems and mechanical rotational cutting processes[8, 9]. The dynamic be-
haviour of switched delay systems is more complicated than that of non-switched delay systems
or switched systems without time delays due to the interaction among continuous dynamics,
discrete dynamics and time delays. For switched delay systems, there are a number of results
with respect to stability analysis and controller design[10–15].

Last two decades witnessed the rapid progress of input-to-state stability (ISS) since it was
first proposed in [16]. ISS characterizes that the dynamic behavior of the system remains
bounded when its inputs are bounded, and tends to equilibrium when the inputs go to zero,
which is proved to be a very popular and useful tool for robustness analysis of nonlinear control
systems influenced by external inputs[17, 18]. Recently, ISS has been extended to switched delay
systems by the use of the multiple Lyapunov-Krasovskii functionals[19–21]. However, it should
be pointed out that all these results require that the Lyapunov-Krasovskii functional has a
negative definite derivative, which is difficult in practice. In [22], a new criterion is proposed for
the ISS of nonlinear time-varying systems through the construction a KL function and the use
of a new type of Lyapunov function for which the derivative is allowed to be positive definite
during some periods. Inspired by this work, we shall establish a new Lyapunov-Krasovskii
functional with indefinite derivative checking the ISS property of switched delay systems.

Usually, by an ideal switched system, we mean that the controller has instant access to
both the plant’s state and the plant’s switching signal. In this case, we see that the controller’s
switching and the plant’s switching are synchronized[23]. However, when the system and the
controller communicate via a communication channel and the current subsystem is switched to
next one, it will take some time to identify the active subsystem and then switch the controller
from the current one to the corresponding one. For this case, the closed-loop system will feature
asynchronous switching signal[24–27]. In [28], ISS criteria of time-varying stochastic systems are
obtained by applying the generalized Razumikhin and Krasovskii stability theorems. And, the
time-derivatives of the Razumikhin functions and Krasovskii functionals are not required to
be negative definite. In [29], the problem of ISS for switched nonlinear time-varying system
is considered by Lyapunov functions that its derivative are allowed to be indefinite. However,
in the above work, the switching signal available to the controller is synchronized with the
switching signal of the subsystems. In [30], the problem of ISS for the switched nonlinear delay
systems is investigated, where the Lyapunov-Krasovskii functional is required to be negative
definite. Motivated by these observations, we focus our attentions upon the ISS issue of switched
nonlinear systems with time delays using the Lyapunov-like functional with indefinite derivative
under the asynchronous switching. Borrowing the merging switching signal technique reported
in [31] and utilizing the average dwell time technique, we establish some ISS conditions ensuring
the ISS of the given switched delay systems by constructing Lyapunov-like functional with
indefinite derivative under the asynchronous switching. Our results are proved to be more
relaxed than those in [30]. In addition, we also provide the ISS conditions for switched nonlinear
delay systems for the case of synchronous switching. Finally, a nonlinear delay model is provided
to show the effectiveness of the proposed result.

The rest of the paper is organized as follows: Section 2 first defines ISS and other basic
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concepts. Section 3 constructs some new criterions for the ISS of switched nonlinear delay
systems with synchronous and asynchronous switching. Section 4 gives a numerical example
that illustrate the effectiveness of results. Section 5 gives some concluding remarks.

Notations Throughout this paper, the symbol | · | denotes a real vector or induced matrix
norm for vectors in the Euclidean space. R

+ denotes the set of nonnegative real numbers. R
n is

the n-dimensional vector space and N is the set of nonnegative integers. For a measurable and
essentially bounded function u : R

+ → R
m, we define its infinity norm ‖u‖∞ = ess supt≥0 |u(t)|,

where “ess sup” stands for essential supremum. If we have ‖u‖∞ < ∞, then we write u ∈ Lm
∞.

τ is the input delay satisfying 0 ≤ τ ≤ r. C([−r, 0]; Rn) denotes the set of the continuous
functions mapping from [−r, 0] to R

n. Given r > 0, a norm on C([−r, 0]; Rn) is defined as
‖φ‖M2 = (φT (0)φ(0) +

∫ 0

−r
φT (s)φ(s)ds)

1
2 for any φ ∈ C([−r, 0]; Rn). For each t ∈ R

+, xt ∈
C([−r, 0]; Rn), is defined as xt(s) := x(t + s), −r ≤ s ≤ 0. For a continuous-time signal w(t),
set ‖w[t1, t2]‖∞ = supt1≤s≤t2{|w(s)|}. And, Save[τa, N0] denotes the class of switching signals
with average dwell time τa and chatter bound N0.

2 Problem Formulation

Consider the following n-dimensional switched nonlinear delay system:

ẋ(t) = fσ(t)(t, xt, u(t)), xt0(θ) = ξ(θ), θ ∈ [−r, 0], (1)

where x(t) ∈ R
n is the state; u(t) ∈ R

m is the input function; ξ(θ) ∈ C([−r, 0]; Rn) is the initial
data; r ≥ 0 is the maximum involved delay. σ(t) : R

+ → Nc = {1, 2, · · · , m} specifies, at each
time instant t, the index of the active subsystem. Corresponding to the switching signal σ(t),
we have the following switching sequence Σ = {ξ(θ) : (i0, t0), · · · , (ik, tk), · · · |ik ∈ Nc, k ∈ N},
which means that the ik-th subsystem is activated when t ∈ [tk, tk+1). It is assumed that
no jump occurs in the state at a switching time and that only finitely many switchings can
occur in any finite interval. For each ik ∈ Nc, fik

: R
+ × R

n × C([−r, 0]; Rn) × R
m → R

n

is completely continuous and locally Lipschitz so that the existence and uniqueness property
holds for System (1). Throughout the whole paper, we assume that fik

(0, 0, 0, 0) = 0. In ideal
cases, assume that u(t) = gσ(t)(t, xt, w(t)) with w(t) ∈ Lm

∞, we have

ẋ(t) = fσ(t)(t, xt, gσ(t)(t, xt, w(t))), t ≥ t0.

Thus, the corresponding closed-loop switched system can be written as

ẋ(t) = fσ(t)(t, xt, w(t)). (2)

We recall the following standard definitions. A continuous function γ : [0, a) → [0,∞) is
said to be of class K if it is strictly increasing and γ(0) = 0. It is said to belong to class K∞ if
a = ∞ and γ(r) → ∞ as r → ∞. A continuous function β : [0, a) × [0,∞) → [0,∞) is of class
KL if, for each fixed s, the mapping β(r, s) belongs to class K with respect to r and, for each
fixed r, the mapping β(r, s) is decreasing with respect to s and β(r, s) → 0 as s → ∞.
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Definition 2.1 (see [7]) For any t ≥ t0 and any switched signal σ(ς), t0 ≤ ς < t, let
Nσ(t0, t) mean the number of switchings of σ(ς) during the interval [t0, t). If there exist N0 > 0
and τa > 0 such that Nσ(t0, t) ≤ N0 + (t− t0)/τa, then τa and N0 are called average dwell time
and the chatter bound, respectively.

Definition 2.2 (see [14]) System (2) is said to be ISS, if there exist a class KL function
β and a class K function γ such that, for any initial state ξ ∈ C([−r, 0]; Rn), w(t) ∈ Lm

∞ and all
possible switching signals σ(t), the solution of (2) exists globally and satisfies

|x(t)| ≤ β(‖ξ‖∞, t − t0) + γ(‖w[t0, t]‖∞), t ≥ t0 ≥ 0. (3)

To establish the ISS stability property of System (2), we consider a piecewise Lyapunov-
Krasovskii functional V (t, φ) := Vσ(t)(t, φ), where V (t, φ) is continuously differentiable and φ is
the solution to System (2). For each i ∈ Nc, define the upper right-hand derivative of Vi(t, φ)
with respect to the i-th mode of System (2) as follows:

D+Vi(t, φ) = lim
h→0+

sup
Vi(t + h, φ∗

h) − Vi(t, φ)
h

, (4)

where φ∗
h ∈ C([−r, 0]; Rn) is given by

φ∗
h(s) =

⎧
⎨

⎩

φ(s + h), s ∈ [−r,−h];

φ(0) + fi(t, φ, w)(h + s), s ∈ [−h, 0].

In practical applications, the switching of the controller may not correspond precisely to the
switching of the system because it is unavoidable to take some time to identify it and then
switch the controller from the present one to the matched one. So, due to the existence of
switching delay τs(t), we consider the following input:

u(t) = gσ(t−τs(t))(t, xt, w(t)), (5)

where τs(t) is the uncertain switching delay, satisfying 0 ≤ τs(t) ≤ τ s. Here assume that the
maximal switching delay τs is known without loss of generality, which satisfies 2r ≤ τs + r ≤
tk+1 − tk, k ∈ N. As a result, we have the following switching sequence: {ξ(θ) : (i0, t0 +
τs(t0)), (i1, t1 + τs(t1)), · · · , (ik, tk + τs(tk)), · · · , |ik ∈ Nc, k ∈ N}, which means that the ik-th
controller is active when t ∈ [tk + τs(tk), tk+1 + τs(tk+1)), k ∈ N.

In order to present the main result, the merging switching technique proposed in [31] will
be introduced. Given two mismatched switching signals such as σ1(t), σ2(t), we can create a
virtual switching signal σ′(t) : [0,∞) → N c = Nc ×Nc as follows: σ′(t) = (σ1(t), σ2(t)). The
merging action is denoted by ⊕ such that σ′(t) = σ1(t) ⊕ σ2(t). From the definition, it follows
that the set of switching times of σ′(t) is the union of the sets of switching times of σ1(t) and
σ2(t).

Lemma 2.3 (see [31]) Let σ1(t) ∈ Save[τa, N0], and σ2(t) = σ1(t − τs(t)), it has σ2(t) ∈
Save[τa, N0 + τs

τa
], σ′(t) ∈ Save[τa, N0], where τa = τa

2 , N0 = 2N0 + τs

τa
.
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Lemma 2.4 (see [31]) Let σ1(t) ∈ Save[τa, N0], and σ2(t) = σ1(t−τs(t)), for some positive
function τs(t). For an interval (t0, t) , let m(t0,t) be the total time for which σ1(t) = σ2(t), and
let m(t0,t) = t − t0 − m(t0,t). Suppose that 0 ≤ τs(t) ≤ τ s for all t. If

τs(λs + λu) ≤ (λs − λ)τa (6)

for some positive constants λs, λu and λ ∈ [0, λs], then

−λsm(t0,t) + λum(t0,t) ≤ cT − λ(t − t0), ∀t ≥ t0, (7)

where cT = (λs + λu)N0τs.

Now, rewriting the system and integrating the switching sequence of the system with the
switching sequence of the controller, we can derive

ẋ(t) = fσ′(t)(t, xt, w(t)). (8)

3 Main Results

Theorem 3.1 Consider the switched nonlinear time-delay system (8) with the disturbance
input w(t) ∈ Lm∞. Suppose there exists a piecewise Lyapunov-Krasovskii functional V (t, φ) =
Vσ′(t)(t, φ), and functions α1, α2, ρ ∈ K∞, continuous function λii(t), ϕij(t), constants δii > 0,
δij > 0 and T > t0, cii, cij and μ ≥ 1, such that, for all i, j ∈ Nc, i �= j we have

(a) α1(|φ(0)|) ≤ V (t, φ) ≤ α2(‖φ‖M2), ∀(t, φ) ∈ R
+ × R

n;

(b) ‖φ‖M2 ≥ ρ(|w(t)|) ⇒
⎧
⎨

⎩

D+Vi,i(t, φ) ≤ λii(t)Vi,i(t, φ),

D+Vi,j(t, φ) ≤ ϕij(t)Vi,j(t, φ);

(c) Vi,i(t, φ) ≤ μVi,j(t, φ), Vi,j(t, φ) ≤ μVj,j(t, φ);

(d)
∫ ∞

t0

λ+
ii(τ)dτ ≤ cii < ∞,

∫ ∞

t0

ϕ−
ij(τ)dτ ≤ cij < ∞, ∀ t > T, T > t0;

(e)
∫ t

t0

λ−
ii (τ)dτ ≥ δii(t − t0),

∫ t

t0

ϕ+
ij(τ)dτ ≥ δij(t − t0), ∀ t > T, T > t0, (9)

where

λ+
ii(t) = max{λii(t), 0}, λ−

ii (t) = max{−λii(t), 0};
ϕ+

ij(t) = max{ϕij(t), 0}, ϕ−
ij(t) = max{−ϕij(t), 0}.

If the switching signal satisfies average dwell time τa > τ∗
a = 2 ln μ+Mτs

δs
, where

M = sup
t≥t0

{λ−
s (t) + ϕ+

u (t)}, λs(t) = min
i∈Nc

{λii(t)},

ϕu(t) = max
i,j∈Nc,i	=j

{ϕij(t)}, δs = min
i∈Nc

{δii},

then the system (8) is ISS.



880 ZONG GUANGDENG · ZHAO HAIJUAN

Proof Let t0 ≥ 0 be arbitrary. For t ≥ t0, let

ν(t) := ρ(‖w[t0, t]‖∞), c(t) := α−1
1

(
g0eδs(T−t0)α2(ν(t))

)
,

where g0 = CμN0eMN0τs and C = maxi∈Nc

{
e
∫ ∞

t0
λ+

ii(τ)dτ}
.

Furthermore, introduce the sets Bν(t) := {φ ∈ C([−r, 0]; Rn) : ‖φ‖M2 ≤ ν(t)} as well as
Bc(t) := {φ ∈ C([−r, 0]; Rn) : ‖φ‖M2 ≤ c(t)}. Note that ν(t), and thus also c(t), are non-
decreasing functions of time, and therefore the ball Bν and Bc has non-decreasing volume.

If ‖φ‖M2 ≥ ν(t) ≥ ρ(|w(t)|) during some time interval t ∈ [t′, t′′], and [tk, tk+1)∩ [t′, t′′] �= 0,
where tk is the k-th switching instant of the corresponding subsystem. Define the piecewise
Lyapunov-Krasovskii functional Vσ′(t)(t, xt). Let the function W (t) = e−

∫
t
t0

λii(τ)dτ
Vσ′(t)(t, xt).

When σ1(t) = σ2(t), from Condition (b), we have

Ẇ (t) = −λii(t)e
− ∫

t
t0

λii(τ)dτ
Vσ′(t)(t, xt) + e−

∫
t
t0

λii(τ)dτ
D+Vσ′(t)(t, xt) ≤ 0, (10)

that is W (t) is monotone decreasing. And, from (10) and Condition (c), we have

W (ti+1) ≤ μW (t−i+1) ≤ μW (ti). (11)

In a similar way, when σ1(t) �= σ2(t), we get

Ẇ (t) ≤ −λii(t)e
− ∫ t

t0
λii(τ)dτ

Vσ′(t)(t, xt) + ϕij(t)e
− ∫ t

t0
λii(τ)dτ

Vσ′(t)(t, xt)

= (−λii(t) + ϕij(t))W (t). (12)

And, from (12) and Condition (c), we have

W (ti+1) ≤ μW (t−i+1) ≤ μe
∫ ti+1

ti
(−λii(τ)+ϕij(τ))dτW (ti). (13)

In any interval [t′, t′′], let t1, t2, · · · , tk denote the switching times of the corresponding sub-
system in (t′, t′′), t0 = t′, tk+1 = t′′. For any t ∈ [tk, tk + τs(tk)], by using the iteration, (11)
and (13) yield

W (t) ≤ μe
∫

t
tk

(−λii(τ)+ϕij(τ))dτ
W (tk)

≤ μ2e
∫

t
tk

(−λii(τ)+ϕij(τ))dτ
W (tk−1 + τs(tk−1))

≤ μ3e
∫ tk−1+τs(tk−1)

tk
(−λii(τ)+ϕij(τ))dτe

∫
t
tk

(−λii(τ)+ϕij(τ))dτ
W (tk−1)

≤ · · · ≤

≤ μNσ′ (t0,t)e

k−1∑

q=0

∫ tq+τs(tq)
tq

(−λii(τ)+ϕij(τ))dτ

e
∫ t

tk
(−λii(τ)+ϕij(τ))dτ

W (t0)

≤ μNσ′ (t0,t)e

k−1∑

q=0

∫ tq+τs(tq)
tq

(λ−
s (τ)+ϕ+

u (τ))dτ

e
∫ t

tk
(λ−

s (τ)+ϕ+
u (τ))dτ

W (t0), (14)

where

λ−
s (t) = max{−λs(t), 0}, ϕ+

u (t) = max{ϕu(t), 0},
λs(t) = min

i∈Nc

{λii(t)}, ϕu(t) = max
i,j∈Nc,i	=j

{ϕij(t)}.
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Similarly, for any t ∈ [tk + τs(tk), tk+1), we have

W (t) ≤ μNσ′ (t0,t)e

k∑

q=0

∫ tq+τs(tq)
tq

(−λii(τ)+ϕij(τ))dτ

W (t0)

≤ μNσ′ (t0,t)e

k∑

q=0

∫ tq+τs(tq)
tq

(λ−
s (τ)+ϕ+

u (τ))dτ

W (t0). (15)

Substituting W (t) = e−
∫ t

t0
λii(τ)dτ

Vσ′(t)(t, xt) into (14) and (15), respectively, yields

Vσ′(t)(t, xt) ≤ μNσ′(t)(t0,t)e
∫

t
t0

λ+
ii(τ)dτe−

∫
t
t0

λ−
ii(τ)dτeMm(t0 ,t)Vσ′(t0)(t0, xt0)

≤ CμNσ′(t)(t0,t)e−
∫ t

t0
λ−

ii(τ)dτe(M−δs)m(t0,t)−δsm(t0 ,t)+δs(t−t0)Vσ′(t0)(t0, xt0), (16)

where δs = mini∈Nc{δii} and C = maxi∈Nc

{
e
∫ ∞

t0
λ+

ii(τ)dτ}
, for all t > t0.

Bearing Condition (e) into mind, one yields that

Vσ′(t)(t, xt) ≤ CμNσ′(t)(t0,t)e(M−δs)m(t0,t)−δsm(t0,t)Vσ′(t0)(t0, xt0)

≤ CμNσ′(t)(t0,t)e(M−δs)m(t0,t)−δsm(t0,t)eδs(T−t0)Vσ′(t0)(t0, xt0) (17)

holds for all t > T , where T ≥ t0 is a finite constant.
Due to

τa > τ∗
a =

2 ln μ + Mτs

δs
, (18)

which implies the existence of δ such that

2 ln μ

τa
< δ < δs − Mτs

τa
, (19)

which can be rewritten as

Mτ s < (δs − δ)τa, (20)

δ >
ln μ

τa
. (21)

Then, by Lemma 2.4, we get

−δsm(t0,t) + (M − δs)m(t0,t) ≤ cT − δ(t − t0), (22)

where cT = MN0τ s.
From the above discussions, we can derive

Vσ′(t)(t, xt) ≤ CμNσ′(t)(t0,t)ecT−δ(t−t0)eδs(T−t0)Vσ′(t0)(t0, xt0)

≤ g0eδs(T−t0)e−(δ− ln μ
τa

)(t−t0)Vσ′(t0)(t0, xt0), (23)

where g0 = CμN0eMN0τs .
From Condition (a), there holds

|x(t)| ≤ α−1
1

(
g0eδs(T−t0)e−(δ− ln μ

τa
)(t−t0)α2(‖xt0‖M2)

)

≤ β(‖ξ‖M2 , t − t0), (24)
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where β ∈ KL is constructed as follows

β(r, t) =

⎧
⎪⎪⎨

⎪⎪⎩

α−1
1

(
g0eδs(T−t0)α2(r)

)
, t0 ≤ t ≤ T,

α−1
1

(
g0eδs(T−t0)α2(r)e(−δ+ ln μ

τa
)t
)
, t ≥ T + 1,

α−1
1

(
g0eδs(T−t0)α2(r)(T + 1 − t + e(−δ+ ln μ

τa
)(T+1)(t − T ))

)
, T < t < T + 1,

(25)

where δ and T are ensured by Condition (e). For fixed r, it is obvious that β(r, t) is continuous
in t. Moreover, to derive the KL property of function β(r, t), letting q := δ − ln μ

τa
and bearing

the convexity of e−qt, we have

e−qt ≤ e−qT (T + 1 − t) + e−q(T+1)(t − T )

≤ (T + 1 − t) + e−q(T+1)(t − T ), T < t < T + 1. (26)

It is easily verified that β(r, t) is a decreasing function for a fixed r and β(r, t) is a KL function.
From the above discussions, we can obtain

|x(t)| ≤ β(‖xt′‖M2 , t − t′), (27)

for all t ≥ t′.
Denote the first time when φ ∈ Bν(t) by ť1, i.e., ť1 := inf{t ≥ t0 : ‖φ‖M2 ≤ v(t)}. For

t0 ≤ t ≤ ť1 we get

|x(t)| ≤ β(‖ξ‖M2 , t − t0), (28)

according to (24). For t > ť1, |x(t)| can be bounded above in terms of ν(t). Namely, let
t̂1 := inf{t > ť1 : ‖φ‖M2 > ν(t)}. If this is an empty set, let t̂1 := ∞. Clearly, for all t ∈ [ť1, t̂1),
it holds that |x(t)| ≤ ‖φ‖M2 ≤ v(t) ≤ c(t). For the case of t̂1 < ∞, due to the continuity of
x(·) and monotonicity of ν(·) it holds that ‖xt̂1

‖M2 = ν(t̂1). Furthermore, for all τ > t̂1 , if
‖xτ‖M2 > ν(τ) define

t̂ := sup{t < τ : ‖φ‖M2 ≤ ν(t)}, (29)

which can be interpreted as the previous exit time of the trajectory x(·) from the ball Bν. Again,
due to the same argument as above, one obtains that ‖xt̂‖M2 = ν(t̂). But then, according
to (25), it holds that

|x(τ)| ≤ β(‖x(t̂)‖M2 , τ − t̂)

≤ α−1
1

(
g0eδs(T−t0)α2(‖x(t̂)‖M2)

)

= c(t̂) ≤ c(τ). (30)

Thus, for all t ≥ ť1, it holds that

|x(t)| ≤ c(t)

= α−1
1

(
g0eδs(T−t0)α2(ρ(‖w[t0, t]‖∞))

)

= γ(‖w[t0, t]‖∞). (31)



INPUT-TO-STATE STABILITY OF SWITCHED SYSTEMS 883

Combining (24) with (31) arrives

|x(t)| ≤ β((1 + r)1/2‖ξ‖∞, t − t0) + γ(‖w[t0, t]‖∞)

= β(‖ξ‖∞, t − t0) + γ(‖w[t0, t]‖∞), (32)

for all t ≥ t0, where β(‖ξ‖∞, t − t0) = β((1 + r)1/2‖ξ‖∞, t − t0). The proof is completed.

Remark 3.2 Because mt0,t is the total time for which σ1(t) �= σ2(t) and

M = sup
t≥t0

{λ−
s (t) + ϕ+

u (t)},

in (14) and (15), we can get

∫ t

tk

(λ−
s (τ) + ϕ+

u (τ))dτ +
k−1∑

q=0

∫ tq+τs(tq)

tq

(λ−
s (τ) + ϕ+

u (τ))dτ ≤ Mmt0,t,

k∑

q=0

∫ tq+τs(tq)

tq

(λ−
s (τ) + ϕ+

u (τ))dτ ≤ Mmt0,t.

Thus, (16) is obtained for all t > t0.

Remark 3.3 In this Theorem, the structure of the KL function β(r, t) is complicated but
reasonable, which can be divided into three sections by the time. When t ∈ [t0, T ], β(r, t) =
α−1

1

(
g0eδs(T−t0)α2(r)

)
. And, when t > T , we choose

β(r, t) = α−1
1

(
g0eδs(T−t0)α2(r)e(−δ+ ln μ

τa
)t
)
.

However, the continuity of the function β(r, t) at the time instant T can not be guaranteed.
Further, we apply the convexity of e−qt (with q := δ− ln μ

τa
) during the time interval t ∈ [T, T +1]

to get
β(r, t) = α−1

1

(
g0eδs(T−t0)α2(r)(T + 1 − t + e(−δ+ ln μ

τa
)(T+1)(t − T ))

)
.

Remark 3.4 Consider the asynchronous switching between the controllers and the sys-
tems, the merging switching signal technique is used to guarantee the ISS of the switched
nonlinear delay system. In the above proof, it can be verified that M − δs > 0 from Condi-
tion (e) after some manipulations. Therefore, taking λs := δs, λu := M − δs and by Lemma 2.4,
we obtain (6).

Remark 3.5 Theorem 3.1 extends the results in [22] to nonlinear switched systems with
delays. It is not trivial to do so since it is difficult to deal with the switching signals for nonlinear
systems especially when asynchronous switching occurs.

If τs(t) = 0, the asynchronous switching signal changes to the synchronous switching signal.
Then, we can derive the following Corollary 3.6.

Corollary 3.6 Consider the switched nonlinear time-delay system (2) with the distur-
bance input w(t) ∈ Lm

∞. Suppose that there exists a piecewise Lyapunov-Krasovskii functional
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Vi(t, φ) = Vσ(t)(t, φ), and functions α1, α2, ρ ∈ K∞, continuous functions λi(t), constants ci,
δi > 0 and μ ≥ 1, such that, for all i, j ∈ Nc, we have

(f) α1(|φ(0)|) ≤ Vi(t, φ) ≤ α2(‖φ‖M2), ∀(t, φ) ∈ R
+ × R

n;

(g) ‖φ‖M2 ≥ ρ(|w(t)|) ⇒ D+Vi(t, φ) ≤ λi(t)Vi(t, φ);

(h) Vi(t, φ) ≤ μVj(t, φ);

(i)
∫ ∞

t0

λ+
i (τ)dτ ≤ ci < ∞, ∀ t > T, T > t0;

(j)
∫ ∞

t0

λ−
i (τ)dτ ≥ δi(t − t0), ∀t > T, T > t0,

where λ+
i (t) = max{λi(t), 0}, λ−

i (t) = max{−λi(t), 0}. If the switching signal satisfies with the
average dwell time τa > τ∗

a = ln μ
δ , where δ = mini∈Nc{δi}, then System (2) is ISS.

Remark 3.7 If the condition (h) holds for μ = 1, then the condition τa > τ∗
a = lnμ

δ

reduces to τa > 0. This means that the system is ISS for arbitrarily small dwell time. Actually,
μ = 1 in condition (h) implies the existence of a common ISS-Lyapunov functional for switched
system (2), and thus it is in fact ISS for any arbitrary switching.

4 Simulation Example

Consider the following switched delay systems:

ẋ = fσ(t, x(t), xt, u(t))

=

⎛

⎝
x2

−ρ3x1 − ρ1,σx2 − ρ2,σx1(t − 1) − ρ3x
3
1

⎞

⎠ +

⎛

⎝
1

0

⎞

⎠u(t), (33)

where the parameters are given by ρ1,1 = 1, ρ1,2 = 0.5, ρ2,1 = 0.6, ρ2,2 = 0.3, ρ3 = 1, r = 1
and σ(t) : R

+ → S = {1, 2}. The control input u = gσ(t−τs)(t, x(t), w) with

g1 = x2
1x2 − 4x1 − x2 +

x2

1 + t2
+ w,

g2 = x2
1x2 − x1 − x2

1 + t2
+ w.

Choose the Lyapunov-Krasovskii functional

V (t, xt) = Vσ′ (t, xt) (34)

with

V1,1(t, xt) = x2
1 + x2

2 + c1,1

∫ t

t−1

e−λ1,1(t−s)

(

x2
1 +

1
9
x2

2

)

ds, (35)

V2,2(t, xt) = x2
1 + x2

2 + c2,2

∫ t

t−1

e−λ2,2(t−s)(x2
1 + x2

2)ds, (36)

Vi,j(t, xt) = x2
1 + x2

2 + ci,j

∫ t

t−1

eμi,j(t−s)(x2
1 + x2

2)ds, i �= j, i, j ∈ S, (37)
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where c1,1 = 0.9, c2,2 = 0.39, c1,2 = 0.6, c2,1 = 0.6, λ1,1 = 0.5, λ2.2 = 0.25, μ1,2 = 0.1, μ2,1 = 0.1.
Conditions (a) of Theorem 3.1 are clearly satisfied with α1(‖φ(0)‖) = ‖φ(0)‖2, α2(‖φ‖M2) =

‖φ‖2
M2

. Next, verify the remainder of Condition (c) in Theorem 3.1, we have μ = 2.19. Now,
we check Condition (b). Observe that

D+V1,1 ≤
(

1
1 + t2

− 0.31
)

V1,1, (38)

where the relation 2
√

5|w| ≤ ‖φ‖M2 is used and

λ11(t) =
1

1 + t2
− 0.31. (39)

Then one derives
∫ ∞

t0

λ+
11(τ)dτ ≤ π

2
< ∞,

∫ t

t0

λ−
11(τ)dτ ≥ δ11(t − t0), (40)

where δ11 = 0.0235.
Similarly, for 2

√
5|w| ≤ ‖φ‖M2 , we can derive D+V2,2 ≤ λ22(t)V2,2, D+V2,1 ≤ ϕ21(t)V2,1,

D+V1,2 ≤ ϕ12(t)V1,2, where λ22(t) = 1
1+t2 − 0.09, ϕ12(t) = ϕ21(t) = 1

1+t2 + 0.16. From the
above analysis and based on Theorem 3.1, we get

∫ t

t0
λ−

22(τ)dτ ≥ δ22(t − t0), δ22 = 0.0786 and
M = supt≥t0{λ−

ii(t) + ϕ+
ij(t)} = 0.47. From the proof of the Theorem 3.1, we get δs = 0.0786.

So, if switching delay τ s = 1, we obtain τ∗
a = 2 ln μ+Mτs

δs
= 25.9262. Figure 1 gives the state

response of the closed-loop system with w(t) = sin 0.1t and Figure 2 shows the asynchronous
switching signal, respectively.
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The state trajectory of delay system under asynchronous switching

 

 
x1(t)
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Figure 1 The trajectory of x(t)
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The asynchronous switching signal

 

 
(t)
(t − s̄)

σ
τ

Figure 2 The switching signal of the system

5 Conclusions

In this paper, we have investigated the ISS problem for a class of switched nonlinear de-
lay systems with synchronous or asynchronous switching. By introducing a novel Lyapunov-
Krasovskii functional with indefinite derivative and the merging switching signal techniques,
we have established some new criteria for switched nonlinear delay systems and asynchronous
switching controllers; which generalized the existing results to the nonlinear systems with
switching rules and delays. We have also considered the ISS property under synchronous switch-
ing control for switched nonlinear systems by employing the similar techniques. Borrowing the
delay model with only one cubic structural nonlinearity of the form[21], we have demonstrated
the effectiveness of the proposed results.
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