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Abstract The stochastic resource allocation (SRA) problem is an extensive class of combinatorial

optimization problems widely existing in complex systems such as communication networks and un-

manned systems. In SRA, the ability of a resource to complete a task is described by certain probability,

and the objective is to maximize the reward by appropriately assigning available resources to different

tasks. This paper is aimed at an important branch of SRA, that is, stochastic SRA (SSRA) for which

the probability for resources to complete tasks is also uncertain. Firstly, a general SSRA model with

multiple independent uncertain parameters (GSSRA-MIUP) is built to formulate the problem. Then,

a scenario-based reformulation which can address multi-source uncertainties is proposed to facilitate

the problem-solving process. Secondly, in view of the superiority of the differential evolution algorithm

in real-valued optimization, a discrete version of this algorithm was originally proposed and further

combined with a specialized local search to create an efficient hybrid optimizer. The hybrid algorithm

is compared with the discrete differential evolution algorithm, a pure random sampling method, as well

as a restart local search method. Experimental results show that the proposed hybrid optimizer has

obvious advantages in solving GSSRA-MIUP problems.

Keywords Discrete differential evolution, scenario-based reformulation, stochastic resource alloca-

tion.

1 Introduction

Stochastic resource allocation (SRA) is an extensive class of combinatorial optimization
problems originating from many complex systems, e.g., radio resource allocation in commu-
nication networks[1–4], network topology management[5] and relay resources management of
wireless networks[6], portfolio management[7], circuit design[8], mission planning in unmanned
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systems[9], resource allocation in multi-agent systems[10], reliability optimization in complex
systems[11], and weapon-target assignment in defense-oriented research fields[12–15].

A distinct feature of SRA is reflected by the fact that SRA solutions depend on the proba-
bilities of stochastic elements or/and events. For example, the reliability of a complex system
relies on those of all its components, and the combating effectiveness of a defense system relies
on the performance of all involved weapons against incoming targets. According to literature
survey, various types of SRA are usually characterized as a deterministic optimization problem
with fixed probability parameters[13] or a stochastic one with certain probability distribution
of some key elements[2]. For example, in most research regarding weapon-target assignment
(WTA) which can be regarded as a typical example of SRA problems, the kill probabilities of
weapons against targets are assumed to be known a priori as constant[12–15]. In contrast, Xu,
et al.[2] established a stochastic optimization model for the resource allocation of feedback in
clustered wireless mesh networks by taking into account the probability distribution of signal-
to-noise ratios. Obviously, as uncertainty widely exists in practice, the stochastic optimization
(programming) model may be preferred as a rational choice for SRA in most cases. In the
following, the two types of SRA models mentioned above are differentiated by deterministic
SRA (DSRA) and stochastic SRA (SSRA), respectively. Generally speaking, the SRA in com-
plex systems usually involves uncertainty from different sources. For example, as for WTA
problems, the kill probabilities of different weapons against targets usually follow independent
distributions[16]. In this sense, SRA is generally a stochastic optimization problem with mul-
tiple uncertain parameters. For addressing this kind of stochastic SRA problems, the idea of
sampling-based simulation is employed to generate different combinations of uncertain param-
eters which lead to various scenarios[17]. Each scenario corresponds to one possibility of the
uncertain SRA problem.

In order to solve SSRA problems efficiently, a powerful optimization algorithm, namely,
differential evolution (DE), is employed and redesigned in this paper so as to fit the problem
structure of SSRA. DE is a population-based intelligent optimization method which uses the
difference between individuals to perturb the population so as to explore the whole search
space. DE also adopts greedy selection to evolve solutions in pursuit of global optima[18, 19].
Classical DE adopts an encoding scheme based on floating numbers. So, it is mainly used
to solve continuous-valued optimization problems. It has the virtue of high reliability, strong
robustness, and desirable optimization performance. DE holds only a few parameters, so it
is very easy to use and realize. Due to these facts, DE has been a hotspot in evolutionary
computation research[18].

In view of the excellent performance of DE in continuous-valued optimization, many re-
searchers are trying to build its discrete versions to solve combinatorial optimization problems.
Forward-backward transformation (FBT) and relative position indexing (RPI) are two repre-
sentatives for designing discrete DE (DDE)[20]. However, like many other DDEs, FBT and
RPI were proposed primarily to solve permutation problems in which solutions are encoded as
permutation of many elements[20].

The motivation of this paper is to design a DE-based efficient optimization algorithm to
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solve a class of general SSRA problems. The originality of the paper is reflected in the following
aspects:

1) A general SSRA model with multiple independent uncertain parameters (GSSRA-MIUP)
is established originally. The GSSRA-MIUP model can characterize a class of uncertain pro-
gramming problems regarding the resource allocation in complex systems.

2) A scenario-based reformulation of GSSRA-MIUP is proposed to address the issue of
multi-source uncertainty incurred by multiple independent uncertain parameters. Uncertain
parameters are randomly sampled according to their probability distribution in order to generate
different scenarios for any GSSRA-MIUP instance. Then, the collection of scenarios leads to a
computable formulation of the GSSRA-MIUP model. The reformulation facilitates a desirable
tradeoff between optimality and computational cost.

3) A novel hybrid discrete differential evolution (HDDE) algorithm is proposed to solve
GSSRA-MIUP problems. A specifically designed discrete DE is designed and further enhanced
by local search, giving birth to the hybrid optimizer HDDE. Comparative experiments validate
the superiority of HDDE against several other candidates for solving GSSRA-MIUP problems.

The remaining of the paper is structured as follows. Section 2 gives two formulations of
GSSRA-MIUP, including expected value model and robust optimization model. To address
multi-source uncertainty, GSSRA-MIUP is reformulated by generating a collection of scenarios
through random sampling of uncertain parameters. In Section 3, a discrete differential evolution
algorithm is proposed and further enhanced by local search methods to solve GSSRA-MIUP
problems. Section 4 presents the computational experiments and results, and makes a perfor-
mance comparison of several problem-solvers for GSSRA-MIUP. Section 5 concludes the paper.

2 Formulation of GSSRA-MIUP and Scenario-Based Reformulation

2.1 Basic Formulations of GSSRA-MIUP

In the SSRA, there are R resources to be assigned to T tasks. The effect of assigning a
resource to a task is reflected by the probability of completing the task by the selected resource.
Naturally, the results of performing all the tasks vary with allocation schemes. A reward will
be gained for each task. The objective here is to maximize the total reward by appropriately
assigning resources to tasks. The total reward function can be expressed as follows:

f(X, ξ) =
T∑

j=1

vj

[
1 −

R∏

i=1

(1 − ξij)xij

]
, (1)

xij ∈ {0, 1}, ξij ∼ Sij [0, 1], ∀i ∈ IR = {1, 2, · · ·, R}, ∀j ∈ IT = {1, 2, · · ·, T }, (2)

where X = [xij ]R×T is a decision matrix, and xij = 1 means that the ith resource is assigned
to the jth task (xij = 0, otherwise); ξ = [ξij ]R×T is a matrix of stochastic variables which
are independently distributed within the interval [0, 1] usually with non-identical distributions
Sij [0, 1] (i ∈ IR, j ∈ IT ), IR and IT are the index sets of the resources and tasks, respectively;
ξij reflects the probability that the ith resource, once assigned, will complete the jth task;
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and vj(j ∈ IT ) is the reward for completing the jth task. The first mathematical model for
GSSRA-MIUP is formulated as follows:

P1 : max
X

E[f(X, ξ)] (3)

s.t.
T∑

j=1

xij ≤ mi, ∀i ∈ IR, (4)

R∑

i=1

xij ≤ nj , ∀j ∈ IT , (5)

where E[·] denotes the expectation operator, mi is the maximal number of tasks to which the
ith resource can be assigned, and nj is the maximal number of resources which can be assigned
to the jth task. Inequality (4) means that the ith resource can be assigned to at most mi tasks.
Inequality (5) means that the jth task can be assigned to at most nj resources.

The second model is differentiated from the above formulation P1 only in term of the
objective function:

P2 : max
X

min
ξ

f(X, ξ) (6)

s.t. (4) and (5).

The model P1 is the expected value model for GSSRA-MIUP. In contrast, P2 is a robust
optimization model. P1 is a rational choice for a risk-taker while P2 is usually preferred by
a risk-averse decision-maker. Other models such as chance-constrained model and dependent-
chance model can also be adopted for modeling GSSRA-MIUP[17]. Whether the formulation
P1 or P2 is adopted, the GSSRA-MIUP is obviously an uncertain nonlinear 0-1 programming
problem. Due to the existence of multiple random variables in GSSRA-MIUP, it is usually very
hard to find a straightforward solution to the problem. In the sequel, reformulations will be
provided to facilitate computations and resolution methods.

2.2 Scenario-Based Reformulation

The multi-source uncertainty incurred by multiple independent uncertain parameters as
shown in (3) and (6) impedes the computation of objective functions. The expected value
shown in (3) and the minimum of the total reward function with respect to the uncertainty ξ

shown in (6) are cumbersome, if not possible, to calculate accurately. Here, a scenario-based
reformulation of GSSRA-MIUP is proposed to address the issue.

Firstly, uncertain parameters are randomly sampled according to their probability distribu-
tion in order to generate different scenarios for any GSSRA-MIUP instance. Each combination
of uncertain parameters leads to one scenario, representing one possibility of the uncertainty.
Then, the collection of the various scenarios generated by random sampling will be incorpo-
rated into the GSSRA-MIUP model (P1 or P2) for approximately calculating E[f(X, ξ)] or
minξ f(X, ξ). This approach is also called simulation-based method in the literature as the
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Monte Carlo simulation is the core means to realize random sampling[17, 21]. The reformulation
is presented as follows:

P3 : max
X

1
N

N∑

k=1

f(X, ξ(k)) (7)

s.t. (4) and (5),

P4 : max
X

min
k=1,2,···,N

f(X, ξ(k)) (8)

s.t. (4) and (5),

where ξ(k) denotes the matrix of the specific values of all uncertain parameters in the kth
scenario, and N is the total number of scenarios generated by random sampling.

Remark As possible scenarios may be infinite, a limited number of samplings may only
lead to an approximate representation of the uncertainty. However, since the sampling process
follows the distribution of all uncertain parameters, these randomly generated scenarios are
adequate in a statistical sense if its quantity is sufficiently large. Therefore, the above reformu-
lation facilitates a desirable tradeoff between optimality and computational cost. Based on the
reformulation, various optimization methods can be employed or designed to get near-optimal
or even optimal solutions to GSSRA-MIUP.

3 Problem-Solver: Hybrid Discrete Differential Evolution

3.1 Basic Operations of the New Discrete Differential Evolution Algorithm

The proposed discrete differential evolution (DDE) algorithm will be applied to the solution
X directly. In other words, the binary representation of solutions to GSSRA-MIUP is adopted
here. The DDE maintains a population of PS individuals (solutions) simultaneously, denoted
by Pop = {X1, X2, ···, XPS}. In the following, the differential mutation, crossover, and selection
operations of the DDE will be presented in sequence. These operations inherit the main features
of the corresponding operations of the original DE variant for real-valued optimization, namely
DE/rand/1/bin[18].

1) Binary differential mutation (BDM) operation
The BDM operation with respect to (w.r.t.) the ith individual Xi (i = 1, 2, · · · , PS) can be

described as follows:

Vi = Xr1 ⊕ [Fi � (Xr2 	 Xr3)], (9)

where Vi = [vi
j,k]R×T is the mutant individual w.r.t. Xi; Xr1 , Xr2 , and Xr3 are three individuals

(solutions) randomly selected from the current DE population with r1, r2, r3 ∈ {1, 2, · · · , PS}
and r1 
= r2 
= r3 
= i; Fi = [f i

j,k]R×T = [rand < α]R×T where α is a decisive factor whose
function is similar to the scaling factor in DE/rand/1/bin, rand= [rj,k]R×T is an R×T dimen-
sional matrix with each element being a random number uniformly distributed in the interval
(0, 1) (if rj,k < α, then f i

j,k = 1; otherwise f i
j,k = 0); the symbol ‘⊕’ denotes the elementwise
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exclusive OR (XOR) operator, ‘�’ denotes the elementwise AND operation of two matrices,
and ‘	’ denotes the elementwise logical complement of XOR (i.e., XNOR).

Remark The differential mutation is the most important and distinct feature which dis-
tinguishes DE from the genetic algorithms. It is a crucial component which endows DE with
excellent search performance in continuous solution space. The key idea of the differential mu-
tation is to use the scaled difference of randomly paired solutions to perturb another solution
so as to generate a new one. The above discrete BDM operator is aimed at mimicking the
operations of its continuous counterpart ‘DE/rand/1’ (denoted by Vi = Xr1 + Fi · (Xr2 −Xr3))
which has proved to be very successful in lots of applications[18]. It can be observed from (9)
that the BDM operator shares the same feature with ‘DE/rand/1’.

2) Binomial crossover
The binomial crossover here is very similar to that in DE/rand/1/bin. The operation will

generate a trial individual Ui = [ui
j,k]R×T by combining the mutant individual Vi = [vi

j,k]R×T

with the current individual Xi = [xi
j,k]R×T :

ui
j,k =

⎧
⎨

⎩
vi

j,k, if randi
j,k < CR;

xi
j,k, otherwise,

(10)

i = 1, 2, · · ·, R; j = 1, 2, · · ·, T,

where randi
j,k is a random number uniformly distributed in the interval (0, 1), and CR ∈ (0, 1)

is the so-called crossover rate.
3) Constraint handling: Repairing and improvement
As the BDM operator and the binomial crossover cannot guarantee the feasibility of the

generated solutions, that is, the constraints (4) and (5) may be violated. Therefore, it is
necessary to design specific constraint handling methods to repair those infeasible solutions.
Besides, it can be seen from Equation (1) that, assigning more resources will lead to a better
objective value. In this sense, if no constraints are violated, it is rational to add as many ones
as possible into a solution, which can be utilized to improve the quality of solutions. Also, it
is evident that the violation of constraints (4) and (5) is due to the excessive ones in certain
rows and columns, respectively. Based on the above facts, we propose the following constraint
handling method (see Algorithm 1). In the process, excessive ones will be removed while more
ones will also be added only if they do not cause violation of any constraints. The constraint
handling method will be applied to each trial solution Ui before calculating its objective value.

4) 1 versus 1 tournament selection
The trial individual Ui after repairing and improvement will compete against the current

individual Xi, and the winner will survive to the next generation.

Xi =

⎧
⎨

⎩
Ui, if F (Ui) ≥ F (Xi);

Xi, otherwise,
(11)

where F (X) is the objective value of the solution X .
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Algorithm 1 Constraint Handling (Repairing and Improvement)
1: Input X

2: Denote by SRi the sum of all elements in the ith row of X ; Denote by SCj the sum of all
elements in the jth column of X .

3: Compute all SRi (i = 1, 2, · · ·, R); IF SRi > mi THEN RCVi = 1 ELSE RCVi = 0 END
//RCVi = 1 indicates the ith row sum constraint is violated

4: Compute all SCj (j = 1, 2, · · ·, T ); IF SCj > nj THEN CCVj = 1 ELSE CCVj = 0 END
//CCVj = 1 indicates the jth column sum constraint is violated

5: Rind = randperm(R), Cind = randperm(T ) // randperm(n) is a random permutation
of the integers from 1 to n; the two random permutations are used in the following to
remove ‘irrational’ biases towards the constraints corresponding to anterior rows or anterior
columns.

6: FOR i = 1 to R // First, handle the constraints w.r.t. each row, i.e., the constraints
shown by (4).

7: p = Rind(i);
8: IF RCVp == 1
9: Randomly select (SRp−mp) 1-valued elements from the pth row of X , and change

10: them to zeros. Add as many ones as possible into the columns corresponding to
11: the changed elements, if no constraints are violated.
12: ELSE
13: Add as many ones as possible into the pth row of X , if no constraints are violated.
14: END
15: END FOR
16: FOR j = 1 to T // Second, handle the constraints w.r.t. each column, i.e., the constraints

shown by (5).
17: q = Cind(j);
18: IF CCVq == 1
19: Randomly select (SCq − nq) 1-valued elements from the qth column of X , and
20: change them to zeros. Add as many ones as possible into the columns
21: corresponding to the changed elements, if no constraints are violated.
22: ELSE
23: Add as many ones as possible into the qth column of X , if no constraints
24: are violated.
25: END IF
26: END FOR
27: Output X
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3.2 Local Search

Local search (LS) is often integrated into population-based metaheuristics (e.g., DE) to
enhance its exploitation. Local search is built on certain neighborhood of solutions. Here, the
following two kinds of neighborhood are proposed for GSSRA-MIUP.

Definition 1 Task Neighborhood. The task neighborhood of a solution is the set of all
solutions which can be reached by changing the assigned resources w.r.t. one certain task.

For example, X1 = [ 0 1 1
1 0 0 ] is a neighbor of the solution X2 = [ 0 0 1

1 1 0 ] w.r.t. the second task
(2nd column).

Definition 2 Resource Neighborhood. The resource neighborhood of a solution is the set
of all solutions which can be reached by changing the assigned tasks w.r.t. one certain resource.

For example, X1 = [ 0 1 1
1 0 0 ] is a neighbor of the solution X3 = [ 1 1 0

1 0 0 ] w.r.t. the first resource
(1st row).

In GSSRA-MIUP, it is more important to assign tasks to resources rather than the reverse
since tasks usually have to be addressed but not all resources have to be used. Therefore, the
LS operations are defined on task neighborhood. Here, two LS operations are proposed:

1) Single Task Neighborhood Local Search (STNLS)
For a selected task, a part of the resources assigned to it will be replaced by the same amount

of other resources which have not been depleted. A neighboring solution which is generated
in this way will be compared with the current solution, and the better one will be chosen as
the current solution. The local search continues with the current solution until a predefined
number of LS operations is reached.

Assume, for example, that each resource can be assigned to at most two tasks. The solution
X1 = [ 0 1 1

1 0 0 ] can be changed to X4 = [ 0 0 1
1 1 0 ] by an STNLS operation w.r.t. the second task.

2) Multiple Task Neigborhoods Local Search (MTNLS)
For a selected task, a part of the resources assigned to it will be replaced by the same amount

of other resources which have been depleted (fully assigned to other tasks). In this case, the
replacement may violate the row constraint regarding the related resources. In this sense, one
of the tasks previously assigned to related resources has to be reassigned to another resource.
Besides, the reassignment of affected tasks is also subjected to the same issue mentioned above.
Therefore, the operation will bring the changes of assignment in multiple task neighborhoods.
A neighboring solution will be generated in this way until no constraints are violated. The
new solution will be compared with the current solution, and the better one will be chosen as
the current solution. The local search continues with the current solution until a predefined
number of LS operations is reached.

Assume, for example, that each resource can be assigned to at most two tasks. For the
solution X1 = [ 0 1 1

1 0 0 ], if the first task is reassigned to the first resource, then the tasks which
were previously assigned to the first resource, that is the second or the third task, will have to
be reassigned to the second resource, giving birth to X5 = [ 1 0 1

0 1 0 ] or X6 = [ 1 1 0
0 0 1 ].

In each generation, the above two LS operations will be applied to the individuals in the
population according to a predefined selection probability pLS. Besides, STNLS and MTNLS
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Algorithm 2 Local Search
1: Input X

2: FOR k = 1 to nLS //nLS is the allowable number of local search operations.

3: Randomly select one task by the probability vector Pstn = [Pstn(1), Pstn(2), · · ·, Pstn(T )];

4: Denote the task by t′.

5: // The probability for choosing the ith task is Pstn(i) =
∑

j∈IT
vipij∑

i∈IR

∑
j∈IT

vipij
,

6: where pij is a specific value of ξij which is dependent on specific GSSRA-MIUP models.

7: Denote by Rt′ the set of the resources previously assigned to t′. Randomly select one re-

source from Rt′ by the probability vector Prem1 = [Prem1(1), Prem1(2), · · ·, Prem1(L1)] where

L1 = sizeof(Rt′). Remove it from Rt′ . Randomly assign as many other tasks as possible to

the resource.

8: // The probability for choosing the mth resource in Rt′ is

9: Prem1(m) =

1
p

ira(m),t′∑
ira(m)∈R

t′
1

p
ira(m),t′

,

10: where ira(m) is the index of the mth resource in Rt′ .

11: Denote by Rt′ the set of the resources which previously were not assigned to t′. Randomly assign

a new resource to t′ by Pres1 = [Pres1(1), Pres1(2), · · ·, Pres1(L2)] where L2 = sizeof(Rt′). Denote

the new resource by r′. Denote the resulting solution by Y .

12: // The probability for choosing the mth resource which was not assigned to t′ is

13: Pres1(m) =
pirn(m),t′∑

irn(m)∈R
t′

pirn(m),t′
,

14: where irn(m) is the index of the mth resource in Rt′ .

15: WHILE 1

16: IF Y does not violate any constraint

17: Replace X by Y if F (Y ) ≥ F (X); //Y is generated by an STNLS operation

18: BREAK;

19: ELSE

20: Denote by Tr′ the set of the tasks previously assigned to r′. Randomly select one

21: task from Tr′ by Pmtn = [Pmtn(1), Pmtn(2), · · ·, Pmtn(L3)](L3 = sizeof(Tr′)). Denote

22: the chosen task by t∗. Remove r′ from the set of the resources assigned to t∗.

23: // The probability for choosing the nth task in Tr′ is

24: Pmtn(n) =

1∑
j∈IT

vita(n)pij∑
ita(n)∈T

r′
1∑

j∈IT
vita(n)pij

,

25: where ita(n) is the index of the nth task in Tr′ .

26: Denote by Rt∗ the set of the resources which previously were not assigned to t∗.

27: IF Rt∗ is not empty

28: Randomly assign a new resource to t∗ by Pres2 = [Pres2(1), Pres2(2), · · ·, Pres2(L4)]

29: (L4 = sizeof(Rt∗)). Reuse r′ to denote the new resource.

30: //The probability for choosing the nth resource in Rt∗ is Pres2(n) = 1
L4

,

31: where irn(n) is the index of the nth resource in Rt∗ .

32: END IF

33: Reuse Y to denote the resulting solution. //This is an MTNLS operation.

34: END IF

35: END WHILE

36: END FOR

37: Output X
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will be randomly implemented within the same procedure as shown in Algorithm 2. A search
bias towards potentially better solutions is made by using four parameters to control the local
search, including Pstn, Pmtn, Pres1, and Prem1 (see Algorithm 2).

Remark 1 It is easy to see from Algorithm 2 that the setting of Pstn and Pres1 prefers
choosing the combination of tasks and resources with larger potential rewards. In contrast,
the setting of Prem1 and Pmtn prefers deleting the combination of tasks and resources with
relatively smaller potential rewards.

Remark 2 The setting of the parameter Pres2 has no bias towards any resource so as to
avoid frequent cyclic exchange of resources with higher potential rewards among several tasks.
This is because frequent cyclic exchange of the same resources may repeatedly generate the
same solutions.

Algorithm 3 Generation of Initial Population
1: Input PS // Population size
2: FOR k = 1 to PS

3: Xk = OR×T ; // Zero matrix
4: IDR = randperm(R);
5: sR = zeros(1, R);
6: FOR i = 1 to R

7: IDT = randperm(T );
8: FOR j = 1 to T

9: IF Xk(IDR(i), IDT (j)) := 1 does not violate any constraint
10: Xk(IDR(i), IDT (j)) = 1;
11: sR(IDR(i), IDT (j)) = sR(IDR(i), IDT (j)) + 1;
12: IF sR(IDR(i), IDT (j)) ≥ mIDR(i)

13: BREAK;
14: END IF
15: END IF
16: END FOR
17: END FOR
18: END FOR
19: Output X1, X2, · · ·, XPS

3.3 Hybrid DDE for GSSRA-MIUP

1) Procedure of the Hybrid DDE
The local search and the DDE proposed in the preceding context will be combined into a

hybrid algorithm, named hybrid DDE (HDDE). After each selection operation in DDE, the
local search will be implemented on the current solution by a probability PLS . To gain a
better tradeoff between exploration and exploitation[22], the regulation parameter is set as
PLS = NFEacc/NFEmax where NFEacc is the accumulated number of function evaluations
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and NFEmax is the maximal number of function evaluations. Obviously, local search will be
more frequently used when the search progresses. The procedure of the algorithm HDDE is
presented as follows:

Step 1 Population Initialization.
Step 2 Evaluate initial solutions and record the so-far-best solution.
Step 3 Apply local search to initial solutions according to PLS , and update the so-far-best

solution (see Algorithm 2).
Step 4 Main Loop

For each solution Xi (i = 1, 2, · · ·, PS), do the following:
Step 4.1 Apply the BDM operation to obtain the mutant solution Vi (see Equation (9)).
Step 4.2 Apply the binomial crossover operation to obtain the trial solution Ui (see

Equation (10)).
Step 4.3 Apply the constraint handling method to repair Ui (see Algorithm 1).
Step 4.4 Apply the tournament selection to update Xi (see Equation (11)). Update the

so-far-best solution.
Step 4.5 Apply the local search to Xi according to PLS (see Algorithm 2). Update the

so-far-best solution.
Step 4.6 If the termination criterion is satisfied, stop the algorithm and output the

so-far-best solution; otherwise, go to Step 4.1.
2) Population Initialization
Due to the constraints shown in (4) and (5), it is necessary to design deliberate generation

methods to avoid a large amount of infeasible solutions especially in the case of mi<<T and
nj<<R in which a feasible solution X will be a sparse matrix. The generation method for
initial solutions is presented in Algorithm 3.

Table 1 Computational complexity

Operations Time complexity Space complexity

Initialization O(T ∗ R ∗ PS) O(T ∗ R ∗ PS)

Function Evaluation O(T ∗ R ∗ N ∗ NFEmax) O(T ∗ R)

BDM O(T ∗ R ∗ NFEmax) O(T ∗ R)

Crossover O(T ∗ R ∗ NFEmax) O(T ∗ R)

Selection O(T ∗ R ∗ NFEmax) O(1)

Constraint Handling O(T ∗ R ∗ NFEmax) O(T + R)

Local Search O(T ∗ R ∗ nLS ∗ NFEmax) O(T + R)

3.4 Computational Complexity

The time and space complexity of HDDE can be analyzed according to its procedure in-
cluding seven operations as shown above. The result of the worst-case analysis w.r.t. each
operation is presented in Table 1. In view of the fact PS<<NFEmax, the total worst-case time
and space complexity are O((N + nLS) ∗ NFEmax ∗ T ∗ R) and O(T ∗ R ∗ PS), respectively. If
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the parameter setting in Subsection 4.2 is adopted, then the worst-case time complexity and
the worst-case space complexity are O((T ∗ R)2.5) and O((T ∗ R)1.5), respectively.

4 Computational Experiments

4.1 GSSRA-MIUP Test Instances

In order to test the performance of the proposed HDDE for solving GSSRA-MIUP, ten
instances with different problem scales, parameters, and probability distributions of ξ are con-
structed as follows:

Instance1 : T = 3, R = 3; Instance2 : T = 5, R = 5;

Instance3 : T = 10, R = 10; Instance4 : T = 10, R = 20;

Instance5 : T = 20, R = 10; Instance6 : T = 20, R = 20;

Instance7 : T = 20, R = 50; Instance8 : T = 50, R = 20;

Instance9 : T = 50, R = 50; Instance10 : T = 50, R = 100.

For each instance, vi = 10 + 90 ∗ i−1
T−1 and mi = �1 + 2 ∗ rand1×R for i = 1, 2, · · ·, R,

nj = �1 + 3 ∗ rand1×T  for j = 1, 2, · · ·, T , and ξij ∼ U [ξ−ij , ξ
+
ij ] (i = 1, 2, · · ·, R; j = 1, 2, · · ·, T )

where U [ξ−ij , ξ
+
ij ] means a uniform distribution in the interval [ξ−ij , ξ

+
ij ], ξ−ij = min{rand1

ij , rand2
ij},

ξ+
ij = max{rand1

ij , rand2
ij}, rand1

ij and rand2
ij are two random numbers uniformly distributed in

the interval [0, 1].

4.2 Parameter Setting

There are totally seven parameters in HDDE, including PS, α, CR, PLS , nLS, NFEmax,
and pij . The setting of these parameters is shown as follows:

Population size: PS = �4√R ∗ T .
Probability parameter for controlling BDM operations: α = 1 − 0.95 ∗ NFEacc

NFEmax
.

Crossover rate: CR = 0.9.
Probability of applying local search operations: PLS = NFEacc

NFEmax
.

Number of the local search operations when applied: nLS = �5√R ∗ T .
Maximal number of function evaluations: NFEmax = 500 ∗ R ∗ T .
Probability parameter for controlling the search bias in local search: pij = mean{ξ(k)

ij } for

the expected value model P3, and pij = mink{ξ(k)
ij } for the robust optimization model P4.

The setting of α and PLS is beneficial to draw a tradeoff between exploration and exploitation
in the search space[22]. PS, nLS, and NFEmax vary with the scale of specific GSSRA-MIUP
instances.

4.3 Sensitivity Test about the Number of Scenarios

Instances 3, 5 and 7 are used to make a sensitivity test w.r.t. the number of scenarios, i.e.,
the parameter N (see (7) and (8)). The settings N = 10, 20, 50, 100, 200, 500, 1000 and 2000
are considered. Besides, both the expected value model P3 and the robust optimization model
P4 are included. In each case, HDDE was run independently 50 times and the best result is



SCENARIO-BASED STOCHASTIC RESOURCE ALLOCATION 369

selected as data for conducting the analysis. The discovered best objective values as a function
of the parameter N are shown in Figure 1. It can be observed that the discovered objective
values in different cases, whether the expected value model or the robust optimization model
is adopted, have no obvious change when N > 50. According to the result, N = 50 is the best
choice since a smaller N will obviously reduce computation cost. Therefore, N = 50 will be
used in the following computational experiments.
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Figure 1 Sensitivity analysis about the number of scenarios N . fP3 and fP4 are the

objective function values obtained by HDDE among 50 independent runs

corresponding to the expected value model P3 and the robust optimization

model P4, respectively

4.4 Comprehensive Comparison

In this section, comparative experiments will be made to evaluate the performance of the
proposed HDDE algorithm against the basic DDE without local search, a pure random sampling
method (PRS), as well as a restart local search (RLS). The basic DDE is the discrete differential
evolution algorithm proposed in Section 3.1. PRS is de facto Algorithm 3 described above
which maintains a very large population whose size is equal to the allowable number of function
evaluations (i.e., PS = NFEmax). RLS can be regarded as a combination of Algorithm 2
(initialization) and Algorithm 3 (local search). In RLS, the local search is always triggered by
the solutions generated by Algorithm 2 which produces only one solution (i.e., PS = 1) at a
time. Every time the local search is completed, the Algorithm 2 will provide a new solution to
it and restart the local search until the maximal number of function evaluations is reached.

The setting of NFEmax is kept the same for all competitors so that these algorithms will
spend almost the same computational cost for a fair comparison. The setting of pij is also the
same for all. DDE keeps the same setting for PS, α, CR as HDDE. RLS keeps the same setting
for nLS as HDDE. For each instance with the model P3 or P4, each algorithm is run 50 times
independently. All the tests were implemented on a PC with Intel i7-5500U CPU (2.4GHz) and
8GB Internal Memories.
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Table 2 Statistical results about the performance of the

four algorithms with the expected value model

Ins. HDDE DDE PRS RLS

No. (min, max, mean, std) (min, max, mean, std) (min, max, mean, std) (min, max, mean, std)

1 (217.3, 217.3, 217.3, 0.0) (217.3, 217.3, 217.3, 0.0) (217.3, 217.3, 217.3, 0.0) (217.3, 217.3, 217.3, 0.0)

2 (312.6, 312.6, 312.6, 0.0) (312.6, 312.6, 312.6, 0.0) (312.6, 312.6, 312.6, 0.0) (312.6, 312.6, 312.6, 0.0)

3 (349.9, 350.1, 349.9, 0.1) (340.2, 349.9, 344.3, 2.6) (307.4, 328.2, 317.9, 5.9) (335.5, 337.9, 336.9, 0.7)

4 (559.9, 560.1, 560.0, 0.1) (552.8, 558.4, 556.2, 1.6) (532.6, 545.9, 539.6, 3.6) (553.2, 560.1, 556.3, 2.1)

5 (639.0, 640.9, 640.0, 0.4) (636.5, 638.6, 637.5, 0.6) (613.2, 626.4, 620.4, 4.0) (630.5, 639.0, 634.7, 2.3)

6 (720.4, 725.4, 723.0, 1.2) (705.3, 712.2, 709.3, 1.7) (681.5, 706.3, 694.2, 7.5) (710.7, 722.6, 717.6, 3.1)

7 (842.9, 849.6, 845.6, 1.5) (817.4, 826.3, 821.5, 2.8) (782.3, 802.5, 794.1, 5.8) (831.9, 845.2, 838.0, 3.7)

8 (2358, 2372, 2366, 2.9) (2242, 2261, 2251, 4.8) (2037, 2253, 2151, 66.7) (2254, 2319, 2288, 18.4)

9 (2671, 2684, 2677, 2.9) (2568, 2611, 2589, 12.5) (2475, 2539, 2504, 20.0) (2568, 2632, 2599, 18.9)

10 (2732, 2744, 2739, 3.0) (2688, 2713, 2700, 7.3) (2593, 2663, 2628, 19.8) (2692, 2736, 2713, 11.3)

Table 3 Statistical results about the performance of the four

algorithms with the robust optimization model

Ins. HDDE DDE PRS RLS

No. (min, max, mean, std) (min, max, mean, std) (min, max, mean, std) (min, max, mean, std)

1 (124.1, 124.1, 124.1, 0.0) (124.1, 124.1, 124.1, 0.0) (124.1, 124.1, 124.1, 0.0) (124.1, 124.1, 124.1, 0.0)

2 (157.0, 157.0, 157.0, 0.0) (157.0, 157.0, 157.0, 0.0) (157.0, 157.0, 157.0, 0.0) (157.0, 157.0, 157.0, 0.0)

3 (179.9, 180.1, 180.0, 0.1) (173.2, 175.5, 174.4, 0.7) (162.3, 170.8, 164.6, 1.4) (169.2, 179.9, 174.4, 3.0)

4 (223.9, 224.1, 224.0, 0.1) (213.7, 219.5, 217.0, 1.7) (201.2, 211.4, 206.0, 3.0) (215.3, 221.6, 218.7, 1.7)

5 (243.7, 246.2, 245.1, 0.5) (224.3, 231.8, 228.0, 2.2) (213.8, 225.6, 219.9, 3.5) (227.5, 239.2, 233.8, 3.3)

6 (332.9, 339.3, 335.9, 1.3) (310.5, 325.4, 318.0, 4.6) (301.9, 314.2, 307.8, 3.4) (314.0, 326.5, 320.2, 3.7)

7 (411.7, 418.0, 415.0, 1.4) (382.1, 402.7, 392.0, 6.4) (361.3, 375.0, 368.8, 3.8) (371.6, 406.3, 388.0, 9.5)

8 (1626, 1645, 1633, 4.0) (1582, 1603, 1595, 5.5) (1562, 1589, 1576, 6.8) (1587, 1620, 1604, 9.9)

9 (1978, 1990, 1985, 2.7) (1927, 1946, 1937, 5.4) (1882, 1913, 1898, 8.5) (1945, 1963, 1955, 5.1)

10 (2003, 2021, 2011, 3.6) (1958, 1981, 1970, 6.7) (1913, 1947, 1930, 10.3) (1973, 1995, 1985, 5.7)
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Table 4 The mean and standard deviation of the time cost about the four algorithms (unit: Second)

Ins. HDDE DDE PRS RLS

No. Model P3 Model P4 Model P3 Model P4 Model P3 Model P4 Model P3 Model P4

1 0.001±0.001 0.001±0.001 0.001±0.001 0.001±0.001 0.001±0.001 0.001±0.001 0.001±0.001 0.001±0.001

2 0.010±0.001 0.010±0.001 0.015±0.001 0.015±0.001 0.022±0.001 0.022±0.001 0.007±0.001 0.007±0.001

3 0.40±0.02 0.40±0.02 0.52±0.01 0.52±0.01 1.21±0.01 1.22±0.01 0.35±0.01 0.35±0.01

4 2.02±0.04 2.01±0.04 2.62±0.02 2.61±0.02 9.23±0.05 9.22±0.05 1.66±0.01 1.65±0.01

5 2.33±0.05 2.31±0.05 2.73±0.02 2.71±0.02 12.32±0.06 12.41±0.06 1.74±0.01 1.73±0.01

6 13.21±0.12 13.17±0.13 17.48±0.04 17.47±0.04 61.75±0.14 61.52±0.16 10.4±0.05 10.2±0.05

7 107.8±0.9 107.2±1.0 127.5±0.2 127.7±0.2 312.4±0.5 310.7±0.5 88.1±0.08 86.4±0.08

8 124.6±1.2 123.0±1.2 166.2±0.4 164.8±0.4 361.8±0.6 360.1±0.6 101.8±0.09 100.2±0.09

9 1037.1±2.0 1035.8±2.1 1241.0±2.4 1256.8±2.5 2917.4±2.4 2913.2±2.7 827.5±0.6 824.3±0.7

10 3263.3±5.4 3251.9±6.2 4069.2±4.3 4042.7±4.9 6432.3±4.5 6429.1±4.8 2415.2±0.8 2413.0±0.8

Statistical results are presented in Tables 2 and 3. It is obvious that HDDE outperforms
DDE, PRS, and RLS in terms of all statistical indexes in all cases except for instances 1
and 2. As for instances 1 and 2, all competitors show the same performance, which is mainly
because the two instances are very simple. However, as the scale of the instances increases, the
superiority of HDDE over the other algorithms becomes more and more evident. The Wilcoxon
rank sum test with 0.05 confidence level was conducted in each case. For any two algorithms A

and B, when their performances are significantly different according to the hypothesis test, if
the average result of A is better than that of B, then h(A, B) = 1; if the average result of A is
worse than that of B, then h(A, B) = −1; otherwise, h(A, B) = 0. The test results are shown
as follows, and each result includes the tests regarding the comparison of the corresponding
algorithms in all the ten instances from instance 1 to instance 10. hP3(·, ·) corresponds to the
test results about the expected value model (P3) while hP4(·, ·) corresponds to the test results
about the robust optimization model (P4).

The hypothesis test results also agree with the intuitional judgement from the statistical
results presented in Tables 2 and 3. The statistical results about the time cost of each algorithm
are presented in Table 4. As the maximal number of function evaluations (NFEmax) is the same
for all algorithms, the results can reflect their operational complexity. Obviously, PRS is the
most time-consuming among the four algorithms while RLS holds the least time cost. HDDE
has a larger cost than RLS while it saves much time as compared with DDE. The advantage of
HDDE over DDE reflects the effectiveness of incorporating the local search into DDE to gain a
tradeoff between exploration and exploitation[22]. DDE outperforms the pure random sampling
(PRS) but loses to RLS, which also confirms the necessity of combining DDE with local search.
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Table 5 Results of Wilcoxon rank sum test

Comparison Instance No.

Index 1 2 3 4 5 6 7 8 9 10

hP3(HDDE, DDE) 0 0 1 1 1 1 1 1 1 1

hP4(HDDE, DDE) 0 0 1 1 1 1 1 1 1 1

hP3(HDDE, PRS) 0 0 1 1 1 1 1 1 1 1

hP4(HDDE, PRS) 0 0 1 1 1 1 1 1 1 1

hP3(HDDE, RLS) 0 0 1 1 1 1 1 1 1 1

hP4(HDDE, RLS) 0 0 1 1 1 1 1 1 1 1

hP3(DDE, PRS) 0 0 1 1 1 1 1 1 1 1

hP4(DDE, PRS) 0 0 1 1 1 1 1 1 1 1

hP3(DDE, RLS) 0 0 1 0 1 −1 −1 −1 −1 −1

hP4(DDE, RLS) 0 0 0 −1 −1 −1 0 −1 −1 −1

hP3(PRS, RLS) 0 0 −1 −1 −1 −1 −1 −1 −1 −1

hP4(PRS, RLS) 0 0 −1 −1 −1 −1 −1 −1 −1 −1
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Figure 2 Convergence curves of four algorithms

The convergence process of the four algorithms in each case is presented in Figure 2. From
these convergence curves, it can be observed that HDDE converges faster than the other three
algorithms in almost all cases. Regarding Instance 3 (P4), HDDE converges a bit slower than
RLS at the very early stage, however, the solution finally discovered by HDDE is far better than
that by RLS. Similar results are also visible with regard to the comparison between HDDE and
RLS in solving Instance 4 (P4), Instance 6 (P3), and Instance 8 (P3). Besides, RLS performs
better than DDE in terms of convergence speed in most cases except for Instance 3 (P3),
Instance 4 (P3), Instance 5 (P3), Instance 6 (P4), and Instance 7 (P4). In contrast, PRS is
no doubt the slowest among the four algorithms since it does not use any heuristic information
during the search, and lacks a proper balance between the exploration and exploitation of the
search space. To sum up, HDDE is the best algorithm for GSSRA-MIUP among the four
algorithms.

5 Conclusion

The GSSRA-MIUP problem represents a wide range of uncertain resource allocation prob-
lems involved in complex systems. A scenario-based reformulation is proposed to convert the
original problem into a computable form. Based on the reformulation, a discrete differential
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evolution algorithm was proposed and further combined with local search to create an efficient
hybrid optimizer, namely HDDE. The performance of HDDE in solving GSSRA-MIUP prob-
lems is validated through a set of test instances. The results of comparative computational
experiments show that HDDE not only can effectively solve GSSRA-MIUP problems but also
has obvious advantages over the other three feasible problem-solvers.
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