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Abstract When running an experiment, inhomogeneity of the experimental units may result in poor

estimations of treatment effects. Thus, it is desirable to select a good blocked design before running the

experiment. Mostly, a single block variable was used in the literature to treat the inhomogeneity for

simplicity. However, in practice, the inhomogeneity often comes from multi block variables. Recently,

a new criterion called B2-GMC was proposed for two-level regular designs with multi block variables.

This paper proposes a systematic theory on constructing some B2-GMC designs for the first time.

Experimenters can easily obtain the B2-GMC designs according to the construction method. Pros of

B2-GMC designs are highlighted in Section 4, and the designs with small run sizes are tabulated in

Appendix B for practical use.

Keywords Blocked design, general minimum lower order confounding, multi block variables, Yates

order.

1 Introduction

Two-level fractional factorial designs are widely used in many areas of industry, science,
and engineering. Under the assumption that the third- and higher-order effects are negligible,
such designs can effectively identify important main effects and two-factor interactions in a
linear model. In some experimental situations, however, especially when the size of experiment
is relatively large, inhomogeneity of experimental units often exists and always causes bad
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influence on estimating treatment effects[1, 2]. Blocking the experimental units into groups
is an efficient way to solve this problem. Thus, selecting good blocked designs becomes an
important issue.

As pointed out in [1], there are two kinds of blocking problems, one with a single block vari-
able and the other with two or more block variables. We call the latter multi block variables
problem. In the last decades, researchers have investigated the issue and proposed many opti-
mality criteria for selecting a blocked design with a single block variable. The following four are
the most popular ones among them. The first one is based on the minimum aberration (MA)
criterion[3]. It extends the MA idea to the blocked case, see [4, 5] and the references therein.
The second one is based on the clear effects criterion, see [6]. It aims at clearly estimating the
maximum number of main effects and two-factor interactions of treatment factors in the blocked
case[7]. The third one is based on the maximum estimation capacity criterion[8, 9] aiming at
estimating as many models involving all the main effects and some two-factor interactions as
possible. The fourth one is based on the general minimum lower order confounding (GMC)
criterion proposed by Zhang, et al.[10]. When the experimenters have some prior information
on the importance ordering of treatment factors, the GMC designs are preferable.

Zhang, et al.[10] proposed the GMC criterion for two-level regular designs. Since then, quite
a few references studying the optimal GMC designs have appeared, such as [11–15]. Zhang and
Mukerjee[16] applied the GMC criterion to treat single block variable problem and established
a blocked GMC (B-GMC) criterion to select s-level regular blocked designs. Zhao, et al.[17]

developed a theory on construction of B-GMC designs. Also for selecting optimal blocked
designs with a single block variable, Wei, et al.[18] extended the GMC idea in a different view
from that in [16], and proposed another blocked GMC (B1-GMC) criterion. Zhao, et al.[19] and
Zhao, et al.[20] discussed the construction of the B1-GMC designs.

However, the multi block variables case of blocked designs often happens in many practical
experiments. As was mentioned in [1], in the agricultural context, when designs are laid out in
rectangular schemes, both row and column inhomogeneity effects probably exist in the soil. We
would like to give two more examples of multi block variables case. Consider an experiment to
compare two gasoline additives by testing them on two cars with two drivers over two days. In
this testing case, three variables, cars, drivers and days, have to be considered to partition the
experimental units. Here is another one about testing the abrasion resistance of rubber-covered
fabric in a Martindale wear tester. There are two types of materials, and two positions on the
tester so that two samples can be tested at a time. Each time the tester is used, the setup could
be a bit different; that is, there might be a systematic difference from application to application.
So in this case, the “application” and position should be considered as two block variables.

For selecting two-level regular blocked designs with multi variables, Zhang, et al.[21] proposed
the blocked GMC (B2-GMC) criterion, and listed some 16-, 32-, and 64-run B2-GMC designs
by computer search. However, when the run size of an experiment is large, computer search will
be a time consuming work. In this paper, a systematic theory on constructing B2-GMC designs
is established for the first time. Compared with the direct computer search, the construction
methods in this paper are more efficient and easier to apply. The idea of the construction
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methods can be further extended to broader parameters setting. Comparison between B2-
GMC designs and B1-GMC designs constructed based on single block variable is made under
fair conditions. The comparison shows that in practical cases if a problem belongs to multi
variables problem, we should not use the B1-GMC designs. Otherwise it will result in missing
estimations of many important effects. So this work is valuable and necessary.

The rest of the paper is organized as follows. In Section 2, we introduce some related
concepts and notation of GMC and B2-GMC criteria. Section 3 proposes the construction
theory of B2-GMC designs along with two illustrative examples. In Section 4, we summarize
the work of this paper and highlight the pros of B2-GMC designs by a fair comparison. A proof
is deferred to Appendix A, and some small run-size B2-GMC designs are tabulated in Appendix
B.

2 Preliminaries: GMC and B2-GMC Criteria

Here, we first introduce some notation which is useful in developing the coming up construc-
tion theory. Let

Hq = (1,2,12,3,13,23,123, · · · , q,1q, · · · ,1234 · · ·q)2q

denote the saturated design with Yates order, which is generated by q independent columns
with 2q components of entries 1 or −1. The q independent columns of Hq are in the form of

12q = (1,−1, 1,−1, · · · , 1,−1, 1,−1)′,

22q = (1, 1,−1,−1, · · · , 1, 1,−1,−1)′,

32q = (1, 1, 1, 1,−1,−1,−1,−1, · · · , 1, 1, 1, 1,−1,−1,−1,−1)′,
...

q2q = (1, 1, · · · , 1,−1,−1, · · · ,−1)′.

The other columns 12, 13, 23, · · · , 1234 · · ·q are generated by these q independent columns.
Take 12 as an example. It is just the component-wise product of the independent columns 12q

and 22q , i.e.,
(12)2q = (1,−1,−1, 1, · · · , 1,−1,−1, 1)′.

In the following, for a vector a and a matrix B = (b1, b2, · · · , bl), let aB = (ab1, ab2, · · · , abl)
be a matrix obtained by taking the component-wise products of a and bi for i = 1, 2, · · · , l.
Furthermore, denote H1 = (1)2q ,

Hr = (Hr−1, r, rHr−1), (1)

Fj,r = (j, jHr−1) (2)

for j = r, r + 1, · · · , q and r = 2, 3, · · · , q, where Hr−1 consists of the first 2r−1 − 1 columns of
Hq. Especially, when j = r, (Hr−1, Fj,r) = Hr. Without confusion, we will omit the subscript
2q hereafter.
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Let Dt denote a regular 2n−m unblocked design consisting of n columns taken from Hq with
q = n − m. The n columns of Dt comprise n − m independent columns and the remaining m

columns are determined by m independent defining relations. The design Dt is said to have
resolution R if no c-factor effect is confounded with any other effect containing less than R− c

factors[22].
Now, we recall some concepts related to GMC given in [10]. Consider a regular 2n−m

unblocked design Dt, let #
i C

(k)
j (Dt) denote the number of i-th order treatment effects which

are aliased with k j-th order treatment effects in Dt, where k = 1, 2, · · · , n!
j!(n−j)! . Under the

assumption that the third- and higher-order treatment effects are negligible, and the main
effects are more important than two-factor interactions, put

#C(Dt) =
(#
1C2(Dt),

#
2C2(Dt)

)
, where (3)

#
1C2(Dt) =

(#
1C

(0)
2 (Dt),

#
1C

(1)
2 (Dt), · · · , #

1C
(K2)
2 (Dt)

)
,

#
2C2(Dt) =

(#
2C

(0)
2 (Dt),

#
2C

(1)
2 (Dt), · · · , #

2C
(K2)
2 (Dt)

)
,

and K2 = n(n−1)
2 . Pattern (3) is called the aliased-effect number pattern (AENP). A design

sequentially maximizing the components of pattern (3) is called a general minimum lower order
confounding (GMC) design[10].

In many practical experiments, the inhomogeneity may come from different sources. See
the examples given in Section 1. Suppose that there are s different inhomogeneity sources,
namely s different block variables. For j = 1, 2, · · · , s, if the jth block variable partitions
the experimental units into 2ij blocks, then ij independent factors are needed. So,

∑s
j=1 ij

factors are needed to indicate this blocking problem. Here, we would like to emphasize that
it is not necessary to require the

∑s
j=1 ij factors to be independent, which is different from

the single block variable case. The B2-GMC criterion for selecting optimal two-level regular
blocked designs with multi block variables was proposed in [21] with ij = 1. We use the notation
2n−m : 2s to denote a two-level regular blocked design D = (Dt : Db) with N = 2n−m runs,
n treatment factors and s block factors, where Dt is the unblocked 2n−m design, and Db is a
2q × s blocking scheme matrix with each column representing a block factor. Conventionally,
we suppose that the treatment factors and block factors have no interactions and assume that
only main block effects and two-factor interactions of the block factors are significant block
effects. Then a treatment effect confounded by main block effects or two-factor interactions of
the block factors cannot be estimated. Under the assumption that all the interactions involving
three or more treatment factors are negligible, we still consider only the main treatment effects
and interactions of two treatment factors. For convenience, we present an equivalent form of
the B2-GMC criterion. Let #B

i C
(k)
j (D) be the number of i-th order treatment effects which are

aliased with k j-th order treatment effects but not with the grand mean or any significant block
effects. Denote

#B
1C2(D) = (#B

1C
(0)
2 (D), #B

1C
(1)
2 (D), · · · , #B

1C
(K2)
2 (D)), and

#B
2C2(D) = (#B

2C
(0)
2 (D), #B

2C
(1)
2 (D), · · · , #B

2C
(K2)
2 (D)).
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Let
#BC(D) = (#B

1C2(D), #B
2C2(D)). (4)

Pattern (4) is called the blocked aliased-effect number pattern for multi block variables case,
simply denoted by B2-AENP. A design that sequentially maximizes the components of (4)
is called a B2-GMC design. The corresponding criterion is called the B2-GMC criterion. A
resolution I or II 2n−m design Dt will result in that some main effects cannot be estimated.
So, only designs D = (Dt : Db) with Dt having resolution at least III are considered. Once a
treatment effect is confounded by a significant block effect, it cannot be estimated. Thus, in
the following, we consider only the designs D = (Dt : Db) that would not cause confounding of
main treatment effects with significant block effects.

3 Construction of B2-GMC Designs

In this section, the construction theory of B2-GMC 2n−m : 2s designs with 5N
16 +1 ≤ n ≤ N

2

are provided. For given n, suppose 2l ≤ N
2 − n ≤ 2l+1 − 1 for some l. Let 2k ≤ s ≤ 2k+1 − 1,

we first propose the construction of B2-GMC 2n−m : 2s designs with k ≤ l or k ≥ l + 2 in
Theorem3.1. The construction for the case of k = l + 1 is given in Algorithm 3.3.

For easy presentation of the following results, we first introduce some more pieces of nota-
tion here. Let IDb

denote the matrix in which the columns are two-factor interactions of Db.
Hereafter, a ∈ A means that a is a column of matrix A, A∪B denotes the matrix which consists
of the columns of both matrices A and B but without duplication, A ∩ B denotes the matrix
which consists of the common columns of A and B, A ∩ B = ∅ means that matrices A and B

have no common column, A\B denotes the matrix which consists of the columns of matrix A

but not those of matrix B. The statement “A is an s-projection of B”, denoted as A ⊂ B,
implies that A is a matrix where the s columns come from matrix B.

Theorem 3.1 (B2-GMC 2n−m : 2s designs with 2k ≤ s ≤ 2k+1 − 1, k ≤ l or k ≥ l + 2)
Suppose D = (Dt : Db) is a 2n−m : 2s design with 5N

16 + 1 ≤ n ≤ N
2 , 2k ≤ s ≤ 2k+1 − 1 for

some k, and 2l ≤ N
2 −n ≤ 2l+1 − 1 for some l. Then D = (Dt : Db) is a B2-GMC design if Dt

consists of the last n columns of Fq,q and
(a) when 1 ≤ k ≤ l, Db is any s-projection of Hk ∪ Fq,(k+1);
(b) when l + 2 ≤ k ≤ q − 2, Db is any s-projection of Hk+1.

Theorem 3.1 provides the theoretical construction of B2-GMC designs for k ≤ l and k ≥
l + 2, which covers a wide range of s. Given parameters n, m and s, we can easily obtain the
corresponding B2-GMC designs through some simple calculations. Now, we give an example as
illustration of Theorem 3.1.

Example 3.2 Consider the construction of B2-GMC 260−53 : 2s designs for s = 4 and 17.
Here n = 60, m = 53 and N = 128. Since 22 ≤ N

2 − n ≤ 23 − 1, thus l = 2. First, take the
last 60 columns of F7,7 to be Dt. Then F7,7\Dt = F7,3.

When s = 4, there exists k = 2 such that 22 ≤ s ≤ 23 − 1. Since k = l, this case belongs
to Theorem 3.1 (a). We take any 4-projection of H2 ∪ F7,3 as Db. According to Lemma A.2
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in Appendix A, Db ∪ IDb
= H2 ∪ F7,3. Note that each of the four alias sets represented by the

columns of F7,3 does not contain any two-factor interactions of Dt. Each of the three alias sets
represented by the columns of H2, 1,2, and 12, contains 30 two-factor interactions of treatment
factors. Except for the above 7 alias sets and the 60 main treatment effects alias sets, there are
still 60 alias sets, each of which contains 28 two-factor interactions of treatment factors, which
are orthogonal to significant block effects. Therefore, for B2-GMC 260−53 : 24 design, we have
#B

1C
(0)
2 (D) = 60, #B

2C
(27)
2 (D) = 1680 and thus the other components of #BC(D) are all zeros.

When s = 17, there exists k = 4 such that 24 ≤ s ≤ 25 − 1. Since k = l + 2, this case
belongs to Theorem 3.1 (b). We take any 17-projection of H5 as Db. According to Lemma A.2,
Db ∪ IDb

= H5. Except for the 31 alias sets represented by the columns of H5, the 60 main
treatment effects alias sets, and the 4 alias sets represented by the columns of F7,3, there are
still 32 alias sets, each of which contains 28 two-factor interactions of treatment factors, which
are orthogonal to significant block effects. For this B2-GMC 260−53 : 217 design, we have
#B

1C
(0)
2 (D) = 60, #B

2C
(27)
2 (D) = 896 and the other components of #BC(D) are all zeros.

Theorem 3.1 provides a theoretical method for constructing B2-GMC 2n−m : 2s designs with
2k ≤ s ≤ 2k+1−1 for k ≤ l or k ≥ l+2. However, Theorem 3.1 does not work on k = l+1. The
following algorithm, as a complement of Theorem 3.1, can help us to construct the B2-GMC
2n−m : 2s designs with 2l+1 ≤ s ≤ 2l+2 − 1. Throughout the algorithm, Dt is supposed to
consist of the last n columns of Fq,q.

Algorithm 3.3 (B2-GMC 2n−m : 2s designs with 2l+1 ≤ s ≤ 2l+2 − 1)
Step 1 Search all the blocking scheme matrix candidates Bi, i = 1, 2, · · · , g, where Bi∩Dt =

∅, and g denotes the possible number of blocking scheme matrix candidates.
Step 2 Calculate IBi , i = 1, 2, · · · , g.
Step 3 Check if IBi ∩ Dt = ∅ for i = 1, 2, · · · , g. If yes, rank the columns of Bi ∪ IBi as

they are in Hq−1, and denote Bi ∪ IBi = (b(i)
1 , b

(i)
2 , · · · , b

(i)
ji

); otherwise, exclude it. Denote the
remaining Bi ∪ IBi as Θ = {B1 ∪ IB1 , B2 ∪ IB2 , · · · , Bh ∪ IBh

}, where h ≤ g.
Step 4 Compare Bi∪IBi and Bj ∪IBj of Θ for i = 1, 2, · · · , h−1 and j = i+1, i+2, · · · , h.

Let b
(i)
f and b

(j)
f be the first different elements of Bi ∪ IBi and Bj ∪ IBj , respectively. If b

(i)
f is

ranked ahead of b
(j)
f in Hq−1, then remove Bj ∪ IBj from Θ . Repeat the process until there

are only identical Bi ∪ IBi left in Θ and then take any Bi as Db. Then, D = (Dt : Db) is the
B2-GMC design.

Remark 3.4 In Step 1, we find all the possible blocking scheme matrices. With Step 3,
we exclude the blocking scheme matrices which contradict Dt ∩ (Db ∪ IDb

) = ∅. The comparing
process in Step 4 aims at finding out the blocking scheme matrices which satisfy the two
conditions in Lemma A.7. Therefore, D = (Dt : Db) obtained in Step 4 is the B2-GMC design.

Algorithm 3.3 provides the construction of B2-GMC designs with k = l + 1. Since Algo-
rithm 3.3 is based on the theory we have derived, it is easy to apply and can save more time
than the direct computer search.

Here we would like to give an example to show the efficiency of Algorithm 3.3 and how it
works.
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Example 3.5 Consider the construction of B2-GMC 261−54 : 24 design. First, Dt consists
of the last 61 columns of F7,7. In Step 1, search all the possible Bi from H7\Dt. There are
(
66
4

)
= 720720 different choices for Bi. Here we list B1, B2 and B3 as partial illustrations:

B1 = {1,2,12,7},
B2 = {1,2,4,5},
B3 = {1,2,12,3}.

In Step 2, we obtain
IB1 = {1,2,12,17,27,127},
IB2 = {12,14,24,15,25,45},
IB3 = {1,2,12,13,23,123}.

In Step 3, all the possible IBi ’s are checked whether they satisfy IBi ∩ Dt = ∅. Because
IB1 ∩ Dt 
= ∅, we exclude B1. After completely excluding, rank the columns of the remaining
Bi ∪ IBi ’s and then put them in Θ . Here,

B2 ∪ IB2 = {1,2,12,4,14,24,5,15,25,45},
B3 ∪ IB3 = {1,2,12,3,13,23,123}.

The columns in B2 ∪ IB2 and B3 ∪ IB3 are already ranked.
In Step 4, the Bi ∪ IBi ’s in Θ are compared. For example, compare B2 ∪ IB2 and B3 ∪ IB3 ,

4 and 3 are the first columns respectively such that B2 ∪ IB2 is different from B3 ∪ IB3 . Since3
is ranked ahead of 4, we delete B2 ∪ IB2 from Θ . After a completely comparing and deleting
process in Step 4, we obtain that B3 ∪ IB3 is the only identical one left in Θ . Thus, we take
B3 = Db. Throughout the construction of B2-GMC 261−54 : 24 design, we need not to calculate
the pattern (4).

According to Lemma A.2, Db ∪ IDb
= H3. Except for the 7 alias sets represented by the

columns of H3, the 61 main treatment effects alias sets, and the 3 alias sets represented by
the 3 columns of F7,7\Dt, there are still 56 alias sets, each contains 29 two-factor interactions of
treatment factors, which are orthogonal to significant block effects. For this B2-GMC 261−54 : 24

design, we have #B
1C

(0)
2 (D) = 61, #B

2C
(28)
2 (D) = 1624 and the other components of #BC(D) are

all zeros.

Zhang, et al.[21] gave some 16-, 32-, and 64-run B2-GMC designs by the direct computer
search. It took a few months to obtain them. We still take the construction of B2-GMC 261−54 :
24 design as an example. If one directly searches Dt from H7, Dt has

(
127
61

)
= 1.090363E+37

different choices. Corresponding to each Dt, there are
(
66
4

)
= 720720 different choices for Db.

For the
(
127
61

)(
66
4

)
possible pairs of Dt and Db, calculating pattern (4) is undoubtedly a very

hard task. Obviously, the construction methods we proposed are much more efficient than the
direct computer search.
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4 Concluding Remarks

How to arrange blocked designs with multi block variables is very important in practical
experiments. Three practical examples of multi block variables have been included in Section 1.
Zhang, et al.[21] proposed the B2-GMC criterion for selecting optimal two-level regular designs
with multi block variables. Although there are quite a few studies on blocked designs with
a single block variable, the study of multi block variables blocking problem is valuable and
necessary. We now take the comparison between the B2-GMC and B1-GMC designs to highlight
this point.

For a fair comparison, we may as well suppose that, for the blocked designs with a single
variable, only the main block effects and two-factor interactions of the block factors are signif-
icant block effects. When 5N

16 + 1 ≤ n ≤ N
2 , the unblocked design of a B1-GMC design consists

of the last n columns of Fq,q. So does that of a B2-GMC design according to Theorem3.1 and
Algorithm 3.3. Therefore, for a given n, the B2-GMC and B1-GMC designs have the same
unblocked design Dt. When s = 2, the B2-GMC and B1-GMC designs are the same. When
s ≥ 3, the B2-GMC designs outperform the B1-GMC designs in the way of estimating more
two-factor interactions of Dt. Let D1

b and D2
b denote the blocking scheme matrices of the B1-

GMC and B2-GMC designs, respectively. According to the two conditions in Lemma A.7, we
have (D2

b ∪ ID2
b
) ∩ Hq−1 � (D1

b ∪ ID1
b
) ∩ Hq−1. This means that the B2-GMC designs perform

better than the B1-GMC designs by noting that each column of Hq−1 represents a two-factor
interaction alias set of Dt. Now let us see an illustrative example.

Example 4.1 Consider 211−6 : 24 designs. The unblocked designs for both the B2-GMC
and B1-GMC designs consist of the last 11 columns of F5,5. According to [19], the blocking
scheme matrix D1

b of the B1-GMC design are generated by the four independent columns 1,2,3,
and 4. For this design, there are 10 potentially significant block effects, 1,2,3,4,12, 13,

14,23,24, and 34, each is confounded with a two-factor interaction alias set of the unblocked
design. According to Theorem 3.1 (a), the blocking scheme matrix D2

b of the B2-GMC design
are generated by the four columns 1,2,12, and 5. For this design, there are only 3 potentially
significant block effects, 1,2, 12, each is confounded with a two-factor interaction alias set of
the unblocked design. As the two-factor interactions of treatment factors cannot be estimated
once they are confounded with significant block effects, the B2-GMC design is better than the
B1-GMC design.

Under the fair definition of significant block effects, the same conclusion can be reached
when the B2-GMC deigns are compared with optimal blocked designs selected under the other
criteria for the single block variable case. Zhang, et al.[21] summarized that the number of clear
two-factor interactions of a B2-GMC deign is larger than or equal to that of the B1-GMC deign
and the optimal blocked design based on MA. For detailed discussion, please refer to [21]. In
practical experiments, experimenters should first make clear which kind of blocking problem an
experiment belongs to. If it belongs to the case of multi block variables, the B2-GMC design is
a preferred choice, since more two-factor interactions are allowed to be estimated. On the other
hand, if an experiment belongs to the case of single block variable, the experimenters cannot
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choose the B2-GMC design, since the single block variable case requires the s blocking factors
to be completely independent which the B2-GMC designs cannot meet.

Zhang, et al.[21] listed some 16-, 32-, and 64-run B2-GMC designs with the number of block
variables at most 5 through computer search. In this paper we systematically establishes the
construction methods of B2-GMC designs with 5N

16 + 1 ≤ n ≤ N
2 for all the possible number of

block variables. In Appendix B, we list the B2-GMC designs with small run size for experimenter
to use easily. In the future work, we will concentrate on providing the B2-GMC designs which
cover a broader range of n.
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Appendix A Proof of Theorem 3.1

Several lemmas are developed to gradually introduce necessary conditions for building the
construction theory.

Lemma A.1 Suppose A = (a1, a2, · · · , ar1), B = (b1, b2, · · · , br2) and r1 > r2, where
ai, bj ∈ Hq are mutually different. Let aiB = (aib1, aib2, · · · , aibr2) for i = 1, 2, · · · , r1, then
∩r1

i=1aiB = ∅.
Proof Suppose ∩r1

i=1aiB 
= ∅. Then there exists aibji ∈ aiB, i = 1, 2, · · · , r1, such that
a1bj1 = a2bj2 = · · · = ar1bjr1

. Note that r1 > r2, then there is at least one pair, say j1 and j2,
such that bj1 = bj2 . This implies a1 = a2 which contradicts the assumption. This completes
the proof.

Using #{A} to denote the number of columns in matrix A, we give the following lemma.

Lemma A.2 Let E be an s-projection of Hk ∪ Fj,(k+1) with 2k ≤ s ≤ 2k+1 − 1. Then
E ∪ IE = Hk ∪ Fj,(k+1), where j = k + 1, k + 2, · · · , q.

Proof Let

E = (a1, a2, · · · , as) ⊂ Hk ∪ Fj,(k+1), and

E = (Hk ∪ Fj,(k+1))\E = (as+1, as+2, · · · , a2k+1−1).

Since #{E} = 2k+1 − 1 − s < 2k ≤ #{E}, according to Lemma A.1, we have ∩s
i=1aiE =

∅. For any ai, i = 1, 2, · · · , s, we have (ai, ai(E\ai), aiE) = Hk ∪ Fj,(k+1), which implies
(ai, ai(E\ai)) = (Hk ∪ Fj,(k+1))\aiE, i = 1, 2, · · · , s. Therefore,

E ∪ IE = ∪s
i=1(ai, ai(E\ai))

= ∪s
i=1((Hk ∪ Fj,(k+1))\aiE)

= (Hk ∪ Fj,(k+1))\(∩s
i=1aiE). (5)



OPTIMAL TWO-LEVEL DESIGNS WITH MULTI BLOCK VARIABLES 783

The proof is completed following (5) and ∩s
i=1aiE = ∅.

For easy reference, in the following lemma we introduce some results of [12].

Lemma A.3 Let E be an s-projection of Fq,q, s = 2k−1 + δ ≥ 3 and 0 < δ ≤ 2k−1, then
#{IE} ≥ 2k − 1, where the equality can be achieved when the number of independent columns
of E is k + 1.

When we select columns from Hq as the blocking scheme matrix Db, there are two possibil-
ities: (a) Db ∩ Fq,q = ∅ and (b) Db ∩ Fq,q 
= ∅. Lemmas A.4 and A.5 respectively reveal that
no matter how to select Db from Hq as blocking scheme matrix, there are at least a certain
number of columns in Hq−1 confounded by significant block effects.

Lemma A.4 Let 2k ≤ s ≤ 2k+1 − 1, when we select s columns from Hq as the blocking
scheme matrix Db, if Db ∩ Fq,q = ∅, then

inf
Db

{#{(Db ∪ IDb
) ∩ Hq−1}} = 2k+1 − 1,

where inf{·} represents the infimum.

Proof If Db ∩Fq,q = ∅, then Db ⊂ Hq−1 and (Db ∪ IDb
) ⊂ Hq−1. Denote S = (I, Db), then

qS ⊂ Fq,q, where I is the column with all elements unity. By the structures of Hq−1 and Fq,q ,
it is easy to obtain Db ∪ IDb

= IqS . As 2k + 1 ≤ #{qS} ≤ 2k+1, according to Lemma A.3, we
can obtain #{IqS} ≥ 2k+1 − 1, i.e., #{Db ∪ IDb

} ≥ 2k+1 − 1. When take the first s columns of
Hk+1 as Db, the equality can be achieved. The proof is completed.

With the help of Lemmas A.3 and A.4, we have the following lemma which considers the
possibility (b), i.e., Db ∩ Fq,q 
= ∅.

Lemma A.5 Let 2k ≤ s ≤ 2k+1 − 1, when we select s columns from Hq as the blocking
scheme matrix Db, if Db ∩ Fq,q 
= ∅, then

inf
Db

{#{(Db ∪ IDb
) ∩ Hq−1}} = 2k − 1.

Proof Note that

#{(Db ∪ IDb
) ∩ Hq−1} = #{(Db ∩ Hq−1) ∪ IDb∩Hq−1 ∪ IDb∩Fq,q}. (6)

(i) Suppose #{Db ∩ Fq,q} ≤ 2k−1, then #{Db ∩ Hq−1} ≥ 2k−1. According to Lemma A.4,
we have #{(Db ∩ Hq−1) ∪ I(Db∩Hq−1)} ≥ 2k − 1. Obviously, by (6),

#{(Db ∪ IDb
) ∩ Hq−1} ≥ #{(Db ∩ Hq−1) ∪ I(Db∩Hq−1)} ≥ 2k − 1.

(ii) Suppose #{Db ∩ Fq,q} ≥ 2k−1 + 1. By Lemma A.3, we obtain #{IDb∩Fq,q} ≥ 2k − 1.
Then, by (6),

#{(Db ∪ IDb
) ∩ Hq−1} ≥ #{IDb∩Fq,q} ≥ 2k − 1.

In Lemma A.2, taking j = q, for any blocking scheme matrix D∗
b ⊂ Hk∪Fq,(k+1) with #{D∗

b} =
s, we have D∗

b ∪ ID∗
b

= Hk ∪ Fq,(k+1), and hence

#{(D∗
b ∪ ID∗

b
) ∩ Hq−1} = 2k − 1. (7)
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This completes the proof following (i), (ii) and (7).
Lemma A.6 below is a result belonging to [23]. It plays an important role in the proof

of Lemma A.7 below and Algorithm 3.3 in Section 3. Let B2(Dt, γ) denote the number of
two-factor interactions of design Dt appearing in the alias set that contains γ.

Lemma A.6 Suppose that Dt consists of the last n columns of Fq,q, γ1 and γ2 are columns
in Hq−1. If γ1 is ranked ahead of γ2 in Hq−1 in Yates order, then

B2(Dt, γ1) ≥ B2(Dt, γ2).

As mentioned in Section 2, we consider only designs D = (Dt : Db) with Dt∩(Db∪IDb
) = ∅,

which means #B
1C

(k)
2 (D) = #

1C
(k)
2 (Dt) for any k. Thus, #B

1C2(D) depends only on Dt. Therefore,
we should consider the part Dt of D as an unblocked design and optimally choose it first to
maximize #

1C2(Dt). Then, when 5N
16 + 1 ≤ n ≤ N

2 , Dt must have resolution at least IV, and we
can suppose Dt ⊂ Fq,q

[13].
Li, et al.[13] investigated the construction of GMC 2n−m designs with n ≥ 5N

16 + 1. They
showed that when 5N

16 + 1 ≤ n ≤ N
2 , if Dt consists of the last n columns of Fq,q then Dt is a

GMC design, i.e., it sequentially maximizes pattern (3). Lemma A.7 below gives two sufficient
conditions for a blocked design D = (Dt : Db) to be a B2-GMC design.

Lemma A.7 Suppose that Dt consists of the last n columns of Fq,q with 5N
16 +1 ≤ n ≤ N

2 ,
if Db satisfies the following two conditions:

(C1) For any candidate blocking scheme matrix D′
b,

#{(Db ∪ IDb
) ∩ Hq−1} ≤ #{(D′

b ∪ ID′
b
) ∩ Hq−1};

(C2) (Db ∪ IDb
) ∩ Hq−1 consists of the first #{(Db ∪ IDb

) ∩ Hq−1} columns of Hq−1,
then D = (Dt : Db) is a B2-GMC design.

Proof By the definitions of GMC and B2-GMC criteria, to construct a B2-GMC 2n−m : 2s

design, we can carry out the following two steps:
Step 1 Construct a 2n−m GMC design Dt;
Step 2 Construct a blocking scheme matrix Db such that D = (Dt : Db) is a B2-GMC

design.
Let Dt consist of the last n columns of Fq,q. Then according to [13], Dt is a 2n−m GMC

design. When selecting columns from Hq as the blocking scheme matrix Db, we should first
select the columns such that those in Db ∪ IDb

are neither aliased with the main effects of Dt

nor with the two-factor interactions of Dt, then the columns such that those in Db ∪ IDb
are

aliased with the two-factor interactions of Dt at the most serious degree.
Note that according to [13] each column γ ∈ Hq corresponds to an alias set of Dt. For any

γ ∈ Dt, the alias set contains a main effect of Dt. For any γ ∈ Fq,q\Dt, the alias set contains
only interactions involving three or more factors of Dt. For any γ ∈ Hq−1, there are at least
n − N

4 two-factor interactions of Dt aliased with it. If Db satisfies the conditions C1 and C2,
then by Lemma A.6, D = (Dt : Db) is a B2-GMC design. This completes the proof.
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Proof of Theorem 3.1 When we select columns from Hq as Db, there are two possibilities:
(i) Db ∩ Fq,q = ∅ and (ii) Db ∩ Fq,q 
= ∅.

(a) If Db ∩ Fq,q = ∅, from Lemma A.4, #{(Db ∪ IDb
) ∩ Hq−1} ≥ 2k+1 − 1. On the other

hand, if Db ∩ Fq,q 
= ∅, from the proof of Lemma A.5, there exists a Db ⊂ Hk ∪ Fq,(k+1)

such that #{(Db ∪ IDb
) ∩ Hq−1} = 2k − 1. As 2k+1 − 1 > 2k − 1, by C1 of Lemma A.7,

Db ∩ Fq,q = ∅ is not a good selection for Db. Let Db be any s-projection of Hk ∪ Fq,(k+1).
By Lemma A.2, Db ∪ IDb

= Hk ∪ Fq,(k+1). Obviously, we have (Db ∪ IDb
) ∩ Hq−1 = Hk and

#{(Db ∪ IDb
)∩Hq−1} = 2k − 1. According to Lemma A.7, D = (Dt : Db) is a B2-GMC design

for k ≤ l.
(b) When k ≥ l + 2, we have #{Fq,q\Dt} = N

2 − n ≤ 2k−1 − 1. As 2k ≤ s ≤ 2k+1 − 1,
then Db has at least 2k−1 + 1 columns from Hq−1, i.e., #{Db ∩ Hq−1} ≥ 2k−1 + 1. Suppose
Db ∩ Fq,q 
= ∅. Note that for any γ ∈ Db ∩ Fq,q, we have γ(Db ∩ Hq−1) ⊂ IDb

∩ Fq,q, which
implies

#{IDb
∩ Fq,q} ≥ #{γ(Db ∩ Hq−1)} = #{Db ∩ Hq−1} ≥ 2k−1 + 1.

Recall that we consider only designs D = (Dt : Db) with Dt ∩ (Db ∪ IDb
) = ∅. Thus, we have

Dt ⊂ Fq,q\IDb
, and hence

n = #{Dt} ≤ #{Fq,q\IDb
} = #{Fq,q} − #{(IDb

∩ Fq,q)} ≤ N

2
− (2k−1 + 1) ≤ n − 2.

This contradiction shows that Db ∩ Fq,q = ∅ for k ≥ l + 2. Let Db be any s-projection of
Hk+1, then Db ∪ IDb

= Hk+1 by Lemma A.2. Obviously, by Lemma A.4, Db satisfies the two
conditions in Lemma A.7. Thus, D = (Dt : Db) is a B2-GMC design.

Appendix B Some Small Run-Size B2-GMC Designs

The 16-, 32-, 64-run B2-GMC designs are listed in this section. For given n = N
2 , the design

D = (Dt : Db) with Dt = Fq,q and Db consisting of the first s columns of Hq−1 is the B2-GMC
design. In the following tables, H{·} and F{·} are defined as in (1) and (2), respectively.

Table B1 16-run B2-GMC 2n−m : 2s designs

n s Dt Db Source

6 1 the last 6 columns of F4,4 {4} Theorem 3.1 (a)

6 2–3 s-projection of H1 ∪ F42 Theorem 3.1 (a)

6 4–7 s-projection of H3 Algorithm 3.3

7 1 the last 7 columns of F4,4 {4} Theorem 3.1 (a)

7 2–3 s-projection of H2 Algorithm 3.3

7 4–7 s-projection of H3 Theorem 3.1 (b)
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Table B2 32-run B2-GMC 2n−m : 2s designs

n s Dt Db Source

11–12 1 the last n columns of F5,5 {5} Theorem 3.1 (a)

11–12 2–3 s-projection of H1 ∪ F5,2 Theorem 3.1 (a)

11–12 4–7 s-projection of H2 ∪ F5,3 Theorem 3.1 (a)

11–12 8–15 s-projection of H4 Algorithm 3.3

13–14 1 the last n columns of F5,5 {5} Theorem 3.1 (a)

13–14 2–3 s-projection of H1 ∪ F5,2 Theorem 3.1 (a)

13–14 4–7 s-projection of H3 Algorithm 3.3

13–14 8–15 s-projection of H4 Theorem 3.1 (b)

15 1 the last 15 columns of F5,5 {5} Theorem 3.1 (a)

15 2-3 s-projection of H2 Algorithm 3.3

15 4-7 s-projection of H3 Theorem 3.1 (b)

15 8-15 s-projection of H4 Theorem 3.1 (b)

Table B3 64-run B2-GMC 2n−m : 2s designs

n s Dt Db Source

21–24 1 the last n columns of F6,6 {6} Theorem 3.1 (a)

21–24 2–3 s-projection of H1 ∪ F6,2 Theorem 3.1 (a)

21–24 4–7 s-projection of H2 ∪ F6,3 Theorem 3.1 (a)

21–24 8–15 s-projection of H3 ∪ F6,4 Theorem 3.1 (a)

21–24 16–31 s-projection of H5 Algorithm 3.3

25–28 1 the last n columns of F6,6 {6} Theorem 3.1 (a)

25–28 2–3 s-projection of H1 ∪ F6,2 Theorem 3.1 (a)

25–28 4–7 s-projection of H2 ∪ F6,3 Theorem 3.1 (a)

25–28 8–15 s-projection of H4 Algorithm 3.3

25–28 16–31 s-projection of H5 Theorem 3.1 (b)

29–30 1 the last n columns of F6,6 {6} Theorem 3.1 (a)

29–30 2–3 s-projection of H1 ∪ F6,2 Theorem 3.1 (a)

29–30 4–7 s-projection of H3 Algorithm 3.3

29–30 8–15 s-projection of H4 Theorem 3.1 (b)

29–30 16–31 s-projection of H5 Theorem 3.1 (b)

31 1 the last 31 columns of F6,6 {6} Theorem 3.1 (a)

31 2–3 s-projection of H2 Algorithm 3.3

31 4–7 s-projection of H3 Theorem 3.1 (b)

31 8–15 s-projection of H4 Theorem 3.1 (b)

31 16–31 s-projection of H5 Theorem 3.1 (b)


