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Abstract This paper studies the consistency of the extended Kalman filter (EKF) for a kind of non-

linear systems. Based on the EKF algorithm, the authors propose the quasi-consistent EKF (QCEKF)

as well as the tuning law for its parameters. The quasi-consistency of the proposed algorithm is proved.

Finally, the feasibility of the algorithm is illustrated by the numerical simulation on an orbit determi-

nation example.

Keywords Extended Kalman filter (EKF), consistency, nonlinear system.

1 Introduction

Filtering is one of the most pervasive tools for estimating the systems’ states by the mea-
surement which is contaminated by random noise. For linear systems, Kalman proposed the
Kalman filter (KF) in 1960[1], which is an optimal minimum mean square error estimator. Be-
sides the state estimate, the KF algorithm algorithm can also provide the mean square error of
the estimation by the covariance matrix Pk, which can be calculated by the filter. Hence, Pk can
be evaluate the filtering accuracy in real time. For linear systems, KF has been widely used[2–4].
For nonlinear systems, the extended Kalman filter (EKF) has been widely applied[5–7]. In the
EKF algorithm, the nonlinear functions are linearized at the current state estimate. Due to the
errors introduced during linearization, EKF is usually a biased estimator and the matrix Pk in
EKF is no longer the mean square error of the estimation. In some special cases, the estimation
error of the EKF algorithm may diverge[8].

Although EKF has been widely used, little previous work focuses on theoretical analysis
of its estimation error for general nonlinear systems. When the initial estimation error and
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the covariance of measurement noise are small enough, [8, 9] proved the boundedness of the
estimation error of EKF. [10] proved the convergence of EKF in the condition that the initial
estimation error is small enough and the linearized systems is observable at the current estimate.
References [11, 12] proposed a new filter based on EKF for nonlinear systems with incomplete
information and proved the stability of the proposed filter by assuming bounded covariance
of the estimation. However, the assumptions in [8–12] are usually too strict to be satisfied in
practice, and few results in [8–12] can evaluate the boundary of the filtering error in real time.

On the other hand, in the past few years, lots of researches have shown that EKF may
produce inconsistent estimates due to the error introduced in linearization process. A state
estimator is consistent if it is unbiased and its actual mean square errors equal to the one calcu-
lated by the filter[13]. Consistency is a fundamental criterion for evaluating the performance of
an estimator. In practice, since the true system state is unknown, if an estimator is inconsistent,
then the errors of the estimates are unknown and the estimate results may be unreliable. The
consistency of EKF, which is an essential issue, has not been investigated in depth. The incon-
sistent problem of the EKF-based simultaneous localization and mapping (SLAM) algorithm
are studied in [14–20]. In [20], the cause of the inconsistency was analyzed and a framework
for improving the consistency of EKF-base SLAM was proposed.

In this paper, the cause of the inconsistency of EKF for a kind of general nonlinear systems is
investigated and a novel framework for designing a quasi-consistency EKF (QCEKF) for general
nonlinear systems is proposed. A state estimator is quasi-consistent if its actual mean square
error is smaller or equal to the one calculated by the filter. It is proved that the proposed
QCEKF can assure the actual mean square error is no larger than the bound calculated by
the filter on time. Hence the boundary of the filtering error can be evaluated in real time.
Moreover, the initial estimation error and the covariance of measurement noise are no longer
to be assumed being small enough by using QCEKF.

The paper is organized as follows. Section 2 provides a brief introduction about the tradi-
tional EKF. In Section 3, the QCEKF algorithm is proposed for a kind of general nonlinear
systems, and the quasi-consistency of the proposed algorithm is proved. In Section 4, the
method to tune the parameters for QCEKF based orbit determination algorithm is presented,
and the feasibility of QCEKF is illustrated by the numerical simulation. The concluding re-
marks are given in Section 5.

2 The Traditional Extended Kalman Filter

Consider the following nonlinear system:
⎧
⎨

⎩

Xk+1 = f(Xk),

yk = g(Xk) + vk,
k = 0, 1, · · · , (1)

where Xk ∈ Rn is the state vector, and yk ∈ Rm is the measurement vector. vk ∈ Rm is a
zero-mean white noise processes with covariances being Rk. The nonlinear function f and g

are assumed to be C1-function with proper dimensions. The initial state X0 has an unbiased
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estimator X̂0, which is independent of vk, and the covariance is known:

E[X̂0] = X0, E[(X̂0 −X0)(X̂0 −X0)T] = P0.

To obtain an estimate of Xk via the measurements yk, the traditional EKF for the system
(1) is given as follows[21]:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

Xk+1 = f(X̂k),

P k+1 = AkPkA
T
k ,

Kk = P k+1C
T
k+1(Ck+1P k+1C

T
k+1 +Rk+1)−1,

X̂k+1 = Xk+1 +Kk(yk+1 − g(Xk+1)),

Pk+1 = (I −KkCk+1)P k+1(I −KkCk+1)T +KkRk+1K
T
k ,

(2)

where Ak = ∂f
∂X |X̂k

, Ck+1 = ∂g
∂X |Xk+1

, X̂k is the filtering value at time-step k, Xk is the
predicted value at time-step k.

If the system (1) is linear, that is, f(Xk) = AkXk, g(Xk) = CkXk, where Ak and Ck are
constant matrices, then the EKF (2) is equivalent to KF, which is an optimal minimum mean
square error estimator and is also consistency.

Definition 2.1 (see [13]) A state estimator (filter) is consistent if its state estimate errors
satisfy

E[X̂k −Xk] = 0, E[(X̂k −Xk)(X̂k −Xk)T] = Pk.

In other words, it is unbiased and its actual mean square error equals to the one calculated
by the filter.

Since the filter gain Kk is calculated based on the calculated error covariance Pk, the con-
sistency is necessary for filter optimality. Otherwise, wrong covariance will yield wrong gain.

For the general nonlinear systems (1), assume ϕk and ψk are the linearization errors at
time-step k: {

ϕk = f(X̂k) − f(Xk) −A∗
k(X̂k −Xk),

ψk+1 = g(Xk+1) − g(Xk+1) − C∗
k+1(Xk+1 −Xk+1),

where A∗
k = ∂f

∂X |Xk
, C∗

k+1 = ∂g
∂X |Xk+1 . Then for the EKF (2), the estimate error will be

X̂k+1 −Xk+1 = (I −KkC
∗
k+1)(A

∗
k(X̂k −Xk) + ϕk(·)) −Kkψk+1(·) +Kkvk+1. (3)

The mean square error of the estimation is

E[(X̂k+1 −Xk+1)(X̂k+1 −Xk+1)T]

= (I −KkCk+1)AkE[(X̂k −Xk)(X̂k −Xk)T]AT
k (I −KkCk+1)T +KkE[vk+1v

T
k+1]K

T
k

+E[(I −KkC
∗
k+1)(A

∗
k(X̂k −Xk)(X̂k −Xk)TA∗

k
T)(I −KkC

∗
k+1)

T]

−(I −KkCk+1)AkE[(X̂k −Xk)(X̂k −Xk)T]AT
k (I −KkCk+1)T

+E[Kkψk+1(·)ψT
k+1(·)KT

k ] + E[Kkvk+1v
T
k+1K

T
k ] −KkE[vk+1v

T
k+1]K

T
k
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+E[(I −KkC
∗
k+1)(A

∗
k(X̂k −Xk)ϕT

k (·) + ϕk(·)(X̂k −Xk)TA∗
k
T

+ϕk(·)ϕT
k (·))(I −KkC

∗
k+1)

T] − E[(I −KkC
∗
k+1)(A

∗
k(X̂k −Xk) + ϕk(·))ψT

k+1(·)KT
k ]

−E[Kkψk+1(·)(A∗
k(X̂k −Xk) + ϕk(·))T(I −KkC

∗
k+1)

T]

� Pk+1 + ΔPk+1, (4)

where

ΔPk+1

=E[(I −KkC
∗
k+1)A

∗
k(X̂k −Xk)(X̂k −Xk)TA∗

k
T(I −KkC

∗
k+1)

T]

− (I −KkCk+1)AkE[(X̂k −Xk)(X̂k −Xk)T]AT
k (I −KkCk+1)T

+ E[Kkψk+1(·)ψT
k+1(·)KT

k ] + E[Kkvk+1v
T
k+1K

T
k ] −KkE[vk+1v

T
k+1]K

T
k

+ E[(I −KkC
∗
k+1)(A

∗
k(X̂k −Xk)ϕT

k (·) + ϕk(·)(X̂k −Xk)TA∗
k
T + ϕk(·)ϕT

k (·))(I −KkC
∗
k+1)

T]

− E[(I −KkC
∗
k+1)(A

∗
k(X̂k −Xk) + ϕk(·))ψT

k+1(·)KT
k ]

− E[Kkψk+1(·)(A∗
k(X̂k −Xk) + ϕk(·))T(I −KkC

∗
k+1)

T].

If ΔPk+1 > 0, then the actual mean square errors do not equal to the calculated covariance
Pk+1. Therefore, the EKF (2) is not consistent for the general nonlinear systems and the actual
estimation errors, which are unknown in practice, cannot be evaluated by Pk+1. To make
matters worse, the wrong covariance Pk+1 may cause diverging.

(3) and (4) show that for the general nonlinear system (1), it’s difficult to exactly calculate
the first two moments of the estimation errors. Next, a novel framework for designing a quasi-
consistency EKF will be proposed. The definition of quasi-consistency is given as follows.

Definition 2.2 A state estimator (filter) is quasi-consistent, if its mean square error of
the estimation equals or less than the one yielded by the filter.

3 The Quasi-Consistent Extended Kalman Filter

The QCEKF algorithm for the system (1) is provided as follows:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Xk+1 =f(X̂k),

P̃ k+1 =AkP̃kA
T
k + ΔQk,

Kk = P̃ k+1C
T
k+1(Ck+1P̃ k+1C

T
k+1 +Rk+1)−1,

X̂k+1 =Xk+1 +Kk(yk+1 − g(Xk+1)),

P̃k+1 =(I −KkCk+1)˜P k+1(I −KkCk+1)T +KkRk+1K
T
k + ΔRk+1,

(5)
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where P̃0 = E[(X̂0 −X0)(X̂0 −X0)T], ΔQk and ΔRk+1 are symmetric matrices, satisfying the
following conditions:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ΔQk ≥E[A∗
k(X̂k −Xk)ϕT

k ] + E[ϕk(X̂k −Xk)TA∗
k
T] + E[ϕkϕ

T
k ]

+ E[A∗
k(X̂k −Xk)(X̂k −Xk)TA∗

k
T] −AkE[(X̂k −Xk)(X̂k −Xk)T]AT

k ,

ΔRk+1 ≥− E[(I −KkC
∗
k+1)(Xk+1 −Xk+1)ψT

k+1K
T
k ]

− E[Kkψk+1(Xk+1 −Xk+1)T(I −KkC
∗
k+1)

T]

+ E[Kkψk+1ψ
T
k+1K

T
k ] + E[Kkvk+1v

T
k+1K

T
k ] −KkE[vk+1v

T
k+1]K

T
k

− (I −KkCk+1)E[(Xk+1 −Xk+1)(Xk+1 −Xk+1)T](I −KkCk+1)T

+ E[(I −KkC
∗
k+1)(Xk+1 −Xk+1)(Xk+1 −Xk+1)T(I −KkC

∗
k+1)

T],

k = 0, 1, · · · .

(6)

Theorem 3.1 The algorithm (5)–(6) is quasi-consistent, i.e.,

E[(X̂k −Xk)(X̂k −Xk)T] ≤ P̃k, k = 0, 1, · · · .

Proof We use the mathematical induction to prove the result. Assume E[(X̂k −Xk)(X̂k −
Xk)T] ≤ P̃k. Linearizing the process equation, the following equation holds

Xk+1 = f(X̂k) = f(Xk) +A∗
k(X̂k −Xk) + ϕk,

where ϕk is the linearization error. Then the predicted error at time-step k + 1 is

Xk+1 −Xk+1 = A∗
k(X̂k −Xk) + ϕk.

Thus, the mean square error of the predicted value can be presented as follows:

E[(Xk+1 −Xk+1)(Xk+1 −Xk+1)T] = E[(A∗
k(X̂k −Xk) + ϕk)(A∗

k(X̂k −Xk) + ϕk)T].

When ΔQk satisfies the inequality (6), we can get

E(Xk+1 −Xk+1)(Xk+1 −Xk+1)T

= AkE[(X̂k −Xk)(X̂k −Xk)T]AT
k + E[A∗

k(X̂k −Xk)ϕT
k ] + E[ϕk(X̂k −Xk)TA∗

k
T]

+E(ϕkϕ
T
k ) + E[A∗

k(X̂k −Xk)(X̂k −Xk)TA∗
k
T] −AkE[(X̂k −Xk)(X̂k −Xk)T]AT

k

≤ ˜P k+1, (7)

where P̃ k+1 = AkP̃kA
T
k + ΔQk.

Linearizing the output function, the following equation holds

g(Xk+1) = g(Xk+1) + C∗
k+1(Xk+1 −Xk+1) + ψk+1,

where ψk+1 is the linearization error. The filtering error at time-step k + 1 is

X̂k+1 −Xk+1 =(I −KkC
∗
k+1)(Xk+1 −Xk+1) −Kkψk+1 +Kkvk+1.
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Thus the mean square error of the filtering value can be presented as follows:

E[(X̂k+1 −Xk+1)(X̂k+1 −Xk+1)T]

= (I −KkCk+1)E[(Xk+1 −Xk+1)(Xk+1 −Xk+1)T](I −KkCk+1)T +KkE[vk+1v
T
k+1]K

T
k

−E[(I −KkC
∗
k+1)(Xk+1 −Xk+1)(Kkψk+1)T]

−E[(Kkψk+1)(Xk+1 −Xk+1)T(I −KkC
∗
k+1)

T]

+E[Kkψk+1ψ
T
k+1K

T
k ] + E[Kkvk+1v

T
k+1K

T
k ] −KkE[vk+1v

T
k+1]K

T
k

−(I −KkCk+1)E[(Xk+1 −Xk+1)(Xk+1 −Xk+1)T](I −KkCk+1)T

+E[(I −KkC
∗
k+1)(Xk+1 −Xk+1)(Xk+1 −Xk+1)T(I −KkC

∗
k+1)

T]

≤ P̃k+1,

(8)
where P̃k+1 = (I −KkCk+1)˜P k+1(I −KkCk+1)T +KkRk+1K

T
k + ΔRk+1, ΔRk+1 satisfies the

inequality (6).

Remark 3.2 According to Theorem 3.1, the algorithm (5) is quasi-consistent and the
filtering error can be evaluated by P̃k. Therefore, if P̃k is bounded, the true filtering error is
bounded.

Remark 3.3 Denote Φk and Ψk+1 as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Φk = E[A∗
k(X̂k −Xk)ϕT

k ] + E[ϕk(X̂k −Xk)TA∗
k
T] + E[ϕkϕ

T
k ]

+ E[A∗
k(X̂k −Xk)(X̂k −Xk)TA∗

k
T] −AkE[(X̂k −Xk)(X̂k −Xk)T]AT

k ,

Ψk+1 = −E[(I −KkC
∗
k+1)(Xk+1 −Xk+1)ψT

k+1K
T
k ]

− E[Kkψk+1(Xk+1 −Xk+1)T(I −KkC
∗
k+1)

T]

+ E[Kkψk+1ψ
T
k+1K

T
k ] + E[Kkvk+1v

T
k+1K

T
k ] −KkE[vk+1v

T
k+1]K

T
k

− (I −KkCk+1)E[(Xk+1 −Xk+1)(Xk+1 −Xk+1)T](I −KkCk+1)T

+ E[(I −KkC
∗
k+1)(Xk+1 −Xk+1)(Xk+1 −Xk+1)T(I −KkC

∗
k+1)

T].

In the right hand of Φk , the first three items are caused by the linearization error ϕk and the last
two items are caused by the randomness of Ak. In the right hand of Ψk+1, the first three items
are caused by the linearization error ψk+1, the error E[Kkvk+1v

T
k+1K

T
k ] − KkE[vk+1v

T
k+1]K

T
k

is caused by the randomness of Kk and the last two items are caused by the randomness of
Ck and Kk. Hence, when the error introduced during linearization can not be ignored, the
estimation error of EKF may be inconsistent. In QCEKF, the quasi-consistency is assured by
ΔQk and ΔRk+1.

Theorem 3.1 can be extended to the systems with determined disturbance.
Considering the system

⎧
⎨

⎩

Xk+1 = f(Xk) + dw,k,

yk = g(Xk) + vk + dv,k,
k = 0, 1, · · · , (9)



ON DESIGNING CONSISTENT EXTENDED KALMAN FILTER 757

where Xk, yk, vk, f and g are the same as those in (1). dw,k and dv,k are the determined
disturbances, with known upper boundary dw,k, dv,k respectively. The initial state X0 has an
unbiased estimator X̂0, which is independent of vk, and the covariance is known:

E[X̂0] = X0, E[(X̂0 −X0)(X̂0 −X0)T] = P̃0.

For the system (9), the parameter turning law (6) should be adjusted as follows:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ΔQk ≥E[A∗
k(X̂k −Xk)(ϕk + dw,k)

T
] + E[(ϕk + dw,k)(X̂k −Xk)TA∗

k
T]

+ E[(ϕk + dw,k)(ϕk + dw,k)
T
] +A∗

kE[(X̂k −Xk)(X̂k −Xk)T]A∗
k
T

−AkE[(X̂k −Xk)(X̂k −Xk)T]AT
k ,

ΔRk+1 ≥− E[(I −KkC
∗
k+1)(Xk+1 −Xk+1)(ψk+1 + dv,k)

T
KT

k ]

− E[Kk(ψk+1 + dv,k)(Xk+1 −Xk+1)T(I −KkC
∗
k+1)

T]

+ E[Kk(ψk+1 + dv,k)(ψk+1 + dv,k)TKT
k ] + E[Kkvk+1v

T
k+1K

T
k ]

−KkE[vk+1v
T
k+1]K

T
k

− (I −KkCk+1)E[(Xk+1 −Xk+1)(Xk+1 −Xk+1)T](I −KkCk+1)T

+ E[(I −KkC
∗
k+1)(Xk+1 −Xk+1)(Xk+1 −Xk+1)T(I −KkC

∗
k+1)

T],

k = 0, 1, · · · .

(10)

Theorem 3.4 For the system (9), if the parameters ΔQk, ΔRk+1 satisfy the inequality
(10), then the algorithm (5), (10) is quasi-consistent, i.e.,

E[(X̂k −Xk)(X̂k −Xk)T] ≤ P̃k, k = 0, 1, · · · .

The proof of Theorem 3.4 can be easily obtained by the method similar to that in the proof
of Theorem 3.1.

Remark 3.5 For the system with continuous dynamic, we can transform the continuous
equation into discrete equation, viewing the discretization error as the deterministic disturbance,
then the original system can be transformed into the discrete system (9).

Remark 3.6 According to the equations (7) and (8), the more conservative ΔQk and
ΔRk+1 are, the more conservative P̃k+1 will be. If the parameters ΔQk and ΔRk+1 are too
conservative, the true filtering error may bounded while P̃k divergence. This feature can be
illustrated by the following Example.

Example 3.7 Consider the system
⎧
⎨

⎩

x1,k+1 = x1,k + x2,k,

x2,k+1 = x2
2,k,

yk = x1,k + vk, k = 0, 1, · · · , (11)

where Xk = [x1,k, x2,k]T is a 2-dimension state vector, yk is a 1-dimension measurement vector.
vk is a zero-mean white noise processes with covariances being Rk = 1. The initial value
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x2,0 ∈ [−0.5, 0.5]. The initial estimation X̂0 is independent of vk, and the covariance of the
initial estimation are known as follows:

E[(X̂0 −X0)(X̂0 −X0)T] = P̃0 =

⎡

⎣
5 0

0 1

⎤

⎦ .

When the initial estimation X̂0 = [1, 0]T, according to the QCEKF algorithm (5), X1 =
[1, 0]T and A0 = [ 1 1

0 0 ]. We choose ΔQ0 =
[

2P̃0(1,1)+2P̃0(2,2) 0
0 1

]
. For the system (11), it can be

verified that ΔQ0 satisfies the inequality (6). Substituting ΔQ0 into the algorithm (5), we have

P̃ 1 =A0P̃0A0
T + ΔQ0 =

⎡

⎣
3P̃0(1, 1) + 3P̃0(2, 2) 0

0 ΔQ0(2, 2)

⎤

⎦ , K0 =

⎡

⎣

˜P 1(1,1)
˜P 1(1,1)+R1

0

⎤

⎦ .

Since K0 is independent of {yk}, we can choose ΔR1 = 0. Substituting ΔR1 = 0 into the
algorithm (5), we have

P̃1 =

⎡

⎣

˜P 1(1,1)R1
˜P 1(1,1)+R1

0

0 ˜P 1(2, 2)

⎤

⎦ . (12)

Similar to P̃0, P̃1 is also a diagram matrix, and it is easy to know that:

P̃1(1, 1) ≤ R1, P̃1(2, 2) = ΔQ0(2, 2), x̂2,1 = 0.

Moreover, P̃1 and x̂2,1 are independent of {yk}.
Similarly, we can choose the parameters ΔQk and ΔRk+1 as follows:

ΔQk =

⎡

⎣
2P̃k(1, 1) + 2P̃k(2, 2) 0

0 k

⎤

⎦ , ΔRk+1 = 0. (13)

Then P̃k(1, 1) ≤ Rk, P̃k(2, 2) = ΔQk−1(2, 2) = k, x̂2,k = 0. Obviously, P̃k is divergent.
However, since QCEKF algorithm is quasi-consistent, we have

⎧
⎨

⎩

E[(x̂1,k − x1,k)2] ≤ P̃k(1, 1) ≤ Rk,

x̂2,k − x2,k = −x2,k → 0.

Since x2,0 ∈ [−0.5, 0.5], x2,k → 0. Hence, the mean square of filter error is bounded.

In this example, the mean square error of filter is bounded while P̃k is divergent. The reason
is the parameter ΔQk is too conservative.

This example shows that the selection of the parameters ΔQk, ΔRk+1 are the key issue of
QCEKF.

Theorems 3.1 and 3.4 provide the rules of how to determine the parameters ΔQk, ΔRk+1.
Next some specific methods for choosing the parameters ΔQk, ΔRk+1 will be discussed for the
orbit determination problem.
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4 QCEKF Based Orbit Determination Algorithm

For the flight during free flight phase, denote the position vector as [ rx,ry,rz ]T, the velocity
vector as [ vx,vy,vz ]T. The dynamic equation of the flight can be presented as follows[22]:

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

ṙx

ṙy

ṙz

v̇x

v̇y

v̇z

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

vx

vx

vx

−ue

q3 rx + 2ωvy + ω2rx

−ue

q3 ry − 2ωvx + ω2ry

−ue

q3 rz

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

� F (X), X =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

rx

ry

rz

vx

vy

vz

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (14)

where ue = 3.986005× 1014 is the geocentric gravitational constant, ω = 7.292115× 10−5 is the
angular speed of rotation. q =

√
r2x + r2y + r2z is the distance from the earth ’s center to the

vehicle.
The measurement of the target is obtained in the polar coordinates[23]:

yk = h

⎛

⎜
⎜
⎝

⎡

⎢
⎢
⎣

rx,k

ry,k

rz,k

⎤

⎥
⎥
⎦− Sk

⎞

⎟
⎟
⎠+ vk, (15)

where Sk is the position vector from the earth’s center to the sensor. The measurement noise vk

valued uncorrelated zero-mean Gaussian noise processes with covariance being Rk =

[
σ2

r 0 0

0 σ2
b 0

0 0 σ2
e

]

.

The nonlinear function h
([ zx

zy
zz

])
is presented as follows:

h

⎛

⎜
⎜
⎝

⎡

⎢
⎢
⎣

zx

zy

zz

⎤

⎥
⎥
⎦

⎞

⎟
⎟
⎠ =

⎡

⎢
⎢
⎢
⎣

√
z2

x + z2
y + z2

z

arctan( zy

zx
)

arctan( zz√
z2

x+z2
y

)

⎤

⎥
⎥
⎥
⎦
. (16)

In this example, since the randomness of the gain matrix Kk can be neglected, the param-
eters ΔQk, ΔRk+1 can be chosen as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ΔQk =((1 + α1,k)(1 + α2,k) − 1)AkP̃kAk
T

+ (1 + α1,k)
(

1 +
1
α2,k

)

MQ,k +
(

1 +
1
α1,k

)

ΔQϕ,k,

ΔRk+1 =((1 + β1,k)(1 + β2,k) − 1)(I −KkCk+1)˜P k+1(I −KkCk+1)T

+ (1 + β1,k)
(

1 +
1
β2,k

)

KkMR,kK
T
k +

(

1 +
1
β1,k

)

KkΔRϕ,kK
T
k ,

(17)
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where

α1,k =

√
‖ΔQϕ,k‖

‖AkP̃kAk
T‖ , α2,k =

√
‖MQ,k‖

‖AkP̃kAk
T‖ ,

ΔQϕ,k = 6 × diag
(

[(ϕk,1 + dk,1)
2
, (ϕk,2 + dk,2)

2
, · · · , (ϕk,6 + dk,6)

2]
)

,

ϕ2
k,i =

9
4
trace

(√

P̃k
∂2fi

∂X2
|X̂k

P̃k
∂2fi

∂X2
|X̂k

√

P̃k

T)

, i = 1, 2, · · · , 6, P̃k =
√

P̃k

T√

P̃k,

[dk,1, dk,2, dk,3]T =
T 2

2
[f4,k, f5,k, f6,k]T,

[dk,4, dk,5, dk,6]T =
T 2

2

(

|A22,k[f4,k, f5,k, f6,k]T| + |A21,k[8000, 8000, 8000]T|
)

,

A21,k = [0, I3]Ak[I3, 0]T, A22,k = [0, I3]Ak[0, I3]T,

MQ,k = 4 × 6diag
([

ϕ2
k,1, ϕ

2
k,2, · · · , ϕ2

k,6

])

,

β1,k = max
{
ψk,2

σb
,
ψk,3

σe

}

, β2,k = max
{
MR,k(2, 2)

σb
,
MR,k(3, 3)

σe

}

,

ΔRϕ,k = 3 × diag
(

[ψk,1
2, ψk,2

2, , ψk,3
2]
)

,

ψ2
k,i =

9
4
trace

[√
˜P k

∂2hi

(∂X)2
|Xk+1

˜P k
∂2hi

(∂X)2
|Xk+1

√
˜P k

T]

, i = 1, 2, 3, ˜P k =
√
˜P k

T√
˜P k,

MR,k = 4 × 3diag
(
[ψk,1

2, ψk,2
2, ψk,3

2]
)
.

Remark 4.1 For the system (14), the simulations show that the randomness of the gain
matrix Kk is very weak.

In the simulation, the initial state is X0 = [Sk, 0, 0, 0]T + [1× 106m, 2× 106m, 2× 106m, 4×
103m/s, 5 × 103m/s, 1 × 103m/s]T, where Sk = [−1.007499, 5.48943, 3.077004]T × 106m. The
standard deviation of the initial filtering error is σr,x = σr,y = σr,z = 1 × 104m, σv,x = σv,y =
σv,z = 1 × 102m/s. The sampling step is T = 1s. The standard deviation of the measurement
noise is σr = 20m, σb = 5 × 10−3rad, σe = 5 × 10−3rad.

Figures 1–4 are the simulation results of the traditional EKF and QCEKF algorithms. The
red lines stand for the mean square error (MSE) of filtering results, which is calculated by
100 times experiments, and the blue lines stand for the corresponding diagonal elements of P̃k.
In Figures 1–4, the diagonal elements of Pk are smaller than the mean square error. Hence,
the traditional EKF is not quasi-consistent. In Figures 1–4, the diagonal elements of P̃k are
the upper boundary of the corresponding mean square error, i.e., the QCEKF algorithm is
quasi-consistent. Hence, we can evaluate the filtering error based on P̃k in real time.
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Figure 1 Numerical simulations of the position vector by the traditional EKF al-

gorithm: The mean square error (MSE) of the true filtering error (dotted

line) and the corresponding diagonal element in Pk (solid line) in real time
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Figure 2 Numerical simulations of the velocity vector by the traditional EKF algo-

rithm: The mean square error (MSE) of the true filtering error (dotted

line) and the corresponding diagonal element in Pk (solid line) in real time
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Figure 3 Numerical simulations of the position vector by the QCEKF algorithm:

The mean square error (MSE) of the true filtering error (dotted line) and

the corresponding diagonal element in P̃k (solid line) in real time
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Figure 4 Numerical simulations of the velocity vector by the QCEKF algorithm:

The mean square error (MSE) of the true filtering error (dotted line) and

the corresponding diagonal element in P̃k (solid line) in real time

5 Conclusion

This paper proposed a QCEKF algorithm for a kind of nonlinear systems, and the quasi-
consistency of the algorithm is proved. Then the feasibility of QCEKF algorithm is illustrated
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by the numerical simulation for an orbit determination example.
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