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Abstract In this paper, the authors consider a stochastic control problem where the system is gov-

erned by a general backward stochastic differential equation. The control domain need not be convex,

and the diffusion coefficient can contain a control variable. The authors obtain a stochastic maximum

principle for the optimal control of this problem by virtue of the second-order duality method.

Keywords Adjoint equations, backward stochastic differential equation, maximum principle, varia-

tional inequality.

1 Introduction

This paper is concerned with the dynamic system of general backward differential equations
(BSDEs). A BSDE is an Itô’s stochastic differential equation (SDE) in which the terminal
rather than the initial condition is given. The BSDEs were introduced by Bismut[1] in the
linear case and by Pardoux and Peng[2] in the general case. Since their introduction, the
BSDEs have received considerable research attention in a large range of domains, especially in
mathematical finance (see, e.g., Cvitanic and Ma[3], El Karoui, Peng, and Quenez[4], Ma and
Yong[5], Schroder and Skiadas[6], Yong and Zhou[7], etc.). In particular, the celebrated Black-
Scholes option pricing formula can be derived from a class of linear BSDEs where the random
terminal condition is just the option’s payoff at the maturity. Since BSDEs are well-defined
dynamic systems, it is very natural and appealing to consider the control problems of BSDEs.
However, there exist only a few works along this line, including Peng[8], Xu[9], Wu[10], Lim and
Zhou[11], Huang, Wang and Xiong[12], and Wang and Yu[13]. Our work distinguishes itself from
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the above ones in the following aspects: (i) The stochastic system is described by a general
BSDE whose diffusion coefficient contains the state y(t). (ii) The control domain need not be
convex, and the diffusion coefficient contains the control variable. To our best knowledge, this
system has not been found in existing works.

Our objective in this paper is to establish necessary optimality condition of the Pontryagin
maximum principle type. In our problem, since the control domain is not necessarily convex,
we must obtain the maximum principle in its global form. A classical way of treating such
a problem is to use the “spike variation”. Due to the appearance of the control variable in
the diffusion coefficient and the control domain is not necessarily convex, the usual first-order
expansion approach does not work. Hence, we must introduce a second-order expansion method
to derive the variational inequality. This method was firstly used by Peng in [14] to derive
general forward stochastic maximum principle. Based on this, we obtain the corresponding
(second-order) variational inequality and adjoint equations that lead to the maximum principle.

The paper is organized as follows. In Section 2, we give the statement of the problem,
our main assumptions and some preliminary results about BSDE. In Section 3, we consider
the second-order expansion of the perturbed state variable yε(t), zε(t) and the perturbed cost
function J(uε(·)). We also treat the estimations of these terms. In Section 4, we introduce the
adjoint equations. By means of the duality method, we derive the maximum principle. Finally,
we end this paper with some concluding remarks.

2 Statement of the Problem

Let (Ω ,F , P ) be a probability space with a filtration Ft. Let B(·) be a 1-dimensional
Brownian motion. We assume that Ft = σ {B(s); 0 ≤ s ≤ t}. Throughout this paper, we use
the following notations:

L2(FT ; R) = {ξ : ξ is R-valued FT -measurable stochastic variable s.t. E|ξ|2 < +∞};

L2
F(0, T ; R) =

{
ϕ(t) : {ϕ(t), 0 ≤ t ≤ T } is R-valued Ft-adapted stochastic process

s.t. E

∫ T

0

|ϕ(t)|2dt < +∞
}

;

L4
F(0, T ; R) =

{
ψ(t) : {ψ(t), 0 ≤ t ≤ T } is R-valued Ft-adapted stochastic process

s.t. E

∫ T

0

|ψ(t)|4dt < +∞
}
.

Consider the following backward stochastic control system:⎧⎨
⎩

dy(t) = b (y(t), z(t), v(t)) dt+ [σ (y(t), v(t)) + γ(t)z(t)]dB(t),

y(T ) = ξ,
(1)

where

b(y, z, v) : R × R × U −→ R, σ(y, v) : R × U −→ R
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and ξ ∈ L2(FT ;R). An admissible control v(·) is an Ft-adapted process with value in U such
that E supt∈[0,T ] |vt|2 < ∞, where U is a nonempty subset of R. We denote the set of all
admissible controls by Uad. Our problem is to minimize the following cost functional over Uad:

J (v(·)) = E

[∫ T

0

l (y(t), v(t)) dt+ h (y(0))

]
,

inf {J (v(·)) ; v(·) ∈ Uad} , (2)

where

l(y, v) : R × U −→ R, h(y) : R −→ R.

In this paper, we only consider 1-dimensional stochastic system because the state of a backward
system depends on two variables (y(t), z(t)), and z(t) is hard to handle. Otherwise, there is an
immediate difficult when we look for the second-order adjoint equation. In addition, we assume

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(i) σ, l, h are twice continuously differentiable with respect

to y, and b is twice continuously differentiable with respect to

(y, z). They and all their derivatives by, byy, byz, bz, bzz

are continuous in (y, z, v);

(ii) σy , σyy, ly, lyy, hy, hyy are continuous in (y, v),

by, byy, byz, bz, bzz, σy, σyy, lyy, hyy are bounded, and

b, σ, ly, hy are bounded by C̃ (1 + |y| + |z| + |v|) , where C̃ > 0;

(iii) σ−1
y is uniformly bounded with respect to (t, ω)

(3)

and ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(i) for all v1, v2 ∈ U, there exists c̃ > 0 such that

|b(y1, z1, v1) − b(y2, z2, v2)| + |σ(y1, v) − σ(y2, v)|
≤ c̃(|y1 − y2| + |z1 − z2| + |v1 − v2|);

(ii) γ(·) is Ft-adapted, and for all (t, ω), there exists

β > 0 such that |γ(t, ω)| ≥ β. Moreover, γ(t)−1 is

uniformly bounded with respect to (t, ω).

(4)

Remark 1 Equation (1) is a general BSDE whose diffusion coefficient contains y(t) and
z(t), which is different from standard BSDEs whose diffusion terms only contain z(t). When
σ ≡ 0 and γ ≡ 1, (1) will regress to a standard BSDE.

The following theorem is the existence and uniqueness result, which comes from [2].
Theorem 1 We suppose (4) holds. Then for any ξ ∈ L2(FT ; R), there exists a unique

pair (y(·), z(·)) ∈ L2
F(0, T ; R) × L2

F(0, T ; R) which solves Equation (1) .
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3 Variational Equation and Variational Inequality

Suppose that (u(·), y(·), z(·)) is the solution to our optimal control problem. We introduce
the spike variation as follows:

uε(t) =

⎧⎨
⎩

v, if t ∈ [τ, τ + ε] ,

u(t), otherwise ,

where ε > 0 is sufficiently small, v ∈ U is an Fτ -measurable random variable such that
supω∈Ω |v(ω)| < +∞.

Suppose that (yε(·), zε(·)) is the trajectory of (1) corresponding to the control uε(·). We
introduce the following first-order and second-order variational equations⎧⎪⎪⎨

⎪⎪⎩
dy1(t) = [byy1(t) + bzz1(t) + b(uε(t)) − b(u(t))]dt

+ [σyy1(t) + γ(t)z1(t) + σ(uε(t)) − σ(u(t))]dB(t),

y1(T ) = 0,

(5)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dy2(t) =
[
byy2(t) + bzz2(t) +

1
2
byy · (y1(t))2

+ byzy1(t)z1(t) + (by(y(t), z(t), uε(t)) − by)y1(t)

+ (bz(y(t), z(t), uε(t)) − bz)z1(t) +
1
2
bzz · (z1(t))2

]
dt

+
[
σyy2(t) + γ(t)z2(t) +

1
2
σyy · (y1(t))2

+ (σy(y(t), uε(t)) − σy)y1(t)
]
dB(t),

y2(T ) = 0.

(6)

For convenience, we use the notations gy = gy(y(t), z(t), u(t)), g(uε(t)) = g(y(t), z(t), uε(t)),
g(u(t)) = g(y(t), z(t), u(t)), gyy = gyy(y(t), z(t), u(t)), where g = b, σ, h, l. It is easy to know
that (5) and (6) admit unique adapted solutions (y1(t), z1(t)) and (y2(t), z2(t)), respectively.
We want to give the estimates of the variational state processes (y1(t), z1(t)) and (y2(t), z2(t)).

Lemma 1 Under Assumptions (3) and (4), we have

E

[
sup

0≤t≤T
(y1(t))2

]
≤ Cε, E

∫ T

0

(z1(t))2dt ≤ Cε, (7)

E

[
sup

0≤t≤T
(y1(t))4

]
≤ Cε2, E

( ∫ T

0

(z1(t))2dt
)2

≤ Cε2, (8)

E

[
sup

0≤t≤T
(y1(t))8

]
≤ Cε4, E

( ∫ T

0

(z1(t))2dt
)4

≤ Cε4, (9)

E

[
sup

0≤t≤T
(y2(t))2

]
≤ Cε2, E

∫ T

0

(z2(t))2dt ≤ Cε2, (10)

E

[
sup

0≤t≤T
(y2(t))4

]
≤ Cε4, E

(∫ T

0

(z2(t))2dt
)2

≤ Cε4. (11)
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Proof From the variational equation (5), we get

E(y1(t))2 + β2
E

∫ T

t

(z1(s))2ds

≤E(y1(t))2 + E

∫ T

t

(γ(s)z1(s))2ds

=E

{∫ T

t

[byy1(s) + bzz1(s) + b(uε(s)) − b(u(s))] ds

+
∫ T

t

[σyy1(s) + σ(uε(s)) − σ(u(s))] dB(s)
}2

≤C1

[
TE

∫ T

t

(y1(s))2ds+ (T − t)E
∫ T

t

(z1(s))2ds
]

+ 7E

( ∫ T

t

[b(uε(s)) − b(u(s))]ds
)2

+ 5
∫ T

t

(σ(uε(s)) − σ(u(s)))2ds,

where C1 is a constant. So for t ∈ [T − δ, T ] , δ = β2

2C1
, we have

E(y1(t))2 +
β2

2
E

∫ T

t

(z1(s))2ds ≤ C2E

∫ T

t

(y1(s))2ds+ Cε,

where C2 is a constant depending on C1 and T , and C is a constant depending on Lipschitz
constant. By the Gronwall inequality, we have

E(y1(t))2 ≤ Cε, E

∫ T

t

(z1(s))2ds ≤ Cε, t ∈ [T − δ, T ] .

Repeating this procedure, the above estimates hold for t ∈ [T −2δ, T −δ]. After a finite number
of iterations, we obtain

E(y1(t))2 ≤ Cε, E

∫ T

t

(z1(s))2ds ≤ Cε, t ∈ [0, T ] . (12)

On the other hand, by (5), we get

sup
0≤t≤T

(y1(t))2 ≤C3

{∫ T

0

(y1(t))2dt+
∫ T

0

(z1(t))2dt+
∫ T

0

[b(uε(t)) − b(u(t))]2 dt
}

+ 2 sup
0≤t≤T

{∫ T

t

[σyy1(s) + γ(s)z1(s) + σ(uε(s)) − σ(u(s))] dB(s)
}2

.

Taking expectation on both sides and by the Davis-Burkholder-Gundy inequality, we have

E[ sup
0≤t≤T

(y1(t))2] ≤C3

∫ T

0

E

[
sup

0≤s≤t
(y1(s))2

]
dt+ C3E

∫ T

0

(z1(t))2dt

+ C4E

∫ T

0

[(b(uε(t)) − b(u(t)))2 + (σ(uε(t)) − σ(u(t)))2]dt,
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where C3, C4 are constants. By the Gronwall inequality and (12), we obtain (7). And, by (5),
we have

|y1(s)| ≤ E

[ ∫ T

t

|by(y1(s) + bzz1(s) + b(uε(s)) − b(u(s))|ds|Ft

]
, s ∈ [t, T ].

The Doob martingale inequality gives

E

[
sup

t≤s≤T
(y1(s))4

]
≤ C1E

[ ∫ T

t

|byy1(s) + bzz1(s) + b(uε(s)) − b(u(s))|ds
]4

,

where C1 is a constant. Then by the Davis-Burkholder-Gundy inequality, we have

E(y1(s))4 + β4
E

[∫ T

t

(z1(s))2ds
]2

≤E

[
sup

t≤s≤T
(y1(s))4

]
+ C2E

[
sup

t≤s≤T

∣∣∣∣
∫ s

t

γ(τ)z1(τ)dB(τ)
∣∣∣∣
]4

≤C1E

[ ∫ T

t

|byy1(s) + bzz1(s) + b(uε(s)) − b(u(s))|ds
]4

+ C2E

[ ∫ T

t

|σyy1(s) + σ(uε(s)) − σ(u(s))|2ds
]2

≤C3E

∫ T

t

(y1(s))4ds+ C4(T − t)E
[ ∫ T

t

(z1(s))2ds
]2

+ C5E

{[∫ T

t

(b(uε(s)) − b(u(s)))2ds
]2

+
[ ∫ T

t

(σ(uε(s)) − σ(u(s)))2ds
]2}

,

where C3, C4, C5 are constants. Using the same method as the proof of (7), we obtain (8).
Similarly to (7) and (8), we can obtain (9). Note that

E

[ ∫ T

0

y1(t)z1(t)dt
]2

≤ E

[ ∫ T

0

(y1(t))2dt
∫ T

0

(z1(t))2dt
]

≤
(

E

[ ∫ T

0

(y1(t))2dt
]2) 1

2
(

E

[ ∫ T

0

(z1(t))2dt
]2) 1

2

≤ Cε2,

E

∫ T

0

[σy(y(t), uε(t)) − σy)]2(y1(t))2dt

≤E

[
sup

0≤t≤T
(y1(t))2

∫ T

0

[σy(y(t), uε(t)) − σy)]2dt
]

≤
[
E sup

0≤t≤T
(y1(t))4

] 1
2
(

E

( ∫ T

0

[σy(uε(t)) − σy]2dt
)2) 1

2

≤ Cε2,

E

[ ∫ T

0

y1(t)z1(t)dt
]4

≤ Cε4.

Using the same technique to deal with (6) as the proof of (5), we can get (10) and (11). We
omit the details.
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The following lemma plays an important role in deriving the variational inequality. It gives
the ε-order estimations of the differences between the perturbed state process (yε(·), zε(·)) and
the sum of the optimal state process and the variational processes (y(·) + y1(·) + y2(·), z(·) +
z1(·) + z2(·)).

Lemma 2 Under Assumptions (3) and (4), we have

sup
0≤t≤T

E|yε(t) − y(t) − y1(t) − y2(t)|2 = o(ε2), (13)

E

∫ T

0

|zε(t) − z(t) − z1(t) − z2(t)|2dt = o(ε2). (14)

Proof Set ỹ = y1 + y2, z̃ = z1 + z2. It follows from (1), (5) and (6) that (for simplification
we omit the time subscript s)

∫ T

t

b(y + ỹ, z + z̃, uε)ds+
∫ T

t

[σ(y + ỹ, uε) + γ · (z + z̃)]dB(s)

= − y(t) − ỹ + ξ +
∫ T

t

Cε(s)ds+
∫ T

t

Dε(s)dB(s),

where

Cε(s) =
1
2
byy(y, z, u)(y2

2 + 2y1y2)

+
1
2
bzz(y, z, u)(z2

2 + 2z1z2) + 2byz(y, z, u)(y2z2 + y1z2 + y2z1)

+ (by(y, z, uε) − by(y, z, u))y2 + (bz(y, z, uε) − bz(y, z, u))z2

+
∫ 1

0

∫ 1

0

λ[byy(y + λμỹ, z + λμz̃, uε) − byy(y + λμỹ, z + λμz̃, u)]dλdμỹ2

+ 2
∫ 1

0

∫ 1

0

λ[byz(y + λμỹ, z + λμz̃, uε) − byz(y + λμỹ, z + λμz̃, u)]dλdμỹz̃

+
∫ 1

0

∫ 1

0

λ[bzz(y + λμỹ, z + λμz̃, uε) − bzz(y + λμỹ, z + λμz̃, u)]dλdμz̃2,

Dε(s) =
1
2
σyy(y, u)(y2

2 + 2y1y2) + (σy(y, uε) − σy(y, u))y2

+
∫ 1

0

∫ 1

0

λ[σyy(y + λμỹ, uε) − σyy(y + λμỹ, u)]dλdμỹ2.

Then we have

y(t) + ỹ =ξ −
∫ T

t

b(y + ỹ, z + z̃, uε)ds−
∫ T

t

[σ(y + ỹ, uε) + γ · (z + z̃)]dB(s)

+
∫ T

t

Cε(s)ds+
∫ T

t

Dε(s)dB(s).

Since

yε(t) =ξ −
∫ T

t

b(yε(s)), zε(s)), uε(s))ds −
∫ T

t

[σ(yε(s), uε(s)) + γ · zε(s)]dB(s),
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it follows that

(yε − y − ỹ)(t) =
∫ T

t

[Aε
1(s)(y

ε − y − ỹ)(s) +Aε
2(s)(z

ε − z − z̃)(s)]ds

+
∫ T

t

[Bε
1(s)(y

ε − y − ỹ)(s) + Bε
2(s)(z

ε − z − z̃)(s)]dB(s)

−
∫ T

t

Cε(s)ds−
∫ T

t

Dε(s)dB(s),

where

|Aε
1(s)| + |Aε

2(s)| + |Bε
1(s)| + |Bε

2(s)| ≤ C, ∀(s, ω) ∈ [0, T ]× Ω .

From Lemma 1, we can easily find

sup
0≤t≤T

E

{[∫ T

t

Cε(s)ds
]2

+
[ ∫ T

t

Dε(s)dB(s)
]2}

= o(ε2).

Using the method once more as the proof of Lemma 1, we can obtain (13) and (14). The proof
is completed.

Now we can present the following variational inequality.
Lemma 3 (variational inequality) Under Assumptions (3) and (4), we have

E

∫ T

0

[
ly(y(s), u(s))(y1(s) + y2(s)) +

1
2
lyy(y(s), u(s))(y1(s))2

]
ds

+E

∫ T

0

[l(y(s), uε(s)) − l(y(s), u(s))]ds

+E

[
hy(y(0))(y1(0) + y2(0)) +

1
2
hyy(y(0))(y1(0))2

]
≥ o(ε). (15)

Proof Since (y(·), z(·), u(·)) is optimal, we have

E

∫ T

0

l(y(s), uε(s))ds+ Ehy(yε(0)) − E

∫ T

0

l(y(s), u(s))ds− Eh(y(0)) ≥ 0.

It follows from Lemma 2 that

E

∫ T

0

l(y(s), uε(s))ds+ Ehy(yε(0)) − E

∫ T

0

l(y(s), u(s))ds− Eh(y(0))

=E

∫ T

0

[l(y + y1 + y2, u
ε) − l(y, u)]ds+ E[h(y + y1 + y2)(0) − h(y(0))] + o(ε)

=E

∫ T

0

[l(y + y1 + y2, u) − l(y, u)]ds+ E

∫ T

0

[l(y + y1 + y2, u
ε)

− l(y + y1 + y2, u)]ds+ E[h(y + y1 + y2)(0) − h(y(0))] + o(ε)

=E

∫ T

0

[
ly(y, u)(y1 + y2) +

1
2
lyy(y, u)(y1 + y2)2

]
ds
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+ E

∫ T

0

[l(y, uε) − l(y, u)]ds+ E

∫ T

0

[ly(y, uε) − ly(y, u)](y1 + y2)ds

+
1
2

E

∫ T

0

[lyy(y, uε) − lyy(y, u)](y1)2]ds+ E[hy(y(0))(y1(0) + y2(0))]

+
1
2

E[hyy(y(0))(y1(0))2] + o(ε) ≥ 0.

Then by Lemma 1, the desired variational inequality (15) can be obtained.

4 Adjoint Equation and Maximum Principle

In this section, we introduce the first-order and second-order adjoint equations, then we
use the duality method to obtain the necessary condition of optimality. Let us consider the
following forward SDEs (for simplification we omit the time subscript t in some places)⎧⎪⎨

⎪⎩
dp(t) =

((
− by + σy

bz
γ

)
p(t) − ly

)
dt− bz

γ
p(t)dB(t),

p(0) = −hy(y(0)),
(16)

and ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dP (t) =
[(

− σ2
y − 2by + 2σy

(
1 +

bz
σyγ

)
+

(
bz
γ

− σy

))
P (t)

+
(
− 2

byz

γ
+ byy − bz

γ
σyy

)
p(t) + lyy

]
dt

+
[(

−
(

1 +
bz
σyγ

)
− 1

2σy

(
bz
γ

− σy

))
P (t) +

byz

σyγ
p(t)

]
dB(t),

P (0) = hyy(y(0)).

(17)

Because the solution of BSDE (5) contains process z1(·), which will bring us more difficulties
to deal with, especially when we use the duality technique to derive the maximum principle for
backward stochastic systems, it is essentially necessary to look for more explicit estimates of
z1(·). We have the following lemma.

Lemma 4 Let p(·) and P (·) are solutions of (16) and (17), respectively. Then we have

E

∫ T

0

(
bz
γ

− σy

)
Pγy1z1dt = E

∫ T

0

[Pγ2z2
1 + Pγz1(σ(uε) − σ(u))]dt + o(ε), (18)

E

∫ T

0

Pγz1(σ(uε) − σ(u))dt = −E

∫ T

0

P (σ(uε) − σ(u))2dt+ o(ε), (19)

E

∫ T

0

p(bz(uε) − bz(u))z1dt = −E

∫ T

0

pγ−1(b(uε) − b(u))(σ(uε) − σ(u))dt+ o(ε). (20)

Proof In what follows, we take several steps to prove the lemma (for simplification we omit
the time subscript t in some places). Firstly, we introduce a process ϕ(t) such that

ϕ(t) =
∫ t

0

P−1
0 Pγz1dB(s),
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where P0(·) satisfies
⎧⎪⎨
⎪⎩
dP0(t) = −

(
by − bz

γ
σy

)
P0(t)dt− bz

γ
P0(t)dB(t),

P0(0) = 1,

and it is obvious that P−1
0 (·) exists and P0(·), P−1

0 (·) ∈ L2
F(0, T ; R). Note that ϕ(0) = 0 and

y1(T ) = 0. Using Itô formula to ϕ(t)y1(t), we have

dϕy1 =[ϕbyy1 + ϕbzz1 + ϕ(b(uε) − b(u))

+ σyP
−1
0 Pγy1z1 + P−1

0 Pγ2z2
1 + P−1

0 Pγz1(σ(uε) − σ(u))]dt

+ [ϕσyy1 + ϕγz1 + ϕ(σ(uε) − σ(u)) + P−1
0 Pγy1z1]dB(t). (21)

Set Y (t) = ϕ(t)y1(t) and Z(t) = ϕ(t)z1(t). Then (21) can be rewritten as

dY =[byY + bzZ + ϕ(b(uε) − b(u)) + σyP
−1
0 Pγy1z1

+ γP−1
0 Pγz2

1 + P−1
0 Pγz1(σ(uε) − σ(u))]dt

+ [σyY + γZ + ϕ(σ(uε) − σ(u)) + P−1
0 Pγy1z1]dB(t).

Using Itô formula to P0(t)Y (t) and taking expectation, we get

E

∫ T

0

[P0byY + P0bzZ + P0ϕ(b(uε) − b(u))]dt

+ E

∫ T

0

[Pσyγy1z1 + Pγ2z2
1 + Pγz1(σ(uε) − σ(u))]dt

+ E

∫ T

0

−
(
by − bz

γ
σy

)
P0Y dt

+ E

∫ T

0

−
[
bz
γ
P0σyY +

bz
γ
P0γZ +

bz
γ
P0ϕ(σ(uε) − σ(u))

]
dt

+ E

∫ T

0

−bz
γ
Pγy1z1dt = 0. (22)

Note that

E

∫ T

0

bz
γ
P0ϕ(σ(uε) − σ(u))dt

=E

∫ T

0

bz
γ
P0

( ∫ t

0

P−1
0 Pγz1dB(s)

)
(σ(uε) − σ(u))dt

≤E

[
sup

0≤t≤T

∫ t

0

P−1
0 Pγz1dB(s)

∫ T

0

bz
γ
P0(σ(uε) − σ(u))dt

]

=o(ε),

E

∫ T

0

P0ϕ(b(uε) − b(u))dt = o(ε).
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Then by (22), we can obtain (18). Secondly, we introduce the following process

φ(t) =
∫ t

0

P−1
0 P (σ(uε) − σ(u))dB(s).

Using Itô formula to φ(t)y1(t), we have

dφy1 =[φbyy1 + φbzz1 + φ(b(uε) − b(u))

+ P−1
0 Pσyy1(σ(uε) − σ(u)) + P−1

0 Pγz1(σ(uε) − σ(u))

+ P−1
0 P (σ(uε) − σ(u))2]dt+ [φσyy1 + φγz1 + φ(σ(uε) − σ(u))

+ P−1
0 Py1(σ(uε) − σ(u))]dB(t). (23)

Set Ỹ (t) = φ(t)y1(t) and Z̃(t) = φ(t)z1(t). Then (23) can be rewritten as

dỸ =[byỸ + bzZ̃ + φ(b(uε) − b(u)) + σyP
−1
0 Py1(σ(uε) − σ(u))

+ P−1
0 Pγz1(σ(uε) − σ(u)) + P−1

0 P (σ(uε) − σ(u))2]dt

+ [σy Ỹ + γZ̃ + φ(σ(uε) − σ(u)) + P−1
0 Py1(σ(uε) − σ(u))]dB(t).

Using Itô formula to P0(t)Ỹ (t) and taking expectation, we have

E

∫ T

0

[P0byỸ + P0bzZ̃ + P0φ(b(uε) − b(u))]dt

+ E

∫ T

0

[Pσyy1(σ(uε) − σ(u)) + Pγz1(σ(uε) − σ(u))

+ P (σ(uε) − σ(u))2]dt+ E

∫ T

0

−
(
by − bz

γ
σy

)
P0Ỹ dt

+ E

∫ T

0

−
[
bz
γ
P0σyỸ +

bz
γ
P0γZ̃ +

bz
γ
P0φ(σ(uε) − σ(u))

]
dt

+ E

∫ T

0

−bz
γ
P−1

0 Py1(σ(uε) − σ(u))dt = 0. (24)

Note that

E

∫ T

0

P0φ(b(uε) − b(u))dt = o(ε), E

∫ T

0

bz
γ
P0φ(σ(uε) − σ(u))dt = o(ε),

E

∫ T

0

−bz
γ
P−1

0 Py1(σ(uε) − σ(u))dt = o(ε), E

∫ T

0

Pσyy1(σ(uε) − σ(u))dt = o(ε).

From (24), we obtain (19). Finally, we introduce the process

ψ(t) =
∫ t

0

P−1
0 pγ−1(b(uε) − b(u))dB(s).

Then using the same method as the proof of (18) and (19), we get

E

∫ T

0

p(bz(uε) − bz(u))z1dt = −E

∫ T

0

pγ−1(b(uε) − b(u))(σ(uε) − σ(u))dt+ o(ε),
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which is (20). We omit the details.
Now we define the Hamilton function as

H(y, z, v, p) = l(y, v) + p

(
b(y, z, v) − bz(y, z, v)

γ
σ(y, v)

)

and state the main result of this paper.
Theorem 2 (stochastic maximum principle) Let (3) and (4) hold. Suppose that (y(·), z(·), u(·))

is a solution of the optimal control problem, then we have

H(y(τ), z(τ), v, p(τ)) −H(y(τ), z(τ), u(τ), p(τ))

−1
2
p(τ)γ(τ)−1[b(y(τ), z(τ), v) − b(y(τ), z(τ), u(τ))]

×[σ(y(τ), v) − σ(y(τ), u(τ))]

+
1
2
P (τ)(σ(y(τ), v) − σ(y(τ), u(τ)))2 ≥ 0, ∀v ∈ U, a.e., a.s.,

where p(·) and P (·) are solutions of (16) and (17), respectively.
Proof Applying Itô formula to p(t)y1(t) and p(t)y2(t), taking expectation and by Lemma1,

we have

Ehy(y(0))y1(0) + E

∫ T

0

lyy1dt

=E

∫ T

0

p

[
(b(uε) − b(u)) − bz

γ
(σ(uε) − σ(u))

]
dt, (25)

Ehy(y(0))y2(0) + E

∫ T

0

lyy2dt

=E

∫ T

0

p

[
1
2
byy(y1(t))2 + byzy1(t)z1(t)

+ (bz(uε) − bz(u))z1(t)
]
dt− E

∫ T

0

bz
2γ
pσyy(y1(t))2dt+ o(ε). (26)

Note that

dy2
1 =[(σ2

y + 2by)y2
1 + γ2z2

1 + (2σyγ + 2bz)y1z1

+ 2σy(b(uε) − b(u))y1 + 2γ(σ(uε) − σ(u))z1 + (σ(uε) − σ(u))2]dt

+ [2σyy
2
1 + 2σyγy1z1 + 2(σ(uε) − σ(u))y1]dB(t).

Applying Itô formula to P (t)(y1(t))2 and taking expectation, we get

Ehyy(y(0))y2
1 + E

∫ T

0

[Pγ2z2
1 + 2Pγ(σ(uε) − σ(u))z1]dt

−E

∫ T

0

(
− σy +

bz
γ

)
Pγy1z1dt+ E

∫ T

0

2pbyzy1z1dt

+E

∫ T

0

(
pbyy − p

bz
γ
σyy + lyy

)
y2
1dt+ E

∫ T

0

P (σ(uε) − σ(u))2dt = 0. (27)
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By (25), (26), (27) and Lemma 4, the variational inequality (15) can be rewritten as

E

∫ T

0

p

[
(b(uε) − b(u)) − bz

γ
(σ(uε) − σ(u))

]
dt

−1
2

E

∫ T

0

pγ−1(b(uε) − b(u))(σ(uε) − σ(u))dt

+
1
2

E

∫ T

0

P (σ(uε) − σ(u))2dt+ E

∫ T

0

(l(uε) − l(u))dt ≥ o(ε).

This gives the maximum principle immediately.
We discuss a special case: σ ≡ 0, γ ≡ 1. Now (1) is reduced to the following standard

BSDE ⎧⎨
⎩

dy(t) = b (y(t), z(t), v(t)) dt+ z(t)dB(t),

y(T ) = ξ,
(28)

and the cost functional is given by (2). In this special case, In this special case, the second-order
adjoint equation (17) is not necessary. By virtue of first-order adjoint equation (16), we can
easily obtain the following result.

Proposition 1 Suppose u(·) is an optimal control subject to (28) and (2), then we have

H(y(τ), z(τ), v, p(τ)) −H(y(τ), z(τ), u(τ), p(τ)) ≥ 0, ∀v ∈ U, a.e., a.s.,

where
H(y, z, v, p) = l(y, v) + pb(y, z, v)

and p(·) satisfies {
dp(t) = (−byp(t) − ly)dt− bzp(t)dB(t),

p(0) = −hy(y(0)).

5 Conclusions

In this paper, we have discussed the stochastic control problem for a kind of general BSDE. A
necessary condition for optimality called maximum principle is obtained based on the variation
and duality method. Compared with the forward maximum principle, the backward maxi-
mum principle contains a covariant term −1/2p(τ)γ(τ)−1[b(y(τ), z(τ), v)− b(y(τ), z(τ), u(τ))] ·
[σ(y(τ), v)− σ(y(τ), u(τ))] that cannot be found in the forward maximum principle. Moreover,
if we replace the diffusion coefficient σ (y(t), v(t)) + γ(t)z(t) of (1) with a more general term
σ(y(t), z(t), v(t)), we will meet some trouble because the second-order adjoint equation (6) in
this case will contain 1/2σzzz

2
1dB(t), and we are not sure whether 1/2σzzz

2
1dB(t) is well-defined

because we only know z1(·) ∈ L2
F(0, T ; R) other than L4

F(0, T ; R). This is the main reason that
we only consider the case that diffusion coefficient is linear with respect to z(t). It is remarkable
that Lemma 4 plays an important role on our maximum principle, and we can extend this result
to multidimensional systems whenever we impose some heavy assumptions on the derivatives of
the coefficients. We hope this paper will serve as a stimulus to the study of backward stochastic
control systems.
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