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Abstract In this paper, a full-order sliding mode control based on extended state observer (FSMC+

ESO) is proposed for high-order nonlinear system with unknown system states and uncertainties.

The extended state observer (ESO) is employed to estimate both the unknown system states and

uncertainties so that the restriction that the system states should be completely measurable is relaxed,

and a full-order sliding mode controller is designed based on the ESO estimation to overcome the

chattering problem existing in ordinary reduced-order sliding mode control. Simulation results show

that the proposed method facilitates the practical application with respect to good tracking performance

and chattering elimination.

Keywords Extended state observer, full-order sliding mode control, high-order nonlinear system.

1 Introduction

High-order nonlinear system is a very common and broad application system, such as the
forth-order single-link flexible-joint robotic manipulator system[1], the fifth-order lumped pa-
rameter cardiovascular system[2], the seventh-order navigation system[3], and so on. Due to the
higher order, the systems are relatively complex and vulnerable to the nonlinear disturbances
such as external disturbances and the unknown friction, so that the controllers are difficult to
design with good robustness and anti-interference capabilities.

To improve the control performance and robustness of the system, many advanced tech-
niques are applied to the high-order nonlinear system, such as neural adaptive control[4], sliding
mode control[5], auto-disturbance rejection control[6], robust control[7], and fuzzy control[8], etc.
Among them, the sliding mode control (SMC) method has been widely used to the control sys-
tems because of insensitivity to the parameter perturbations and strong robustness. However,
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due to the existence of the excessively high control gain and the sign function, the conven-
tional sliding mode control has a serious chattering problem, which may lead to some serious
damages[9]. Therefore, how to weaken the chattering problem in sliding mode control for the
high performance nonlinear control system is one of key technical problems to be solved.

To eliminate the chattering problem, a lot of improved sliding mode control methods have
been proposed. An adaptive back-stepping sliding mode controller is proposed in [10] to simplify
controller design and shorten arrival time, and the radial basis function neural network observer
is presented to solve the large external disturbances and parameter uncertainties. Thus, the
input chattering in sliding mode control is reduced. In [11], an adaptive sliding mode control
method and the auto-tuning scheme of the sliding switching gain are investigated for a three
phase UPS system. Through the method, the chattering problem in the sliding mode is greatly
weakened and the excessive use of electric power for the overestimation of sliding switching
gain is reduced. Lin, et al.[12] proposed an intelligent second-order sliding mode control based
on a wavelet fuzzy neural network with an asymmetric membership function estimator for an
electric power steering system. The second-order sliding mode control is developed to reduce
the chattering problem in traditional sliding mode control, and the experimental results are
provided to illustrate the effectiveness of the method.

In order to further eliminate the chattering in sliding mode control, the combination be-
tween sliding mode control and auto-disturbance rejection control is proposed in recent years.
In [13], a nonsingular fast terminal sliding mode control method based on ESO and the tracking
differentiator is presented for an uncertain SISO nonlinear system. The system disturbance
can be compensated effectively by using ESO, and a better robustness and less chattering are
achieved. In [14], an adaptive sliding mode control method based on ESO is presented for chaotic
permanent magnet synchronous motor system. The unknown system states and uncertainties
are observed by ESO to relax the restriction that all the system states should be completely
measured. The simulation results indicate the chattering is reduced and the robustness of the
system is enhanced. In [15], to balance the chattering and the anti-disturbance capacity, three
kinds of improved integral sliding mode control schemes are proposed for permanent magnet
synchronous motor speed control system. The lumped disturbance is estimated by ESO for the
feed-forward compensation, and the chattering problem caused by high control gain is reduced.

Although the literatures described above can weaken the chattering problem to some extent,
they still cannot eliminate the chattering in the sliding mode controller. Recently, a chattering-
free full-order sliding mode control method is proposed in [16]. Compared with conventional
reduced-order sliding mode controller, the controller signal is continuous, and can effectively
avoid the chattering problem. But the condition of this method is that all the system states
should be completely measurable, which limits its applications in the system with unknown
states and uncertainties. Therefore, the design of a chattering-free sliding mode control based
on ESO for the system with unknown states and uncertainties is still a challenging work.

In this paper, a full-order sliding mode control based on extended state observer is proposed
for high-order nonlinear systems with unknown system states and uncertainties. The unknown
system states and uncertainties are estimated by the nonlinear extended state observer, and
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the chattering-free full-order sliding mode controller is developed based on the estimation to
achieve a high performance without chattering phenomenon.

The rest of this paper is organized as follows. Section 2 briefly describes the high-order
nonlinear system. The extended state observer is designed in Section 3. In Section 4, the
full-order sliding mode controller is proposed for high-order nonlinear system and the system
stability analysis is provided. The simulation example is given in Section 5 and the conclusion
is provided in Section 6.

2 System Description

Consider the following general high-order nonlinear system
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ1 = x2,

ẋ2 = x3,
...

ẋn−1 = xn,

ẋn = f(x, t) + b0u,

ẋn+1 = h,

(1)

where n is the system order; x = [x1, x2, · · · , xn]T denotes the system state vector; f(x, t)
is a nonlinear function of system state x, which represents the nonlinear characteristics of
the system, including the total external disturbance and system parameters uncertainties; u

represents the system control input; b is an unknown constant; y is the system output.
The control objective is to design a controller so that the actual output of the system

can accurately track the reference trajectory. However, since f(x, t) and b are unknown, the
controller cannot be designed directly. Then, an observer should be given first to estimate the
unknown states and uncertainties.

Define a(x, t) = f(x, t) + (b − b0)u, where b0 is the estimation of b, and can be given by
experience. According to the idea of ESO[17], define an extended state xn+1 = a(x, t), and (1)
can be rewritten in the following equivalent form

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ1 = x2,

ẋ2 = x3,
...

ẋn−1 = xn,

ẋn = f(x, t) + bu,

ẋn+1 = h

(2)

with h = ȧ(x, t).
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3 Extended State Observer Design

Define zi, i = 1, 2, · · · , n + 1, are the observations of system states xi in (2) and εi = zi − xi

are the observation errors. Then, the nonlinear extended state observer becomes
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ε1 = z1 − x1,

ż1 = z2 − β1ε1,

ż2 = z3 − β2fal(ε1, α1, δ),
...

żn−1 = zn − βn−1fal(ε1, αn−2, δ),

żn = zn+1 − βnfal(ε1, αn−1, δ) + b0u,

żn+1 = −βn+1fal(ε1, αn, δ),

(3)

where β1, β2, · · · , βn+1 are the observer gains; fal(·) is a continuous power function which has
linear segments in the neighborhood of the origin, and its expression is given as

fal(ε1, αi, δ) =

⎧
⎨

⎩

ε1

δ1−αi
, |ε1| ≤ δ,

|ε1|αisign(ε1), |ε1| > δ,
(4)

where i = 1, 2, · · · , n; δ > 0 represents the range length of linear segment; 0 < αi < 1 is a
constant.

Remark 3.1 The system dynamics f(x, t) in System (1) is continuously differentiable and
bounded. This assumption is reasonable in the actual system. For example, when the nonlinear
characteristic f(x, t) denotes the friction on system, the value of friction is always limited, or
the system disturbance and uncertainties also cannot be infinite in practical applications.

Remark 3.2 From the boundedness of f(x, t), it can be concluded that a(x, t) = f(x, t)+
(b − b0)u is bounded. As pointed in [17–19], the nonlinear function fal(·) can guarantee that
observer states zi tends to xi by choosing the appropriate parameters βi, and the observer
errors can converge to |xi − zi| ≤ li, where li > 0 are small positive numbers.

4 Controller Design and Stability Analysis

In the former sections, the dynamic function of the high-order nonlinear system is described,
and the ESO is investigated for the system. In order to achieve the precise tracking for the refer-
ence trajectory, in this section, the full-order sliding mode control based on ESO (FSMC+ESO)
is designed.
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Define the system tracking error e and its different order derivatives are
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

e = y − yd = x1 − yd,

ė = ẋ1 − ẏd = x2 − ẏd,

ë = ẋ2 − ÿd = x3 − ÿd,
...

e(n−1) = xn − y
(n−1)
d ,

e(n) = ẋn − y
(n)
d = xn+1 + b0u − y

(n)
d ,

(5)

where yd is the reference trajectory.

4.1 Full-Order Sliding Mode Controller Design

Design the full-order sliding mode surface as

s = e(n) + λne(n−1) + λn−1e
(n−2) + · · · + λ2ė + λ1e, (6)

where λi > 0, i = 1, 2, · · · , n, are the control parameters and chosen such that the polynomial
pn + λnpn−1 + · · · + λ2p + λ1 is Hurwitz.

Substituting (5) into (6) yields

s = xn+1 + b0u − y
(n)
d + λn(xn − y

(n−1)
d ) + · · · + λ2(x2 − ẏd) + λ1(x1 − yd). (7)

From (7), the FSMC+ESO is designed as

u =
1
b0

(ueq + un), (8)

ueq = −zn+1 + y
(n)
d − λn(zn − y

(n−1)
d ) − · · · − λ2(z2 − ẏd) − λ1(z1 − yd), (9)

u̇n + Tun = v, (10)

v = −k · sign(s) (11)

where T > 0, k = kp + kT + η, η, kp, kT > 0 are the control gains.

Remark 4.1 In (8)–(11), the controller u consists of two parts: ueq is an equivalent
controller and un is the output of the low-pass filter in (10), whose transfer function can be ex-
pressed as Un(s)/V (s) = 1/(s+T ). Although v is a non-smooth function with the sliding mode
switch sign(s) in (11), un is a smooth function by passing the low-pass filter. Therefore, the
actual control signal u does not include any switch item directly, and the traditional chattering
problem caused by the switch function can be avoided.

Substituting (8)–(11) into (7) gives

s = un + p(x, z), (12)

where p(x, z) = (xn+1 − zn+1) + λn(xn − zn)) + · · · + λ2(x2 − z2) + λ1(x1 − z1), and satisfies
the condition that p(x, z) ≤ lp with lp = ln+1 + λnln + · · · + λ2l2 + λ1l1.

Differentiating (12) yields

ṡ = ṗ(x, z) + (kp + kT + η)sign(s) − Tun. (13)
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4.2 Stability Analysis

Lemma 4.2 (see [20]) Suppose that a continuous, positive-definite function V (t) satisfies
the following differential inequality:

V̇ (t) ≤ −αV β(t), ∀t ≥ t0, V (t0) ≥ 0, (14)

where α > 0, 0 < η < 1 are constants. Then, for any given t0, V (t) satisfies the following
inequality:

V 1−β(t) ≤ V 1−β(t0) − α(1 − β)(t − t0), t0 ≤ t ≤ t1 (15)

and
V (t) ≡ 0, ∀t ≥ t1 (16)

with t1 given by t1 = t0 + V 1−β(t0)
α(1−β) .

Theorem 4.3 Considering the high-order nonlinear system (1), the full order sliding
mode (6), and the controller (8)–(11), the sliding mode surface s can converge to zero in finite
time and the tracking error e can stably converge to zero when the control parameters kp and
kT satisfy the conditions that kp ≥ |ṗ(x, z)| and kT ≥ T lp.

Proof Define the following Lyapunov function

V =
1
2
s2. (17)

Differentiating (17), and from (8)–(11), the dynamics is

V̇ = sṡ = s(ṗ(x, z) + v − Tun)

= (ṗ(x, z) − kp|s|) + (−Tuns − kT |s|) − η|s|
= (ṗ(x, z) − kp|s|) + (−Ts2 + Tp(x, z)s − kT |s|) − η|s|
≤ (ṗ(x, z) − kp|s|) + (−Ts2 + T lps − kT |s|) − η|s|. (18)

When the parameters kp and kT are chosen to satisfy kp ≥ |ṗ(x, z)| and kT ≥ T ld, respec-
tively, it can be concluded as

V̇ = sṡ ≤ −η|s| < 0. (19)

From (19), one obtains the following relationship: V̇ ≤ −βmV
1
2 with βm = η2

1
2 . According

to Lemma 4.2, there is a limited time t2 to satisfy the condition t ≥ t2, which can can guarantee
that sliding mode surface s has a fast convergence to zero in finite time. Since the polynomial
pn+λnpn−1+ · · ·+λ2p+λ1 is Hurwitz, the tracking error e can be guaranteed to asymptotically
converge to zero. This completes the theorem proof.

5 Simulation Results

In Section 4, the full-order sliding mode controller based on ESO is designed to achieve
effective tracking performance for reference trajectory. In this section, a fourth-order single-link
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flexible-joint robotic manipulator system is provided to evaluate the effectiveness and superior
performance of the proposed control method.

The dynamic equations of the four order single-link flexible-joint robotic manipulator system
is taken from [1], and can be described as

⎧
⎨

⎩

Iq̈1 + MgL sin(q1) + K(q1 − q2) = 0,

J q̈2 − K(q1 − q2) = u,
(20)

where q1 and q2 are the angles of the link and motor, respectively; I denotes the inertia of the
link; J represents the motor inertia; K is the stiffness of the spring; M and L are the math and
length of the link, respectively; and u is the control torque. The output of the system is y = q1.

Define x1 = q1, x2 = q̇1 = ẋ1, x3 = q2, x4 = q̇2 = ẋ3, and the system (20) is rewritten as
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ẋ1 = x2,

ẋ2 = −MgL

I
sin x1 − K

I
(x1 − x3),

ẋ3 = x4,

ẋ4 =
K

J
(x1 − x3) +

1
J

u.

(21)

For the convenience of using ESO, define x1 = x1, x2 = x2, x3 = −MgL
I sin x1− K

I (x1−x3),
x4 = −x2

MgL
I cosx1 − K

I (x2 − x4), and (21) is transformed into
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ẋ1 = x2,

ẋ2 = x3,

ẋ3 = x4,

ẋ4 = a(x) + bu,

(22)

where a(x) = MgL
I sin(x1)(x2

2 − K
J ) − (MgL

I cos(x1) + K
J + K

I )x3, b = K
IJ .

Define the extended state x5 = b(x), where b(x) = a(x) + (b − b0)u, the coordinate trans-
formation of (22) is given as

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ1 = x2,

ẋ2 = x3,

ẋ3 = x4,

ẋ4 = x5 + b0u,

ẋ5 = h,

(23)

where h = ḃ(x).
According to (8)–(11), the FSMC+ESO is designed as

u =
1
b0

(ueq + un), (24)

ueq = − z5 + y
(4)
d − λ4(z4 − yd) − λ3(z3 − ÿd) − λ2(z2 − ẏd) − λ1(z1 − yd), (25)
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u̇n + Tun = v, (26)

v = −k · sign(s), (27)

where T ≥ 0, k = kp + kT + η, η > 0, kp > 0, kT > 0 are the control gains.
Define the reduced-order sliding mode as

s1 = e(3) + φ3ë + φ2ė + φ1e

= x4 − y
(3)
d + φ3(x3 − ÿd) + φ2(x2 − ẏd) + φ1(x1 − yd). (28)

Differentiating (28) yields

ṡ1 = e(4) + φ3e
(3) + φ2ë + φ1ė

= x5 + b0u − y
(4)
d + φ3(x4 − y

(3)
d ) + φ2(x3 − ÿd) + φ1(x2 − ẏd). (29)

According to (29), the RSMC+ESO can be designed as

us =
1
b0

(−z5 + y
(4)
d − φ3(z4 − y

(3)
d ) − φ2(z3 − ÿd) − φ1(z2 − ẏd) − k1 · sign(s1)). (30)

In this simulation, all the control parameters are fixed. Set the initial states as x1(0) =
x2(0) = x3(0) = x4(0) = x5(0) = 0, z1(0) = z2(0) = z3(0) = z4(0) = z5(0) = 0; the system
parameters are MgL = 10, K = 100, I = J = 1; the ESO parameters are given by β1 = 200,
β2 = 1.5 × 104, β3 = 5.8 × 105, β4 = 5 × 106, β5 = 1.5 × 108, α1 = 0.5, α2 = 0.25, α3 = 0.125,
α4 = 0.0625, δ = 0.1; the control parameters are λ1 = 1.8× 104, λ2 = 5000, λ3 = 800, λ4 = 20,
φ1 = 2400, φ2 = 400, φ3 = 15, k = k1 = 300, T = 1.

5.1 Case 1: Tracking Performance of θref1 = 0.1 sin(πt)

In this case, the reference trajectory is given as θref1 = 0.1 sin(πt). The simulation results of
tracking reference trajectory and tracking errors for FSMC+ESO and RSMC+ESO are shown
in Figures 1 and 2, respectively. Figure 3 provides the control signals of two control methods.
Figures 4 and 5 are the observer errors. From Figures 1 and 2, we can see that the steady-state
tracking error of FSMC+ESO is slightly larger than RSMC+ESO (about 1.1×10−4rad). But the
steady-state control signal of RSMC+ESO is between −4.2 rad and 4.2 rad, while FSMC+ESO
is between −0.98 rad and 0.98 rad. It’s easy to see that the chattering of RSMC+ESO is much
more serious than FSMC+ESO in Figure 3. Since there is no sliding mode switch in the actual
control law (24), FSMC+ESO has no chattering in the control signal. The control signal of the
RSMC+ESO has a severe chattering because the control law (30) includes the sliding mode
switch directly. It means that through a small sacrifice in steady-state tracking error, a control
signal with no chattering problem can be obtained. The observer states of ESO have a slight
chattering in the initial stage due to the excessively high gains, which lead to a slight chattering
of the control signals in the initial time in Figure 3. FSMC+ESO will achieve steady-state with
no chattering after 2.7s, while RSMC+ESO will sustain chattering in the whole process.
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In order to satisfy the condition that kp ≥ |ṗ(x, z)| and kT ≥ T lp, the following four indices
are presented to discuss the selection of parameter k (k = kp + kT + η).

1) The integrated absolute tracking error: IAE=
∫ |e(t)|dt, which is used to describe the

system tracking performance.
2) The integrated square tracking error: ISDE=

∫
(e(t) − e0)2dt, which is taken to indicate

the fluctuations of the track error, where e0 is the mean value of the tracking error.
3) The integrated absolute control torque: IAU=

∫ |u(t)|dt, which is used to measure the
overall amount of control torque.

4) The integrated square control torque: ISDU=
∫

(u(t) − u0)2dt, which is taken to show
the fluctuations of control torque, where u0 is the mean value of the control torque.

As shown in Table 1, the four indices getting smaller and smaller when selecting k within 10
to 10000. However, if k is selected too small (e.g., k = 10), the integrated absolute error (IAE)
and integrated square error (ISDE) are larger, which means that the tracking performance
becomes worse than the case of k = 100 to 10000. On the contrary, if k is chosen too large (e.g.,
k = 100000), all the four indices will become larger, which means both tracking performance and
chattering-free property in the controller are deteriorated. From Table 1, we can see that the
proposed control scheme has a good insensitivity characteristic to the selection of the parameter
k, and in order to guarantee good tracking performance and chattering-free property, the value
of k could be chosen within the range of 100 to 10000.

Table 1 Four indices comparison of parameter k

k = 10 k = 100 k = 1000 k = 10000 k = 100000

IAE 0.0422 0.0231 0.0168 0.0157 0.0224

ISDE 4.6792 4.2659 4.0079 3.1486 3.7610

IAU 18.1494 17.5073 15.5183 13.8234 15.9144

ISDU 39.7120 37.4603 28.0174 17.8165 22.7438

5.2 Case 2: Tracking Performance of θref2 = 0.4 sin(2t) + 0.2 cos(t)

Without loss of generality, a combination of sine and cosine signals θref2 = 0.4 sin(2t) +
0.2 cos(t) is simulated for the comparison of two control methods. All the control parameters
and system parameters remain unchanged. Figure 6 is the tracking trajectory and Figure 7
are the tracking errors. The control signals of the two control methods are shown in Figure 8.
Figure 9 and Figure 10 provide the observer errors of ESO. As can be seen from Figures 6
and 7, FSMC+ESO has a fast transient response than RSMC+ESO, and the transient response
of RSMC + ESO is deteriorated after changing reference trajectory. Therefore, FSMC +
ESO has a better robustness than RSMC+ESO. Moreover, the steady-state tracking error of
RSMC+ESO is slightly less than FSMC+ESO (about 1.0 × 10−4rad). From Figure 8, we can
see that the control signal of RSMC+ESO has a larger chattering than FSMC+ESO. The
FSMC+ESO has a chattering in the initial time because of the excessively higher gains of the
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ESO, but the control signal is without chattering anymore when achieving steady-state at 4.7s.
However, the control signal of RSMC+ESO is always oscillating within a wide range.

From the simulation results of the example, it can be observed that FSMC+ESO method
can achieve a good tracking performance with better robustness and can effectively eliminate
the chattering phenomenon in the control signal.
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Figure 6 Tracking trajectories for θref2
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Figure 7 Tracking errors for θref2
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Figure 8 Control signals for θref2
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Figure 9 Observer 1–3 errors for θref2
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Figure 10 Observer 4–5 errors for θref2

6 Conclusion

This paper proposes a full-order sliding mode control method based on extended state
observer for high-order nonlinear system. The system unknown states and uncertainties are
estimated by the extended state observer. And the full-order sliding mode control strategy
is designed based on the estimation, which can guarantee that the output of the system can
accurately track the reference trajectory. The simulation results show that FSMC+ESO method
has a good steady tracking accuracy without chattering in the control signal, so it facilitates to
the practical applications.
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