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Abstract This paper is concerned with partially-observed optimal control problems for stochastic

delay systems. Combining Girsanov’s theorem with a standard variational technique, the authors

obtain a maximum principle on the assumption that the system equation contains time delay and the

control domain is convex. The related adjoint processes are characterized as solutions to anticipated

backward stochastic differential equations in finite-dimensional spaces. Then, the proposed theoretical

result is applied to study partially-observed linear-quadratic optimal control problem for stochastic

delay system and an explicit observable control variable is given.

Keywords Anticipated backward stochastic differential equation, maximum principle, partially-observed

optimal control, stochastic delay systems.

1 Introduction and Problem Formulation

Throughout this article, we denote by R
n the n-dimensional Euclidean space, R

n×d the
collection of n × d matrices. For a given Euclidean space, we denote by 〈·, ·〉 (resp. | · |) the
scalar product (resp. norm). The superscript τ denotes the transpose of vectors or matrices.

Let (Ω ,F , {Ft}t≥0 ,P) be a complete filtered probability space equipped with a natural
filtration

Ft = σ{W (s), Y (s); 0 ≤ s ≤ t},

where W (·) and Y (·) are two independent standard Brownian motions valued in R
d and R

r,
respectively. Let F := Ft, and let T > 0 be the finite time duration and 0 < δ ≤ T be the
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constant time delay. E denotes the expectation on (Ω ,F , {Ft}t≥0 ,P). Moreover, we denote by
L2(r, s; Rn) the space of R

n-valued deterministic functions ϕ(t) satisfying
∫ s

r
|ϕ(t)|2dt < +∞,

by L2(Ft; Rn) the space of R
n-valued Ft-measurable random variables ζ satisfying E|ζ|2 < +∞,

by C([−δ, 0]; Rn) the space of R
n-valued continuous functions, and by L2

F(r, s; Rn) the space of
R

n-valued Ft-adapted processes ψ(·) satisfying E
∫ s

r |ψ(t)|2dt < +∞. Define

FY
t := σ{Y (s); 0 ≤ s ≤ t}.

Let U be a nonempty convex subset of R
k. A control variable v : [0, T ] × Ω → U is called

admissible, if it is FY
t -adapted and satisfies supt∈[0,T ] E |vt|m < ∞, m = 2, 3, · · · . The set of

the admissible control variables is denoted by Uad.
For given v(·) ∈ Uad, consider the following stochastic control system with time delay:
{
dxv(t) = b(t, xv(t), xv(t− δ), v(t))dt + σ(t, xv(t), xv(t− δ), v(t))dW (t), t ∈ [0, T ],

xv(t) = η(t), t ∈ [−δ, 0],
(1)

where η ∈ C([−δ, 0]; Rn) is the initial path of x(·) and

b : [0, T ]× R
n × R

n × U → R
n, σ : [0, T ]× R

n × R
n × U → R

n×d.

We assume that the state processes xv(·) cannot be observed directly, but the controllers can
observe a related noisy process Y (·) of the state process which is described by

dY (t) = h(t, xv(t), xv(t− δ), v(t))dt + dW (t), Y (0) = 0, (2)

where h : [0, T ]× R
n × R

n × U → R
r and W (·) denotes a stochastic process depending on the

control variable v(·).
We assume that the following hypothesis holds.
(H1) The functions b, σ are continuously differentiable in (x, y), and their partial derivatives

are uniformly bounded; they are uniformly Lipschitz in v and there exists a constant C > 0
such that both b and σ are bounded by C(1 + |x|+ |y|+ |v|); h is continuously differentiable in
(x, y) and continuous in v, its derivatives and h are all uniformly bounded.

For any v(·) ∈ Uad, (H1) implies that (1) admits a unique Ft-adapted solution. Define
dPv = Zv(t)dP with

Zv(t) = exp
{∫ t

0

hτ (s, xv(s), xv(s− δ), v(s))dY (s) − 1
2

∫ t

0

|h(s, xv(s), xv(s− δ), v(s)|2ds
}

.

Obviously, Z(·) is the unique FY
t -adapted solution of

dZv(t) = Zv(t)hτ (s, xv(s), xv(s− δ), v(s))dY (t), Zv(0) = 1. (3)

By virtue of Itô’s formula, we can prove that supt∈[0,T ] E |Zv
t |m < ∞, m = 2, 3, · · · . Hence, by

Girsanov’s theorem and (H1), P
v is a new probability measure and (W (·),W (·)) is an R

d+r-
valued standard Brownian motion defined on the new probability space (Ω ,F , {Ft}t≥0 ,P

v).
We introduce the following cost functional

J(v(·)) = E
v

∫ T

0

l(t, xv(t), v(t))dt + Φ(x v (T )), (4)
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where E
v denotes expectation on (Ω ,F , {Ft}t≥0 ,P

v ) and

l : [0, T ]× R
n × U → R, Φ : R

n → R.

We need the following hypothesis.
(H2) (i) l is continuous in v, continuously differentiable in x, and its partial derivatives are

continuous in (x, v) and bounded by C(1 + |x| + |v|); (ii) Φ is continuously differentiable and
Φx is bounded by C(1 + |x|).

Our partially-observed optimal control problem is to minimize the cost functional (4) over
v(·) ∈ Uad subject to (1) and (2), i.e., to find u(·) ∈ Uad satisfying

J(u(·)) = inf{J(v(·)); v(·) ∈ Uad}. (5)

Obviously, cost functional (4) can be rewritten as

J(v(·)) = E

[ ∫ T

0

Zv(t)l(t, xv(t), v(t))dt + Zv(T )Φ(x v (T ))
]

. (6)

Then the original problem (5) is equivalent to minimize (6) over v(·) ∈ Uad subject to (1)
and (3). Our main target is to find the necessary condition of the partially-observed optimal
control u(·) in the form of Pontryagin stochastic maximum principle.

A stochastic control system whose state is described by solution of stochastic differential
delay equation (SDDE) is called a time-delayed system. This kind of systems emerges naturally
because some phenomena have the property of past dependence, that is to say, their behavior
at time t not only depends on the current situation, but also on their past history. Due to the
interesting structure and wide-range applications in physics, biology, engineering, and finance,
optimal control problems of stochastic delay systems have received a lot of attentions in the
past decades since the initial work of Kolmanovsky and Maizenberg[1], where a linear delay
system with a quadratic cost functional was considered. In [2], ∅ksendal and Sulem discussed
a certain class of stochastic control systems with time delay and gave sufficient stochastic
maximum principle. On the other hand, the dynamic programming with time delay is taken
into account by Larssen[3]. Recently, Peng and Yang[4] introduced a new type of stochastic
differential equations, which were called anticipated backward stochastic differential equations
(ABSDEs) and provided a new method to deal with optimal control problem with time delay.
ABSDEs can be regarded as a generalization of classical BSDEs, which were introduced by
Bismut[5] in the linear form and generalized to the nonlinear case by Pardoux and Peng[6].
By the duality relation between SDDEs and ABSDEs, Chen and Wu[7] obtained a maximum
principle for stochastic optimal control problem with time delay. ∅ksendal, Sulem and Zhang[8]

considered optimal control problems for stochastic delay systems with jumps and established
sufficient and necessary maximum principle for an optimal control, and the adjoint processes
were also shown to satisfy an ABSDE. It is remarkable that all the above ones are based on
the assumption that the systems can be fully observed. However, in many practical systems,
the systems’ states cannot be observed directly, and the controllers have to make a decision
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according to their observable information. Thus, it is very natural and necessary to study
partially-observed optimal control problems with time delay.

Some stochastic optimal control problems for partially-observed forward or forward-backward
stochastic systems have been discussed by many authors, such as Bensoussan[9], Li and Tang[10],
Tang[11], Zhang, Zhao, and Sheng[12], Wang, Zhang, and Zhang[13], Wang and Wu[14], Wu[15],
Shi and Wu[16], etc. Li and Tang[10] obtained the maximum principle for the partially-observed
forward stochastic optimal control problem in which the control variable is allowed to enter the
diffusion and the observation coefficients. Tang[11] extended this result to the case with corre-
lated noises between the system and the observation. Wang and Wu[14] considered risk-sensitive
cost functional and non-convex control domain. Wu[15] studied the optimal control problem
for partially-observed forward-backward stochastic systems when the control domain is convex.
He obtained the maximum principle by the convex variational method. Shi and Wu[16] also
researched this problem on the assumption that the control domain is not necessarily convex
while the forward diffusion coefficient does not contain the control variable. The maximum
principle was obtained by means of the spike variational technique. However, the systems in
the above literatures were without time delays. Inspired by the former two types of works,
in this paper, we will study a partially-observed stochastic time-delayed system given by (1)
and (2). By Girsanov’s theorem we can reformulate our original partially-observed optimal con-
trol problem to a completely observed one. The related adjoint processes are characterized by
solutions of some finite-dimensional ABSDEs. Thus, our method is different from Bensoussan[9]

in which he adopted an infinite-dimensional BSDE.
The paper is organized as follows. In Section 2, we first introduce a standard convex

variation to get variational equations, then we give the corresponding adjoint equation which is
finite-dimensional anticipated backward stochastic differential equation (ABSDE). By virtue of
ABSDE, we derive a partially-observed stochastic maximum principle for time-delayed control
systems. In Section 3, we focus on partially observed linear-quadratic (LQ) optimal control
problem with time delay to illustrate the applications of our theoretical results obtained in
Section 2. Under some proper conditions, we can combine maximum principle with classical
linear filtering theory to find the explicit optimal observable control. Finally, we end this paper
with some concluding remarks.

2 Partially-Observed Maximum Principle

In this section, combining Girsanov’s theorem with a standard convex variational technique,
we derive the maximum principle for the aforementioned partially observed optimal control
problem with time delay.

Now let u(·) be optimal. Then for any 0 ≤ ε ≤ 1 and v(·) ∈ Uad, we take the variational
control vε(·) = u(·) + εv(·). Because U is convex, vε(·) is in Uad. For simplicity, we denote by
xε(·), x(·), Zε(·), Z(·) the state trajectories of (1) and (2) corresponding to vε(·) and u(·).

For simplification, we introduce the notations

θ(vε(t)) = θ(t, x(t), x(t − δ), vε(t)), θ(u(t)) = θ(t, x(t), x(t − δ), u(t)),
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where θ = b, σ, h as well as their partial derivatives in the optimal trajectory (x, y).
We now introduce the following variational equations:

dx1(t) = [bx(u(t))x1(t) + by(u(t))x1(t− δ) + bv(u(t))v(t)]dt

+[σx(u(t))x1(t) + σy(u(t))x1(t− δ) + σv(u(t))v(t)]dW (t),

x1(t) = 0, t ∈ [−δ, 0], (7)

and

dZ1(t) = [Z1(t)h(u(t)) + Z(t)hx(u(t))x1(t) + Z(t)hy(u(t))x1(t− δ)

+Z(t)hv(u(t))v(t)]τdY (t),

Z1(0) = 0. (8)

By (H1) and Theorem 2.2 in [7], it is easy to know that (7) and (8) admit unique adapted
solutions x1(·) and Z1(·), respectively.

The following lemma is due to Chen and Wu[7].

Lemma 2.1 Let (H1) hold. Then, we have

lim
ε→0

sup
0≤t≤T

E

∣
∣
∣
∣
xε(t) − x(t)

ε
− x1(t)

∣
∣
∣
∣

2

= 0.

We also need to obtain some ε-order estimations of the difference between the perturbed
observed process Zε(·) with the sum of the optimal observed process Z(·) and the variational
observed Z1(·). The following lemma play an important role when we derive the variational
inequality.

Lemma 2.2 Let (H1) hold. Then, we have

lim
ε→0

sup
0≤t≤T

E

∣
∣
∣
∣
Zε(t) − Z(t)

ε
− Z1(t)

∣
∣
∣
∣

2

= 0.

Proof By the definition of Z(·) and Z1(·), we have

Z(t) + εZ1(t) = 1 +
∫ t

0

Z(s)hτ (u(s))dY (s)

+ε
∫ t

0

[Z1(s)h(u(s)) + Z(s)hx(u(s))x1(s)

+Z(s)hy(u(s))x1(s− δ) + Z(s)hv(u(s))v(s)]τdY (s)

= 1 + ε

∫ t

0

Z1(s)hτ (u(s))dY (s)

+
∫ t

0

Z(s)[h(s, x(s) + εx1(s), x(s− δ) + εx1(s− δ), u(s) + εv(s)]τdY (s)

−ε
∫ t

0

Z(s)[Aε(s)]τdY (s),
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where

Aε(s)

=
∫ 1

0

[hx(s, x(s) + λεx1(s), x(s− δ) + λεx1(s− δ), u(s) + λεv(s)) − hx(u(s))]dλx1(s)

+
∫ 1

0

[hy(s, x(s) + λεx1(s), x(s − δ) + λεx1(s− δ), u(s) + λεv(s)) − hy(u(s))]dλx1(s− δ)

+
∫ 1

0

[hv(s, x(s) + λεx1(s), x(s− δ) + λεx1(s− δ), u(s) + λεv(s)) − hv(u(s))]dλv(s).

Then, we have

Zε(t) − Z(t) − εZ1(t)

=
∫ t

0

Zε(s)[h(s, xε(s), xε(s− δ), vε(s))]τdY (s) − ε

∫ t

0

Z1(s)hτ (u(s))dY (s)

−
∫ t

0

Z(s)[h(s, x(s) + εx1(s), x(s− δ) + εx1(s− δ), u(s) + εv(s)]τdY (s)

+ε
∫ t

0

Z(s)[Aε(s)]τdY (s)

=
∫ t

0

(Zε(s) − Z(s) − εZ1(s))[h(s, xε(s), xε(s− δ), vε(s))]τdY (s)

+
∫ t

0

(Z(s) + εZ1(s))[h(s, xε(s), xε(s− δ), vε(s)) − h(s, x(s)

+εx1(s), x(s − δ) + εx1(s− δ), u(s) + εv(s))]τdY (s)

+ε
∫ t

0

Z1(s)[h((s, x(s) + εx1(s), x(s− δ) + εx1(s− δ), u(s) + εv(s))]τdY (s)

−ε
∫ t

0

Z1(s)hτ (u(s))dY (s) + ε

∫ t

0

Z(s)[Aε(s)]τdY (s)

=
∫ t

0

(Zε(s) − Z(s) − εZ1(s))[h(s, xε(s), xε(s− δ), vε(s))]τdY (s)

+
∫ t

0

(Z(s) + εZ1(s))[Bε
1(s)]τdY (s) + ε

∫ t

0

Z1(s)[Bε
2(s)]

τdY (s)

+ε
∫ t

0

Z(s)[Aε(s)]τdY (s),

where

Bε
1(s) = h(s, xε(s), xε(s− δ), vε(s)) − h(s, x(s) + εx1(s), x(s− δ) + εx1(s− δ), u(s) + εv(s)),

Bε
2(s) = h((s, x(s) + εx1(s), x(s − δ) + εx1(s− δ), u(s) + εv(s)) − h(u(s)).
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Note that

Bε
1(s) =

∫ 1

0

[hx(s, x(s) + εx1(s) + λ(xε(s) − x(s) − εx1(s)), x(s − δ) + εx1(s− δ)

+λ(xε(s− δ) − x(s− δ) − εx1(s− δ)), vε(s))]dλ(xε(s) − x(s) − εx1(s))

+
∫ 1

0

[hy(s, x(s) + εx1(s) + λ(xε(s) − x(s) − εx1(s)), x(s − δ) + εx1(s− δ)

+λ(xε(s− δ) − x(s− δ) − εx1(s− δ)), vε(s))]dλ(xε(s− δ) − x(s− δ) − εx1(s− δ)).

Due to the fact that

sup
0≤s≤t

E|xε(s− δ) − x(s − δ) − εx1(s− δ)|2 ≤ sup
0≤s≤t

E|xε(s) − x(s) − εx1(s)|2, t ∈ [0, T ]

and Lemma 2.1, we know that

E

∫ t

0

|(Z(s) + εZ1(s))Bε
1(s)|2ds ≤ Cεε

2, (9)

hereafter Cε denotes some nonnegative constant such that Cε → 0 as ε→ 0.
Moreover, it is easy to see that

sup
0≤t≤T

E

(

ε

∫ t

0

Z(s)[Aε(s)]τdY (s)
)2

≤ Cεε
2 (10)

and

sup
0≤t≤T

E

(

ε

∫ t

0

Z1(s)[Bε
2(s)]

τdY (s)
)2

≤ Cεε
2. (11)

By (9), (10) and (11), we have

E|Zε(t) − Z(t) − εZ1(t)|2

≤ C

[ ∫ t

0

E|Zε(s) − Z(s) − εZ1(s)|2ds+ E

∫ t

0

|(Z(s) + εZ1(s))Bε
1(s)|2ds

+ sup
0≤t≤T

E

(

ε

∫ t

0

Z(s)[Aε(s)]τdY (s)
)2

+ sup
0≤t≤T

E

(

ε

∫ t

0

Z1(s)[Bε
2(s)]τdY (s)

)2]

≤ C

∫ t

0

E|Zε(s) − Z(s) − εZ1(s)|2ds+ Cεε
2.

By the Gronwall’s inequality, we obtain the desired result.
Then we have the following variational inequality.

Lemma 2.3 Let (H1) and (H2) hold. Then, we have

E

∫ T

0

[Z1(t)l(t, x(t), u(t)) + Z(t)lτx(t, x(t), u(t))x1(t) + Z(t)lτv (t, x(t), u(t))v(t)]dt

+E[Z1(T )Φ(x(T ))] + E[Z(T )Φx(x(T ))x1(T )] ≥ 0. (12)
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Proof Using the Taylor expansion, Lemmas 2.1 and 2.2, we have

lim
ε→0

ε−1
E[Zε(T )Φ(xε(T )) − Z(T )Φ(x(T ))] = E[Z1(T )Φ(x(T )) + Z(T )Φx(x(T ))x1(T )]

and

lim
ε→0

ε−1
E

∫ T

0

[Zε(t)l(t, xε(t), uε(t)) − Z(t)l(t, x(t), u(t))]dt

= E

∫ T

0

[Z1(t)l(t, x(t), u(t)) + Z(t)lτx(t, x(t), u(t))x1(t) + Z(t)lτv (t, x(t), u(t))v(t)]dt.

Then, by the fact that ε−1[J(u(·) + εv(·)) − J(u(·))] ≥ 0, we draw the desired conclusion.
We now focus on a necessary condition of the optimal control u(·). For this purpose, we

define the Hamiltonian function

H(t, x, y, v, p, q, z) = l(t, x, v) + 〈p, b(t, x, y, v)〉 + 〈q, σ(t, x, y, v)〉 + 〈z, h(t, x, y, v)〉, (13)

where H : [0, T ]× R
n × R

n × U × R
n × R

n×d × R
r → R.

To derive the maximum principle, we introduce the following adjoint equations:

−dy(t) = l(u(t))dt− z(t)dW (t) − zdW (t), t ∈ [0, T ],

y(T ) = Φ(x(T )), z(t) = 0, t ∈ (T, T + δ], (14)

−dp(t) =
{
bτx(u(t))p(t) + E

u[bτy(u(t+ δ)p(t+ δ)|Ft] + στ
x(u(t))q(t)

+E
u[στ

y (u(t+ δ))q(t+ δ)|Ft] + hτ
x(u(t))z(t) + E

u[hτ
y(u(t+ δ))z(t+ δ)|Ft]

+lx(t, x(t), u(t))
}
dt− q(t)dW (t) − q(t)dW (t), t ∈ [0, T ],

p(T ) = Φx(x(T )), p(t) = 0, t ∈ (T, T + δ], q(t) = 0, t ∈ [T, T + δ]. (15)

Note that dZ̃(t) = [hx(u(t))x1(t) + hy(u(t))x1(t − δ) + hv(u(t))v(t)]τdW (t), Z̃(0) = 0, where
Z̃(t) = Z−1(t)Z1(t). Moreover, we have

E
u

∫ T

0

{〈p(t),−by(u(t))x1(t− δ)〉 + 〈Eu[b
τ

y(u(t+ δ))p(t+ δ)|Ft], x1(t)〉}dt

= E
u

∫ T

0

〈p(t),−by(u(t))x1(t− δ)〉dt+ E
u

∫ T+δ

δ

〈bτy(u(t))p(t), x1(t− δ)〉dt

= E
u

∫ δ

0

〈p(t),−by(u(t))x1(t− δ)〉dt+ E
u

∫ T+δ

T

〈bτy(u(t))p(t), x1(t− δ)〉dt = 0,

where p = p, q, z and b = b, σ, h, correspondingly. Then, applying Itô’s formula to 〈y(t), Z̃(t)〉+
〈p(t), x1(t)〉 and comparing it with the variational inequality (12), we can get

E
u

∫ T

0

〈bτv(u(t))p(t) + στ
v (u(t))q(t) + hτ

v(u(t))z(t) + lv(t, x(t), u(t)), v(t)〉dt ≥ 0. (16)

By the definition (13), (16) can be rewritten as

E
u

∫ T

0

〈Hv(t, x(t), x(t − δ), u(t), p(t), q(t), z(t)), v(t)〉dt ≥ 0. (17)
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Using the method similar to that of References [7, 16], we can derive the main result of this
paper.

Theorem 2.4 Assume that (H1) and (H2) hold. Let u(·) be optimal. Then, the maximum
principle

E
u[〈Hv(t, x(t), x(t − δ), u(t), p(t), q(t), z(t)), v − u(t)〉|FY

t ] ≥ 0, ∀v ∈ U, a.e., a.s.,

holds, where the Hamiltonian function H is defined by (13).

Remark 2.5 In our partially-observed optimal control problem with time delay, we as-
sume that the diffusion coefficient contains the control variable and the control domain is
convex. To our best knowledge, the general maximum principle for stochastic delay systems
is still an open problem even if the system is completely observed. On the other hand, it is
worthwhile to note that our problem should be distinguished from the optimal control problems
with partial information, where a sub-filtration is given to represent the information available
to the controller instead of an observation process.

3 Application: Partially-Observed LQ Problem

In this section, we give an example of partially-observed linear-quadratic optimal control
problem with time delay. Though there is no general filtering results for ABSDEs, we will try
to give an explicit observable optimal control by means of our theoretical result in Section 2
and classical filtering theory. Let us consider the following stochastic control system with time
delay (d = r = 1):

{
dxv(t) = [A(t)xv(t) +Aδ(t)xv(t− δ) +B(t)v(t)]dt + C(t)dW (t), t ∈ [0, T ],

xv(t) = η(t), t ∈ [−δ, 0]
(18)

and the observation

dY (t) = D(t)dt+ dW (t), Y (0) = 0. (19)

The cost functional is described as

J(v(·)) =
1
2

E
v

∫ T

0

[〈R(t)xv(t), xv(t)〉 + 〈N(t)v(t), v(t)〉]dt + 〈Mxv(T ), xv(T )〉, (20)

where A(·), Aδ(·) are deterministic n× n bounded matrix-valued functions, B(·) is a determin-
istic n×k bounded matrix-valued function, C(·) is a deterministic n×d bounded matrix-valued
function, D(·) is a deterministic r × 1 bounded matrix-valued function, R(·) is a deterministic
n × n non-negative symmetric bounded matrix-valued function, N(·) is a deterministic k × k

positive symmetric bounded matrix-valued function and N(·)−1 is also bounded, and M is
deterministic n× n non-negative symmetric matrix. The Hamiltonian function is given by

H(t, x, y, v, p, q, z) =
1
2
[〈R(t)x, x〉 + 〈N(t)v, v〉] + 〈p,A(t)x+ Aδ(t)y +B(t)v〉

+〈q, C(t)〉 + 〈z,D(t)〉. (21)
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If u(·) is optimal, then it follows from Theorem 2.4 and (21) that

u(t) = −N−1(t)Bτ (t)Eu[p(t)|FY
t ], 0 ≤ t ≤ T, (22)

where (p(·), q(·), xu(·)) is the solution of the following FBSDE
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dxu(t) = {A(t)xu(t) +Aδ(t)xu(t− δ) −B(t)N−1(t)Bτ (t)Eu[p(t)|FY
t ]}dt

+ C(t)dW (t), t ∈ [0, T ],

− dp(t) =
{
Aτ (t)p(t) + E

u[Aτ
δ (t+ δ)p(t+ δ)|Ft] +R(t)xu(t)

}
dt

− q(t)dW (t) − q(t)dW (t), t ∈ [0, T ],

p(T ) = Mxu(T ), p(t) = 0, t ∈ (T, T + δ],

q(t) = 0, q(t) = 0, t ∈ [T, T + δ].

(23)

Note that the forward equation of (23) contains the conditional expectation of p(t) with respect
to FY

t , then it is distinguished from the general FBSDE appearing in [17] and the existence
and uniqueness of solution to (23) is not so clear. However, if we fix the trajectory xu(·), then
((p(·), q(·), q(·)) satisfies a certain ABSDE which is well-defined. Note that E

u[p(t + δ)|FY
t ] =

E
u{E

u[p(t+ δ)|FY
t+δ]|FY

t } = E
u[p(t+ δ)|FY

t ]. Then from Theorems 8.1 and 8.4 in [18], we have
⎧
⎪⎪⎨

⎪⎪⎩

dx̂u(t) = [A(t)x̂u(t) +Aδ(t)x̂u(t− δ) −B(t)N−1(t)Bτ (t)p̂(t)]dt, t ∈ [0, T ],

− dp̂(t) =
{
Aτ (t)p̂(t) + E

u[Aτ
δ (t+ δ)p̂(t+ δ)|FY

t ] +R(t)x̂u(t)
}
dt− q̂(t)dW (t), t ∈ [0, T ],

p̂(T ) = Mx̂u(T ), p̂(t) = 0, t ∈ (T, T + δ], q̂(t) = 0, t ∈ [T, T + δ],
(24)

where φ̂(t) = E
u[φ(t)|FY

t ] is the filtering estimate of the state φ(t) depending on the observable
filtration FY

t , φ = x, p, q. From Theorem 2.1 in [17], the general FBSDE (24) has a unique
solution (x̂u(·), p̂(·), q̂(·)), and this implies that (23) admits a solution (xu(·), p(·), q(t), q(·)).

Our next job is to prove the admissible control (22) which is determined by (23) is really
optimal. Note that E

v and E
u are equivalent. Then for any admissible control v(·), we have

J(v(·)) − J(u(·)) =
1
2

E
u

∫ T

0

[〈R(t)(xv(t) − x(t)), xv(t) − x(t)〉 + 〈N(t)(v(t) − u(t)), v(t) − u(t)〉
+2〈R(t)x(t), xv(t) − x(t)〉 + 2〈N(t)u(t), v(t) − u(t)〉]dt

+
1
2

E
u[〈M(xv(T ) − x(T )), xv(T ) − x(T )〉 + 2〈Mx(T ), xv(T ) − x(T )〉].

By the initial and terminal conditions, it follows that

E
u

∫ T

0

{〈Aδ(t)(xv(t− δ) − x(t− δ)), p(t)〉 − 〈xv(t) − x(t),Eu[Aτ
δ (t+ δ)p(t+ δ)|Ft]〉}dt

= E
u

∫ T

0

〈Aδ(t)(xv(t− δ) − x(t− δ)), p(t)〉dt − E
u

∫ T+δ

δ

〈xv(t− δ) − x(t− δ), Aτ
δ (t)p(t)〉dt

= 0.

Applying Itô’s formula to 〈xv(t− δ) − x(t− δ), p(t)〉, we get

E
u 〈xv(T ) − x(T ), p(T )〉 = −E

u

∫ T

0

[〈R(t)(xv(t) − x(t)), x(t)〉 + 〈B(t)(v(t) − u(t)), p(t)〉]dt.
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As R(t),M are nonnegative and N(t) is positive, we can derive

J(v(·)) − J(u(·)) ≥ E
u

∫ T

0

〈N(t)u(t) +Bτ (t)p(t), v(t) − u(t)〉dt

= E
u

∫ T

0

〈N(t)u(t) +Bτ (t)Eu[p(t)|FY
t ], v(t) − u(t)〉dt,

so it is clear that u(t) = −N(t)−1Bτ (t)Eu[p(t)|FY
t ] is optimal.

The remaining task is to compute the filtering estimate p̂(t). From (24), it is obvious that
q̂(·) = 0, then (24) can be rewritten as

⎧
⎪⎪⎨

⎪⎪⎩

dx̂(t) = [A(t)x̂(t) +Aδ(t)x̂(t− δ) −B(t)N−1(t)Bτ (t)p̂(t)]dt, t ∈ [0, T ],

− dp̂(t) = [Aτ (t)p̂(t) +Aτ
δ (t+ δ)p̂(t+ δ) +R(t)x̂(t)]dt, t ∈ [0, T ],

p̂(T ) = Mx̂(T ), p̂(t) = 0, t ∈ (T, T + δ],

(25)

where we omit the subscript u for simplification. Though (25) is a deterministic FBSDE, we
don’t obtain its explicit solution by means of common FBSDE technique because of the delayed
and advanced time durations. However, we can relate (25) to a deterministic linear quadratic
optimal control problem with time delay as follows:

{
dxv(t) = [A(t)xv(t) +Aδ(t)xv(t− δ) +B(t)v(t)]dt, t ∈ [0, T ],

xv(t) = η(t), t ∈ [−δ, 0],
(26)

and the cost functional

J(v(·)) =
1
2

∫ T

0

〈R(t)xv(t), xv(t)〉 + 〈N(t)v(t), v(t)〉dt + 〈Mxv(T ), xv(T )〉, (27)

where admissible control v(·) is deterministic satisfying
∫ T

0
|v(t)|2dt < +∞. It follows that

u(t) = −N−1(t)Bτ (t)p̂(t) is optimal subject to (26) and (27), where p̂(t) is determined by (25).
Thanks to Theorem 4.2 in [19], we know that

u(t) = −N−1(t)Bτ (t)
(

E0(t)x̂(t) +
∫ t

t−δ

E1(t, θ − t)x̂(θ)dθ
)

, t ∈ [0, T ] (28)

is optimal, where E0(t), E1(t, θ), E2(t, θ, ζ), t ∈ [0, T ], θ, ζ ∈ [−δ, 0] satisfy the following sets of
equations ⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ė0(t) + E0(t)A(t) +Aτ (t)E0(t) + E1(t, 0) + Eτ
1 (t, 0) +R(t)

− Eτ
0 (t)B(t)N−1(t)Bτ (t)E0(t) = 0,

∂

∂t
E1(t, θ) − ∂

∂θ
E1(t, θ) +Aτ (t)E1(t, θ) + E2(t, 0, ζ)

− Eτ
0 (t)B(t)N−1(t)Bτ (t)E1(t, θ) = 0,

∂

∂t
E2(t, θ, ζ) − ∂

∂θ
E2(t, θ, ζ) − ∂

∂ζ
E2(t, θ, ζ)

− Eτ
1 (t, θ)B(t)N−1(t)Bτ (t)E1(t, θ) = 0,

E2(t, θ, ζ) = E2(t, ζ, θ), t ∈ [0, T ], θ, ζ ∈ [−δ, 0],

(29)
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with boundary conditions
{
E0(T ) = M, E0(t)Aδ(t) = E1(t,−δ), E1(T, θ) = E2(T, θ, ζ) = 0,

Eτ
1 (t, θ)Aδ(t) = E2(t, θ,−δ), t ∈ [0, T ], θ, ζ ∈ [−δ, 0].

Moreover, using the parallel rule, we can prove the uniqueness of optimal control, and this gives
the relation between p̂(t) and x̂(t) that p̂(t) = E0(t)x̂(t) +

∫ t

t−δ E1(t, θ − t)x̂(θ)dθ.
Now we summarize all the results obtained so far and give the following proposition.

Proposition 3.1 For our partially-observed linear-quadratic optimal control problem (18)–
(20), an observable optimal control u(·) is given by (22), where p̂(t) = E

u[p(t)|FY
t ] is the solution

of FBSDE (25). Furthermore, the feedback regulator of the filtering estimate for optimal tra-
jectory is given by (28), where E0(t), E1(t, θ), E2(t, θ, ζ), t ∈ [0, T ], θ, ζ ∈ [−δ, 0] satisfy the
equation sets (29).

Remark 3.2 Since the filtering (x̂u(·), p̂(·), q̂(·)) solves a general FBSDE (24), it is different
from the existing filtering literature. Obviously, FBSDE (24) can be regarded as a generalization
of forward-backward stochastic differential filtering equations (FBSDFEs) appearing in [20].
Just like [20], we call (24) a general forward-backward stochastic differential filtering equation.

4 Conclusion

In this paper, we have discussed one kind of partially-observed optimal control problem
with time delay. More specially, we use Girsanov’s theorem to transform our optimal control
problem to completely observable case and apply the conventional approach to get the partially-
observed maximum principle. The related adjoint processes are characterized by solutions of
some finite-dimensional ABSDEs. Because the maximum principle depends strongly on adjoint
processes, it is necessary to investigate the filtering estimate for adjoint processes which satisfy
ABSDEs when we try to get an observable optimal control. However, there is no general filtering
results for ABSDEs as yet, even if δ = 0. Only in some special cases we can get the filtering
estimate for this kind of stochastic systems by combining ABSDEs theory with the traditional
filtering theory. To show the application of our maximum principle, we give an example for
partially-observed linear-quadratic optimal control problem with time delay and find an explicit
observable control variable satisfying the necessary condition of optimality. Furthermore, based
on the fact that the observation process does not depend on the control variable, we also give
the feedback regulator of the filtering estimate for optimal trajectory.
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