
J Syst Sci Complex (2017) 30: 464–483

A Triangular Decomposition Algorithm for Differential

Polynomial Systems with Elementary Computation

Complexity∗

ZHU Wei · GAO Xiao-Shan

DOI: 10.1007/s11424-016-5040-5

Received: 11 February 2015 / Revised: 12 May 2015

c©The Editorial Office of JSSC & Springer-Verlag Berlin Heidelberg 2017

Abstract In this paper, a new triangular decomposition algorithm is proposed for ordinary differ-

ential polynomial systems, which has triple exponential computational complexity. The key idea is to

eliminate one algebraic variable from a set of polynomials in one step using the theory of multivariate

resultant. This seems to be the first differential triangular decomposition algorithm with elementary

computation complexity.

Keywords Differential polynomial system, regular triangular set, saturated triangular set, triangular

decomposition.

1 Introduction

A basic problem in symbolic computation is to properly describe the solutions for a set of
algebraic or differential polynomial equations and the triangular set is one of the basic ways
to do that. Let f1, f2, · · · , fs be polynomials in variables x1, x2, · · · , xn. Then it is possible to
compute triangular sets T1, T2, · · · , Tr such that

Zero(f1, f2, · · · , fs) = ∪r
i=1Zero(sat(Ti)),

where sat(Ti) is the saturation ideal to be defined in Section 2 of this paper. Since each Ti

is in triangular form, many properties of its solution set can be easily deduced. Triangular
decompositions also lead to many important applications such as automated theorem proving,
kinematic analysis of robotics, computer vision, stability analysis of molecular systems, etc.

The concept of triangular set was introduced by Ritt[1] in the 1950s and was revised in
the 1980s by Wu[2] in his work of automated geometry theorem proving. A major advantage

ZHU Wei · GAO Xiao-Shan

Key Laboratory of Mathematics Mechanization, Academy of Mathematics and Systems Science, Chinese

Academy of Sciences, Beijing 100190, China. Email: zhuwei210@mails.ucas.ac.cn; xgao@mmrc.iss.ac.cn.
∗This research was supported by the National Natural Science Foundation of China under Grant No. 60821002

and the National Key Basic Research Project of China.
�This paper was recommended for publication by Editor LI Hongbo.

A TRIANGULAR DECOMPOSITION ALGORITHM 465

of the triangular decomposition method is that it can be used to give complete methods for
the radical ideal membership problem of differential and difference polynomial ideals, while the
well known Gröbner basis method does not suit for this purpose. By now, various kinds of
triangular decomposition algorithms have been proposed for various equation systems such as
polynomial systems[2–5], differential polynomial systems[6–11], difference polynomial systems[12],
polynomial systems over finite fields[13–15], and semi-algebraic sets[16].

The computational complexity analysis for triangular decomposition algorithms is quite
difficult and only very limited results are known. For polynomial systems, Gallo and Mishra
gave a single exponential algorithm to compute the characteristic set for a finitely generated
ideal[17] and Szanto gave a randomized single exponential algorithm to compute the triangular
decomposition[4]. The complexity analysis of the commonly used triangular decomposition
algorithms is not given yet. However, it is shown that if solutions in Z2 are considered, then
the commonly used triangular decomposition algorithm can be made single exponential and
practically very efficient[13]. For differential polynomial systems, it is generally believed that
the commonly used triangular decomposition algorithms have non-elementary computational
complexity[18].

In this paper, new triangular decomposition algorithms are proposed for polynomial and
differential polynomial systems. The key idea is to eliminate one algebraic variable from a
set of polynomials in one step using the theory of multivariate resultant. This method was
introduced by Yu Grigor’ev to give a quantifier elimination algorithm with nice computational
complexity[19]. In this paper, by adapting this elimination method, we give triangular decom-
position algorithms for polynomial and ordinary differential polynomial systems. In the case of
polynomial systems, the algorithm gives an unmixed decomposition and has double exponen-
tial complexity. In the case of ordinary differential polynomial systems, the algorithm gives an
unmixed radical decomposition which has triple exponential complexity. This seems to be the
first differential triangular decomposition algorithm with elementary computation complexity.

The rest of this paper is organized as follows. In Section 2, we give a new triangular decom-
position algorithm for polynomial systems. In Section 3, we give a new triangular decomposition
algorithm for ordinary differential polynomial systems. In Section 4, a summary is given.

2 Decomposition of Algebraic Polynomial System

In this section, we give an algorithm which for given polynomials h1, h2, · · · , hk ∈ K[x1, x2,

· · · , xn], gives the decomposition Zero(h1, h2, · · · , hk) = ∪qZero(sat(Aq)), where Aq is a regular
triangular set for each q. Furthermore, the computational complexity of the algorithm is given.

2.1 Basic Definition and Property

Let K be a field of characteristic 0, and x1 < x2 < · · · < xn ordered variables. For every
i ∈ {1, 2, · · · , n}, we define Ki = K[x1, x2, · · · , xi] to be the ring of multivariate polynomials in
the variables x1, x2, · · · , xi with coefficients in K. We write deg(f, xi) for the degree of f in xi,
and degxi1 ,xi2 ,··· ,xit

(f) for the degree of f as the multivariate polynomial in xi1 , xi2 , · · · , xit .
We call the leading variable of f , denoted by lv(f), the greatest variable v ∈ {x1, x2, · · · , xn}

466 ZHU WEI · GAO XIAO-SHAN

such that deg(f, v) > 0.
Assuming lv(f) = xi, we call i the class of f , denoted by cls(f). Regarding f as a univariate

polynomial in Ki−1[xi], we can write f = cxd
i + r. We call d = deg(f, xi) the leading degree of

f , denoted by ldeg(f), and c the initial of f , denoted by ini(f) or If .
Let P be a polynomial set and D a polynomial in Kn. For an algebraic closed extension

field E of K, let
Zero(P/D) = {η ∈ E

n | ∀P ∈ P, P (η) = 0 ∧ D(η) �= 0}.

A subset T of Kn is called a triangular set if no element of T lies in K and for P, Q ∈ T
with P �= Q we have lv(P) �= lv(Q).

Let T = {T1, T2, · · · , Tr} be a triangular set. We always assume lv(T1) < lv(T2) < · · · <

lv(Tr). We can rename the variables as u1, u2, · · · , uq, y1, y2, · · · , yr such that q + r = n and
lv(Ti) = yi. ThenT has the following form:

T =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

T1(u1, u2, · · · , uq, y1)

T2(u1, u2, · · · , uq, y1, y2)
...

Tr(u1, u2, · · · , uq, y1, y2, · · · , yr)

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

. (1)

We call u = {u1, u2, · · · , uq} the parameter set of T , and write IT = IT1IT2 · · · ITr . For a
triangular set T , the saturation ideal of T is defined to be

sat(T) = {f ∈ Kn | ∃d ∈ N
+, s.t. Id

T f ∈ (T)},

where (T) is the ideal generated by T .
A triangular set T = [T1, T2, · · · , Tr] of form (1) is called regular, if for each 1 ≤ i ≤ r,

(T1, T2, · · · , Ti−1, ini(Ti))
⋂

K[u] �= {0} where (T1, T2, · · · , Ti−1, ini(Ti)) is the ideal generated
by T1, T2, · · · , Ti−1, ini(Ti) and u is the parameter set of T .

Lemma 2.1 (see [20]) For a triangular set T , we have

√
sat(T) =

t⋂

i=1

sat(Ti),

where Ti are regular triangular sets having the same parameter set as T , and sat(Ti) is a prime
ideal. That is, sat(T) is an unmixed ideal.

Lemma 2.2 Let T = {T1, T2, · · · , Tr} be a regular triangular set, u its parameter set,
yi the leading variable of Ti, P a polynomial in K[u, y1, y2, · · · , yr]. Then (P, T)

⋂
K[u] �= {0}

if P is not identically zero on all irreducible components of Zero(sat(T)).

Proof According to Lemma 2.1,
√

sat(T) =
⋂t

i=1 sat(Gi). Since P is not identically zero
on all irreducible component of Zero(sat(T)), we have P /∈ sat(Gi) for each i. Since sat(Gi) is
prime, so (P,Gi)

⋂
K(u) �= {0} for each i. Suppose that Gi = (Gi,1, Gi,2, · · · , Gi,r), then we

A TRIANGULAR DECOMPOSITION ALGORITHM 467

have the following equalities:

S1,1G1,1 + · · · + S1,rG1,r = A1P + h1(u),

S2,1G2,1 + · · · + S2,rG2,r = A2P + h2(u),
...

St,1Gt,1 + · · · + St,rGt,r = AtP + ht(u).

Multiply all the equalities. Since the left hand side of the i-th equality belongs to sat(Gi),
the product of them belongs to

√
sat(T). The product of the right hand side is of the

form AP + h for h = h1h2 · · ·ht. Then we have h ∈ (P,
√

sat(T))
⋂

K[u] �= {0}. There-
fore, there exists an integer d1 such that (h)d1 ∈ (P, sat(T)). There exists an integer d2 s.t.
(ini(T1)ini(T2) · · · ini(Tr))d2(h)d1 ∈ (P, T). Since T is regular, we have (ini(Ti), T)

⋂
K[u] �=

{0}, and then the following equality

(ini(T1)ini(T2) · · · ini(Tr))d2F0 = g(u) + F1T1 + F2T2 + · · · + FrTr,

where g �= 0 and g ∈ K[u]. Hence, (h)d1g ∈ (P, T) and (P, T)
⋂

K[u] �= {0}.
As a consequence of Lemma 2.2, we have:
Corollary 2.1 A triangular set T = {T1, T2, · · · , Tr} is regular if for each 2 ≤ i ≤ r,

ini(Ti) is not identically zero on all irreducible components of sat(T1, T2, · · · , Ti−1).

Lemma 2.3 Let T = {T1, T2, · · · , Tr} be a regular triangular set with parameter set u.
If M ∈ K[u], then Zero(T /IT) = Zero(T /MIT), where S is the Zariski closure of S.

Proof We first prove the lemma when sat(T) is prime. Introduce a new variable z and let
I = IT . We have

Zero(T /MI) = Zero(T , MIz − 1) ∩ E
n.

So for any f ∈ I(Zero(T /MI)) (I(V) is the ideal of polynomials which vanish on V), f ∈
√

(T , MIz − 1). Let z = 1
MI , then there exists an integer d such that (MIf)d ∈ (T),

so we have (Mf)d ∈ sat(T). Since sat(T) is prime and M ∈ K[u] so not in sat(T), we
have f ∈ sat(T). So we have Zero(T /MI) ⊃ Zero(sat(T)) = Zero(T /I). It is obvious
Zero(T1, T2, · · · , Tr/MI) ⊂ Zero(T /I), so we have Zero(T /MI) = Zero(T /I). Now assuming
sat(T) is not prime. According to Theorem 1.3 in [20], we have Zero(T /I) =

⋃t
i=1 Zero(Gi/Ii),

where Gi is a regular triangular set having the same parameter set with T and sat(Gi) is prime
for each i. Then we have

Zero(T /MI) =
t⋃

i=1

Zero(Gi/IiM) =
t⋃

i=1

Zero(Gi/Ii) = Zero(T /I)

and the lemma is proved.

Lemma 2.4 Let T = {T1, T2, · · · , Tr} be a regular triangular set. If M is not identically
zero on all irreducible components of sat(T), then Zero(sat(T)) = Zero(T /IT) = Zero(T /MIT),
where S is the Zariski closure of S.

468 ZHU WEI · GAO XIAO-SHAN

Proof It is well known that Zero(sat(T)) = Zero(T /IT). Then Zero(T /IT) ⊃ Zero(T /MIT),
since Zero(T /IT) ⊃ Zero(T /MIT). Let u be the parameter set of T , since M is not identically
zero on all irreducible components of T , according to Lemma 2.2, we have (M, T)

⋂
K[u] �= {0}.

Suppose
AM + A1T1 + · · · + ArTr = H(u). (2)

Let ξ be a zero of Zero(T /HIT). Substituting ξ into (2), we have M(ξ) �= 0, so ξ is also a zero
of Zero(T /MIT) and we have Zero(T /MIT) ⊃ Zero(T /HIT). Since H ∈ K[u], so according
to Lemma 2.3, we have Zero(T /HIT) = Zero(T /IT). Therefore, we have Zero(T /MIT) ⊃
Zero(T /HIT) = Zero(T /IT). This completes the proof.

2.2 A Quasi GCD Algorithm

We need to use Lemma 1 of [19], which is modified slightly to the following form.

Lemma 2.5 (see [19]) There is an algorithm which for given polynomials hi =
∑

hi,jY
j ∈

Kn[Y], degx1,x2,··· ,xn,Y (hi) < d, i = 0, 1, · · · , k, yields such two families of polynomials gq,t ∈
Kn,Ψ q ∈ Kn[Y] for 1 ≤ q ≤ N1, 0 ≤ t ≤ N2 such that

Zero(h1, h2, · · · , hk/h0) =
N1⋃

q=1

Zero(Ψq, gq,1, · · · , gq,N2/gq,0)

⋃
Zero({hi,j, i = 0, 1, · · · , k, j = 0, 1, · · · , d − 1}/h0).

Furthermore, we have the following properties:
1) deg(Ψq, Y) > 0, ini(Ψq) | gq,0.
2) degx1,x2,··· ,xn,Y (Ψq), degx1,··· ,xn

(gq,t) ≤ P(d); N1, N2 ≤ kP(dn) where P(k) means a poly-
nomial in k.

3) The running time of the algorithm can be bounded by a polynomial in k and dn.

Now, we describe the main steps of this algorithm without proof. One can refer to [19] for
more details. Without loss of generality, we assume that degY (hi) > 0 for 0 ≤ i ≤ k.

Since degx1,x2,··· ,xn,Y (hi) < d, we have hi =
∑d−1

j=0 hi,jY
j . Let h̃i,j =

∑j
β=0 hi,βY β and

Ui,j = Zero(h1,d−1, · · · , h1,0, h2,d−1, · · · , h2,0, · · · , hi,d−1, · · · , hi,j+1/hi,j)

for 1 ≤ i ≤ k, 0 ≤ j ≤ d − 1. Let H = {h1, h2, · · · , hk},

Hi,j = {h̃i,j, hi+1, · · · , hk},
Hk+1 = {hi,j, ∀ 1 ≤ i ≤ k and j}. (3)

Then we have Zero(H/h0) = Zero(Hk+1/h0)
⋃

(
⋃

1≤i≤k,0≤j≤d−1 Zero(Hi,j/h0) ∩ Ui,j).
Now we turn to the system Hi,j and introduce new variables Y0, Y1 to make polynomials

A TRIANGULAR DECOMPOSITION ALGORITHM 469

in (3) homogeneous in Y, Y0, Y1. Let

hi = Y j
0 h̃i,j

(

x1, x2, · · · , xn,
Y

Y0

)

,

hl = Y
ldeg(hl)
0 hl

(

x1, x2, · · · , xn,
Y

Y0

)

, i + 1 ≤ l ≤ k,

h0 = Y
ldeg(h0)+1
0

(
Y1

Y0
h0(x1, x2, · · · , xn,

Y

Y0
) − 1

)

.

Then h0, hi, · · · , hk are homogeneous polynomials in Y, Y0, Y1. The solutions of the following
homogenous system correspond bijectively to that of (3) except (1 : 0 : 0).

hi = hi+1 = · · · = hk = h0. (4)

Here h0, hi, · · · , hk are considered as polynomials in Y, Y0, Y1.
Introduce new variables U0, U, U1 and let hk+1 = Y0U0 + Y U + Y1U1. We rearrange the

polynomials h0, hi, · · · , hk w.r.t the degree in Y, Y0, Y1 as g0, g1, · · · , gk−i+2 and γ0 ≥ γ1 ≥ · · · ≥
γk−i+2 where degY,Y0,Y1

(gs) = γs for 0 ≤ s ≤ k − i + 2. Since degY,Y0,Y1
(hk+1) = 1, we can

assume that gk−i+2 is hk+1. Let

D =
(

∑

1≤l≤min{2,k−i+1}
(γl − 1)

)

+ γ0.

We construct the Macaulay matrix A as the representation of the linear map

A : H0 ⊕H1 ⊕ · · · ⊕ Hk−i+2 → H,

where Hl (respectively H) is the linear space of homogenous polynomials in Y, Y0, Y1 of degree
D − γl (respectively D) for 0 ≤ l ≤ k − i + 2, and

A(f0, f1, · · · , fk−i+2) = f0g0 + f1g1 + · · · + fk−i+2gk−i+2.

The matrix A is of size C2
D+2 ×

∑k−i+2
l=0 C2

D−γl+2 and can be represented in a form A =
(A(num), A(for)), where the elements of the submatrix A(num) do not contain U, U0, U1. Actually,
A(num) is the submatrix of A which corresponds to the basis of H0,H1, · · · ,Hk−i+1 while A(for)

corresponds to the basis of Hk−i+2.
About the polynomial system (4), we have the following lemma.

Lemma 2.6 (see [19]) The rank of the matrix A of the polynomial system (4) is r =
C2

D+2. Let Δ be a nonsingular r×r submatrix of A containing rank(A(num)) columns in A(num).
Then

det(Δ) = c

D1∏

i=1

Li, where Li = ξi,0U0 + ξiU + ξi,1U1 and c is a constant,

where (ξi,0 : ξi : ξi,1) is a solution of (4) and the number of occurrences of ξi,0U0 + ξiU + ξi,1U1

in the product coincides with the multiplicity of the solution (ξi,0 : ξi : ξi,1) of (4).

470 ZHU WEI · GAO XIAO-SHAN

Algorithm 1 — Quasi GCD Algorithm
Input {{h1, h2, · · · , hk}, h0, Y } where h0, h1, · · · , hk ∈ Kn[Y] and hi =

∑
hi,jY

j for i =
1, 2, · · · , k, j = 0, 1, · · · , d − 1.

Output D = {T0, T1, · · · , TN1}, where T0 = {{}, {hi,j, 1 ≤ i ≤ k, 0 ≤ j < d}, {h0}}, Tq =
{{Ψq}, {gq,1, gq,2, · · · , gq,N2}, {gq,0}} (1 ≤ q ≤ N1), such that

Zero(h1, h2, · · · , hk/h0) =
N1⋃

q=0

Zero(Ψq, gq,1, · · · , gq,N2/gq,0),

where Ψ0 = 0, deg(Ψq, Y) > 0, and deg(gq,i, Y) = 0 for 1 ≤ q ≤ N1, 0 ≤ i ≤ N2.

To find the Δ in Lemma 2.6, we use a variant of Gaussian algorithm which will compute a
series of

Ws = {x ∈ K
n : P1 = · · · = Ps−1 = 0, Ps �= 0}, (5)

where P1, P2, · · · , Ps are polynomials in x, U, U0, U1 and linearly independent. For x ∈ Ws∩Ui,j ,
the determinant

Δs =
D2∑

i=0

E(i)
s UD2−i

0 (6)

is what we want. For more details about the variant Gaussian algorithm, one can refer to [19].
Now, we introduce the following quasiprojective varieties:

W(l)
s = {x ∈ Ws : E(0)

s = E(1)
s = · · · = E(l−1)

s = 0, E(l)
s �= 0}, (7)

where E
(0)
s , E

(1)
s , · · · , E

(l−1)
s are polynomials in x, U, U1. In [19], it is proved that if we substitute

U1 = 0, U = −1, U0 = Y into Δs

E
(l)
s

, and denote the polynomial as Ψs, then for each point x ∈

W(l)
s ∩Ui,j , the solution of Ψs as a polynomial in Y is the solution of the polynomial system (3).

Since the quasiprojective varieties W(l)
s ∩Ui,j can be divided into a series of polynomial systems

Vt = Zero(gt,1, gt,2, · · · , gt,N2/gt,0), we have

Zero(Hi,j) ∩ Ui,j =
⋃

t

Zero(Ψt, gt,1, gt,2, · · · , gt,N2/gt,0).

If Ψt = 1, we can delete that component and finally obtain the decomposition in Lemma 2.5.
Now, we write this procedure as an algorithm to be used in the rest of the paper.

Example 2.7 We use a simple example to explain the algorithm. Let the original poly-
nomial system be {Y 2 + Y/Y }. First, we introduce a new variable Y1 and get an equivalence
system {Y 2 + Y, Y1Y − 1}. Second, we introduce a new variable Y0 to make it homogeneous
{Y 2 + Y Y0, Y1Y − Y 2

0 }. Finally, we introduce U, U0, U1 and add Y U + Y0U0 + Y1U1 to the

A TRIANGULAR DECOMPOSITION ALGORITHM 471

homogeneous system. The matrix A corresponding to the homogeneous system is

A =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 0 0 0 U 0 0 0 0 0

0 0 0 0 −1 0 0 U0 0 0 0 0

0 0 0 0 0 0 0 0 U1 0 0 0

0 1 0 −1 0 0 0 U 0 U0 0 0

0 0 0 0 0 1 0 0 U 0 U1 0

0 0 0 0 0 0 0 0 U0 0 0 U1

1 1 0 0 0 0 U0 0 0 U 0 0

0 0 1 1 0 0 U1 0 0 0 U 0

0 0 0 0 0 −1 0 U1 0 0 0 U0

0 0 1 0 1 0 0 0 0 U1 U0 U

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

A(num) is the submatrix of A formed by the first 6 columns, rank(A(num)) = 6. According
to Lemma 2.6, we must choose the first 6 columns and by calculating we find the submatrix
formed by the first 9 columns and the last column is nonsingular, which is

Δ =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 0 0 0 U 0 0 0

0 0 0 0 −1 0 0 U0 0 0

0 0 0 0 0 0 0 0 U1 0

0 1 0 −1 0 0 0 U 0 0

0 0 0 0 0 1 0 0 U 0

0 0 0 0 0 0 0 0 U0 U1

1 1 0 0 0 0 U0 0 0 0

0 0 1 1 0 0 U1 0 0 0

0 0 0 0 0 −1 0 U1 0 U0

0 0 1 0 1 0 0 0 0 U

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

det(Δ) = −U3
1 (U −U0 + U1). Substituting U1 = 0, U = −1, U0 = Y to U −U0 + U1, we obtain

the polynomial −1 − Y and Zero(Y 2 + Y/Y) = Zero(Y + 1).

The components of Lemma 2.5 may be empty, as shown by the following example.

Example 2.8 Let h1 = xy +1, h2 = x, and take y as the maximal variable. According to
Lemma 2.5, it can be divided into two components Zero(1, x) and Zero(xy + 1, x/x). We can
delete the first component. However, we cannot delete the second component Zero(xy +1, x/x)
which is empty. The second component will be deleted in our main algorithm later when we
continue our procedure to Zero(x/x).

2.3 The Decomposition Algorithm

We now give the main result about polynomial systems.

472 ZHU WEI · GAO XIAO-SHAN

Algorithm 2 — Algebraic Triangular Decomposition
Input {h1, h2, · · · , hk}, where h1, h2, · · · , hk ∈ K[x1, x2, · · · , xn].
Output R, which is the set of (Aq, Dq) and Aq = {Ψq,1,Ψq,2, · · ·Ψq,lq}. Ψq,i, Dq ∈ Kn for

1 ≤ q ≤ N, 1 ≤ i ≤ lq such that Aq are regular triangular sets, ini(Ψq,i) �= 0 on any
element of Zero(Aq/Dq), and Zero(h1, h2, · · · , hk) = ∪qZero(sat(Aq)).

1) Let T = {{}, {h1, h2, · · · , hk}, {}}, S = {T }, R = {}.
2) If S = ∅ output R, else let T = {F, P, N} ∈ S, and S = S \ {T }.
3) If |F| > k, go to Step 2.
4) If P = ∅, add (F,

∏
p∈N

p) to R and go to Step 2.
5) Let xγ = maxh∈P lv(h), P̃ = {h ∈ P | lv(h) = xγ}, P = P \ P̃.
6) Let Ñ = {f ∈ N | lv(f) ≤ xγ}, H =

∏
f∈Ñ

f .

7) Apply Algorithm 1 to {P̃, H, xγ}, and let the output be D.
8) If D = ∅, go to Step 2, else let T1 = {W, U, V = {v}} ∈ D, D = D \ {T1}.
9) Let U = U ∪ P, xη = maxf∈U lv(f).
10) If lv(v) ≤ xη or U = ∅, add {F ∪ W, U, N ∪ V} to S.
11) If lv(v) > xη, write v = Σ lαxα as a multivariate polynomial in x = (xη, · · · , xγ) with
coefficients in K[x1, x2, · · · , xη−1]. Add {F∪W, U, N∪V∪ {lα}} to S for each α. Go to Step 8.

Theorem 2.9 For a given polynomial system H = {h1, h2, · · · , hk} ∈ Kn, deg(hi) < d for
1 ≤ i ≤ k, there is an algorithm to compute regular triangular sets Aq = [Ψq,1,Ψq,2, · · · ,Ψq,lq]
which have the following properties:

1) Zero(H) = ∪N
q=1Zero(sat(Aq)) is an unmixed decomposition.

2) The degrees of Ψq,1,Ψq,2, · · · ,Ψq,lq are less than dcn

, N ≤ kndncn+2
, where c is a constant.

3) The running time of the algorithm can be bounded by a polynomial in kn and dncn+2
.

Using the algorithm described below, we can calculate the regular triangular sets Aq which
satisfy the properties in Theorem 2.9.

Example 2.10 A simple example is used to explain the algorithm. Let f = xyz + 1, g =
x2 + x, x < y < z. In Step 5), xγ = z and P̃ = {f}. In Step 7), applying Algorithm 1 to P̃,
the output is D1 = {T1} where T1 = {{xyz + 1}, {}, {xy}}. In Step 9), we have U = {x2 + x},
xη = x. Since lv(xy) = y > x, we execute Step 11) and add {{xyz + 1}, {x2 + x}, {xy, x}}
to S and go to Step 2). Now we have T = {F, P, N}, where F = {xyz + 1}, P = {x2 + x},
N = {xy, x}. In Step 5), we have xγ = x, P̃ = {x2 + x}. In Step 6), we have Ñ = {x},
H = x. Applying Algorithm 1 to {P̃, H, x}, the output is {{x+1}, {}, {}}. In Step 10), we add
{{xyz + 1, x + 1}, {}, {xy}} to S. In Step 4), since P = ∅, we add {{xyz + 1, x + 1}, {xy}} to R

and output R. Finally, we have

Zero(xyz + 1, x2 + x) = Zero(xyz + 1, x + 1/xy) = Zero(sat(xyz + 1, x + 1)).

The purpose of Step 11) is to add x to N. Otherwise, we will apply Algorithm 1 to {{x2 +
x}, xy, x}, which does not satisfy the input condition of Algorithm 1 since x < y.

Before proving Theorem 2.9, we first prove several lemmas.

A TRIANGULAR DECOMPOSITION ALGORITHM 473

Lemma 2.11 Algorithm 2 terminates and each Aq is a triangular set.

Proof By Lemma 2.5, after Step 7), for any {W, U, V} ∈ D, we have lv(p) < xγ for any
p ∈ U. In other words, for any new {F, P, N} added to S in Steps 10) and 11), the class of the
polynomials in P will be decreased at least by one. Therefore, the algorithm terminates. Also,
W is either empty or W = {p} and lv(p) = xγ , which means Aq is a triangular set for each q.

Lemma 2.12 Omitting Step 3), Zero(h1, h2, · · · , hk) = ∪N
q=1Zero(Aq/Dq), and ini(Ψq,i) �=

0 on any element of Zero(Aq/Dq).

Proof To show Zero(h1, h2, · · · , hk) =
⋃

q Zero(Aq/Dq), it suffices to show that the equality

Zero(h1, h2, · · · , hk) = ∪{F,P,N}∈SZero
(

F ∪ P/
∏

p∈N

p

)

(8)

always holds in the algorithm, and when P = ∅ the algorithm returns the required equa-
tion. S is modified in Steps 7), 10) and 11). In Step 7), by Lemma 2.5, Zero(P̃/H) =
∪{W,U,{v}}∈DZero({W ∪ U/v). Clearly, after applying Algorithm 1, (8) remains valid when
P̃ and Ñ are properly replaced as in Steps 10) and 11). In Step 1), a special substitu-
tion is performed. Let v = Σ lαxα. Then Zero(/v) is replaced by ∪αZero(/lαv). Since
Zero(/v) = ∪αZero(/lαv), (8) is still valid after Step 11).

Now suppose (Ψ1,Ψ2, · · · ,Ψt/M) is one component of the output. From the procedure of
the algorithm, we know that this component is obtained in the following manner:

Zero(f0,1, f0,2, · · · , f0,k(0)/M0) → Zero(Ψ1, f1,1, · · · , f1,k(1)/M1)

→ Zero(Ψ1,Ψ2, f2,1, · · · , f2,k(2)/M1M2)

→ · · ·
→ Zero(Ψ1,Ψ2, · · · ,Ψt/M1 · · ·Mt)

and M = M1M2 · · ·Mt. Note that after applying Algorithm 1, Zero(Ψ1, f1,1, f1,2, · · · , f1,k(1)/T1)
is a component of Zero(f0,1, f0,2, · · · , f0,k(0))/M0). If lv(v) ≤ xη in Step 10, M1 = T1. Other-
wise, M1 is the multiplication of T1 and a coefficient lα of T1 as shown in step 11. The component
Zero(Ψ2, f2,1, f2,2, · · · , f2,k(2)/M2) is obtained similarly from Zero(f2,1, f2,2, · · · , f2,k(2)/S2), where
S2 is the maximal factor of M1 satisfying lv(S2) ≤ lv(f2,j) for all j. Continuing this procedure,
we will obtain (9). It is obvious that

Zero(f0,1, f0,2, · · · , f0,k(0)/M0) ⊃ Zero(Ψ1, f1,1, f1,2, · · · , f1,k(1)/M1)

⊃ Zero(Ψ1,Ψ2, f2,1, · · · , f2,k(2)/M1M2)

⊃ · · ·
⊃ Zero(Ψ1,Ψ2, · · · ,Ψt/M1 · · ·Mt). (9)

According to (1) of Lemma 2.5, we have ini(Ψi)|Mi, so ini(Ψi) �= 0 on any element of Zero(Ψ1,Ψ2,

· · · ,Ψt/M).

474 ZHU WEI · GAO XIAO-SHAN

Lemma 2.13 The triangular sets Aq = {Ψq,1,Ψq,2, · · ·Ψq,lq} are regular and Zero(Aq/Dq)
= Zero(sat(Aq)).

Proof Let Zero(Ψ1,Ψ2, · · · ,Ψt/M) be a component of the output. According to the proof
of Lemma 2.12, this component comes from Procedure (9). Now we assume that lv(Ψ1) =
xk1 , M1 ∈ Kk1−1, lv(Ψ2) = xk2 , M2 ∈ Kk2−1, · · · , lv(Ψt) = xkt , Mt ∈ Kkt−1.

According to Lemma 2.1, to show that Aq is regular, it suffices to prove that ini(Ψi) is
not always zero on any irreducible component of sat(Ψi+1,Ψi+2, · · · ,Ψt) for 1 ≤ i ≤ t − 1.
We prove this by induction. First, supposing ini(Ψt−1) is zero on an irreducible component of
sat(Ψt). Zero(Ψt/Mt) is a component of Zero(ft−1,1, ft−1,2, · · · , ft−1,k(t−1)/St−1) after apply-
ing Algorithm 1, where St−1 is a factor of Mt−1. Obviously, Zero(Ψt/Mt) is not empty and
Zero(Ψt/Mt) = Zero(Ψt/ini(Ψt)) = Zero(sat(Ψt)) since lv(Mt) < lv(Ψt). Since ini(Ψt−1) is
always zero on an irreducible component of sat(Ψt), there exists an ηkt = (ξ1, ξ2, · · · , ξkt) in
Zero(Ψt/Mt) such that ini(Ψt−1)(ηkt) = 0. Since Zero(ft−1,1, ft−1,2, · · · , ft−1,k(t−1)/St−1) ⊃
Zero(Ψt/Mt), ηkt ∈ Zero(ft−1,1, ft−1,2, · · · , ft−1,k(t−1)/St−1). If Zero(Ψt/Mt) is obtained from
Step 10), then η = ηkt is also in Zero(ft−1,1, ft−1,2, · · · , ft−1,k(t−1)/Mt−1). Otherwise, Zero(Ψt/

Mt) is obtained from Step 11), ηkt can be extended to a zero η = ηkt−1−1 of Zero(ft−1,1, ft−1,2,

· · · , ft−1,k(t−1)/Mt−1), since St−1 is a coefficient of Mt−1. So in each case M(t−1)(η)�= 0, but we
have ini(Ψt−1)|Mt−1, a contradiction. We have proved {Ψt−1,Ψt} is regular. We can prove in
the same way that Mt−1 is not always zero on any irreducible component of sat(Ψt). Accord-
ing to Lemma 2.4, we have Zero(Ψt−1,Ψt/ini(Ψt)ini(Ψt−1)) = Zero(Ψt,Ψt−1/Mt−1Mt). The
induction step can be proved similarly.

Lemma 2.14 In Algorithm 2, the degree of the polynomials Ψq,1,Ψq,2, · · · ,Ψq,lq are less
than dcn

and N ≤ kndncn+2
, where c is a constant. The running time of the algorithm can be

bounded by a polynomial in kn and dncn+2
.

Proof According to Lemma 2.5, for given polynomials h1, h2, · · · , hk ∈ Kn with deg(hi) <

d, after applying Algorithm 1, we obtain no more than kdcn components, each component
has no more than kdcn polynomials, the degrees of polynomials in these components are less
than dc, and the running time of the algorithm can be bounded by a polynomial in k, dn. After
applying Algorithm 1, the most complicated situation is that the maximal leading variable of the
polynomials gq,t is xn−1. Applying Algorithm 1 to these components, each component will be
split to at most kdcndc2(n−1) ≤ kdc3n components, each component has at most kdcndc2(n−1) ≤
kdc3n polynomials, and the degree of each polynomial is less than dc2

. This procedure will
terminate in at most n steps. In Step n, each component will be split to at most kdcn+1n

components, each component has at most kdcn+1n polynomials, and each polynomial has degree
less than dcn

. Then in total, there are at most kndcn+2n components, and the degree of the
polynomials can be bounded by dcn

. The running time of Algorithm 2 can be bounded by a
polynomial in kn, dcn+2n.

Proof of Theorem 2.9 Omitting Step 3), the correctness of the theorem follows from Lem-
mas 2.11, 2.12, 2.13, and 2.14. It suffices to show that with Step 3), the theorem is also correct.
Suppose Ãk, k = 1, 2, · · · , N0 are the extra regular triangular sets obtained by omitting Step 3)

A TRIANGULAR DECOMPOSITION ALGORITHM 475

and Al, l = 1, 2, · · · , N are those obtained with Step 3). Then

Zero(h1, · · · , hk) = ∪N
l=1Zero(sat(Al))

⋃
∪N0

k=1Zero(sat(Ãk)).

From the condition |F| > k in Step 3), we have |Ãk| > k. By the dimension theorem proved
in [20], dim(Zero(sat(Ãk))) < n− k. While by the affine dimension theorem[21], any component
of Zero(h1, · · · , hk) is of dimension no less than n − k. Thus, Zero(sat(Ãk)) are redundant in
the decomposition and can be deleted.

3 Decomposition of Ordinary Differential Polynomial Systems

In this section, a decomposition algorithm for ordinary differential polynomial systems will
be given, which has an elementary worst case complexity bound.

3.1 Basic Definition and Property

Let K be a field of characteristic zero in which an operation of differentiation is performable
such that for any a, b ∈ K,

(a + b)′ = a′ + b′, (ab)′ = ab′ + ba′.

Then we call K a differential field. Let y1, y2, · · · , yn be differential indeterminates. We write
the j-th derivative of yi as y

(j)
i . Let K{y1, y2, · · · , yn} = K[y(j)

i , i = 1, 2, · · · , n; j ∈ N] be the
ring of differential polynomials in y1, y2, · · · , yn.

Let f be a differential polynomial in K{y1, y2, · · · , yn}. The class of f denoted by cls(f), is
the greatest p such that some y

(j)
p is present in f . If f ∈ K, then cls(f) = 0. The order of f

w.r.t yi, denoted by ord(f, yi), is the greatest j such that y
(j)
i appears effectively in f . We write

ord(f) = max1≤i≤n ord(f, yi). If cls(f) = i and ord(f, yi) = j then we call y
(j)
i the leader of f ,

and we write it as ld(f) = y
(j)
i . We define y

(j)
i = ld(f) > ld(g) = y

(β)
α if i > α or i = α, j > β.

We can write f as a univariant polynomial in its leader such that f = ad(y
(j)
i)d + · · ·+ a0, and

we call ad the initial of f , which is denoted by If . We call ∂f

∂y
(j)
i

the separant of f , which is

denoted by Sf . For f, g ∈ K{y1, y2, · · · , yn}, we say f is of higher rank than g, if one of the
following conditions is satisfied:

1) cls(f) > cls(g).
2) cls(f) = cls(g) = p and ord(f, yp) > ord(g, yp).
3) cls(f) = cls(g) = p, ord(f, yp) = ord(g, yp) = j, and deg(f, y

(j)
p) > deg(g, y

(j)
p).

Let cls(g) = p > 0. We say f is reduced w.r.t g, if ord(f, yp) < ord(g, yp) or ord(f, yp) =
ord(g, yp) = j, and deg(f, y

(j)
p) < deg(g, y

(j)
p).

For f1, f2, · · · , fk ∈ K{y1, y2, · · · , yn}, we use [f1, f2, · · · , fk] to denote the differential ideal
generated by f1, f2, · · · , fk, which is the linear combination of f1, f2, · · · , fk and their deriva-
tives.

A set T := {T1, T2, · · · , Tr} of differential polynomials in K{y1, y2, · · · , yn} is called a tri-
angular set, if cls(Ti) �= cls(Tj) for i �= j. Assuming that cls(T1) < cls(T2) < · · · < cls(Tr),
we rename the variables as u1, u2, · · · , ut, y1, y2, · · · , yr such that r + t = n and ld(Ti) = y

(γi)
i .

476 ZHU WEI · GAO XIAO-SHAN

A differential polynomial f ∈ K{u1, u2, · · · , ut, y1, y2, · · · , yr} is said to be invertible w.r.t T
if [f, T1, T2, · · · , Tr] ∩ K{u1, u2, · · · , ut} �= {0}. T is called regular if ITi are invertible w.r.t to
Ti−1 for 0 ≤ i ≤ r. T is called saturated if T is regular and STi are invertible w.r.t to Ti for
1 ≤ i ≤ r.

Let T := {T1, T2, · · · , Tr} be a triangular set. Denote IT = IT1IT2 · · · ITr and ST =
ST1ST2 · · ·STr . Then the saturation ideal of T is

dsat(T) = {f ∈ K{y1, y2, · · · , yn} | ∃d ∈ N, s.t. (IT ST)df ∈ [T1, T2, · · · , Tr]}.

It is known that if T is saturated, then dsat(T) is an unmixed radical differential ideal[6, 7].

Lemma 3.1 Let T := {T1, T2, · · · , Tr} be a triangular set in K{y1, y2, · · · , yn}. Then T
is saturated if ITi and STi are not identically zero on all irreducible components of dsat(Ti−1)
and dsat(Ti), for 1 ≤ i ≤ r, respectively.

Proof This lemma can be proved similar to Lemma 2.1.

Lemma 3.2 Let T := {T1, T2, · · · , Tr} be a saturated triangular set in K{y1, y2, · · · , yn}.
If M ∈ K{y1, y2, · · · , yn} is not identically zero on all irreducible components of dsat(T), then
we have Zero(T /IT ST) = Zero(T /MIT ST) = Zero(dsat(T)).

Proof This lemma can be proved similar to Lemma 2.3.

3.2 A Squarefree Quasi GCD Algorithm

In order to decompose differential polynomial systems, we need to modify Lemma 2.5. In
Lemma 2.5, for given polynomials h0, h1, h2, · · · , hk ∈ K[x1, x2, · · · , xn, Y], deg(hi) < d, we
can write hi(i > 0) as hi =

∑d−1
j=0 hi,jY

j , and divide the whole space as K
n =

⋃
i,j Ui,j

⋃
{x ∈

K
n |hi,j(x) = 0, ∀ 1 ≤ i ≤ k and 0 ≤ j ≤ d − 1}, where

Ui,j = Zero(h1,d−1, · · · , h1,0, h2,d−1, · · · , h2,0, · · · , hi,d−1, · · · , hi,j+1/hi,j)

for 1 ≤ i ≤ k, 0 ≤ j ≤ d − 1. We write h̃i,j =
∑

0≤β≤j hi,βY β . Then on Ui,j , the original
polynomial system becomes

h̃i,j = hi+1 = · · · = hk = 0; h0 �= 0. (10)

We add a step here to divide (10) into the following polynomial systems:

h̃i,j = hi+1 = · · · = hk = 0, h0,
∂h̃i,j

∂Y
�= 0,

h̃i,j = hi+1 = · · · = hk =
∂h̃i,j

∂Y
= 0, h0

∂2h̃i,j

∂Y 2
�= 0,

· · ·

h̃i,j = hi+1 = · · · = hk =
∂h̃i,j

∂Y
= · · · =

∂j−1h̃i,j

∂Y j−1
= 0, h0 �= 0. (11)

Since ∂j h̃i,j

∂Y j = hi,j , and hi,j �= 0 on Ui,j , we actually have ∂j h̃i,j

∂Y j �= 0. Then the zero set of (10)
equals to the union of the zero sets of (11). Now we continues to introduce new variables as in

A TRIANGULAR DECOMPOSITION ALGORITHM 477

Lemma 2.5 to make the polynomial systems homogenous. After this modification, Lemma 2.5
becomes the following form.

Lemma 3.3 Given polynomials h0, h1, h2, · · · , hk ∈ Kn[Y], deg(hi) < d, and hi =
∑d−1

j=0 hi,jY
j for 0 ≤ i ≤ k, we may compute gq,t ∈ Kn, Ψq ∈ Kn[Y] \ Kn for 1 ≤ q ≤

N1, 0 ≤ t ≤ N2 such that:

Zero(h1, h2, · · · , hk/h0)

=
N1⋃

q=1

Zero(Ψq, gq,1, · · · , gq,N2/gq,0) ∪ Zero({hi,j , 1 ≤ i ≤ k, 0 ≤ j < d}/h0),

which has the following properties:
1) We have ini(Ψq) | gq,0, and SΨq �= 0 on any element of Zero(Ψq, gq,1, gq,2, · · · , gq,N2/gq,0).
2) degX1,x2,··· ,Xn,Y (Ψq), degX1,X2,··· ,Xn

(gq,t) ≤ P(d); N1, N2 ≤ kP(dn).
3) The running time of the algorithm can be bounded by a polynomial in k, dn.

Proof For Property 1, we need only to prove that SΨq �= 0 on any element of Zero(Ψq, gq,1,

gq,2, · · · , gq,N2). Since we divide (10) into the union of (11), each component of the output, for
example (Ψ1, g1, g2, · · · , gN2/g0), comes from one of (11). Without loss of generality, suppose
it is the first one in (11). Then we have

Zero
(

h̃i,j , hi+1, · · · , hk/h0
∂h̃i,j

∂Y

)

⊃ Zero(Ψ1, g1, g2, · · · , gN2/g0).

If SΨ1 vanishes on (ξ1, ξ2, · · · , ξn, η) ∈ Zero(Ψ1, g1, g2, · · · , gN2/g0), then η must be a multiple
root of Ψ1 when substituting (x1, x2, · · · , xn) by (ξ1, ξ2, · · · , ξn). According to Lemma 2.6, η is
also a multiple root of the homogeneous equation system of (11) after introduce new variables

Y1, Y0, which means ∂h̃i,j

∂Y (ξ1, ξ2, · · · , ξn, η) = 0, a contradiction. Property 1 has been proved.
Property 2 comes from Lemma 2.5. We now prove Property 3. According to the procedure

of this algorithm, the origin system has been divided into no more than kd subsystems Hi,j

in (3). For each Hi,j , we divide it into no more than d subsystems in (11), and each system has
no more than k + d polynomials, and the degree of these polynomials are bounded by 2d. The
related matrix A has C2

D+2 rows, where

D =
(

∑

1≤l≤min{2,k−i+1}
(γl − 1)

)

+ γ0 ≤ 6d.

The degree of the elements in A are bounded by 2d, so the degree of Ps in (5) and Δs in (6)
are bounded by 2dC2

D+2 ≤ d(6d + 1)(6d + 2). Since Ps are linearly independent, we have
s ≤ (d(6d + 1)(6d + 2))n). For each Ws in (5), we divided it into W(l)

s in (7) and l is no
more than the degree of Δ. So in total, we have kd2(d(6d + 1)(6d + 2))(n+1)) components and
N1 ≤ kP(dn). According to the above proof, it is obvious that the degree of each polynomial
in these components is no more than the degree of Ps and Δ, so is bounded by P(d). The
polynomials gq,t come from three parts. The first part is the polynomials in Ui,j and whose

478 ZHU WEI · GAO XIAO-SHAN

number is bounded by kd; the second part is the coefficient of Ps when taken as polynomials in
U, U0, U1 and so the number is bounded by (d(6d+1)(6d+2))2n); the third part is the coefficients
of E

(i)
s and so the number is bounded by (d(6d + 1)(6d + 2))n+1). Therefore, N2 ≤ kP(dn).

Now we write this theorem as an algorithm. We only give the input and output of this
algorithm, since the procedure of this algorithm has been described above.

Algorithm 3 — Squarefree Quasi GCD

Input {{h1, h2, · · · , hk}, {h0}, {x1, x2, · · · , xn}, Y } where h0, h1, h2, · · · , hk ∈ K[x1, x2, · · · ,

xn, Y], deg(hi) < d.
Output D = {T0, T1, · · · , TN1}, where T0 = {{}, {hi,j, 1 ≤ i ≤ k, 0 ≤ j ≤ d − 1}, {h0}},

Tq = {{Ψq}, {gq,1, gq,2, · · · , gq,N2}, {gq,0}}(1 ≤ q ≤ N1), which satisfy the conditions
in Lemma 3.3.

3.3 The Algorithm

We now give the main result for differential polynomial systems.

Theorem 3.4 Let h1, h2, · · · , hk ∈ K{y1, y2, · · · , yn}, where deg(hi) < d and ord(hi) < R

for 1 ≤ i ≤ k. There is an algorithm to compute saturated triangular sets Aq := Ψq,1,Ψq,2, · · · ,Ψq,lq

which have the following properties:
1) Zero(h1, h2, · · · , hk) = ∪N

q=1Zero(sat(Aq)).

2) We have deg(Ψq,i) ≤ dc2nR

, ord(Ψq,i) ≤ 2nR, and N < k2nRdc2nRRn.
3) The running time of this algorithm can be bounded by a polynomial in k2nRdc2nRRn.

We will give an algorithm to produce those saturated triangular sets in the theorem. Be-
fore giving the main algorithm, two sub-algorithms will be given. The first one is the partial
remainder[6, 19].

Algorithm 4 — DPM Algorithm

Input {{g0}, {f1, f2, · · · , fk}, {f0}}, where g0, f0, f1, · · · , fk ∈ K{y1, y2, · · · , yn}, ord(fi, yα)
≤ r for 0 ≤ i ≤ k, and ld(g0) = y

(r−t)
α , t ≥ 1.

Output {{g0, f̃1, f̃2, · · · , f̃k}, {f̃0Sg0}} where ord(f̃i, yα) ≤ r − t for 0 ≤ i ≤ k such that
Zero(g0, f1, f2, · · · , fk/f0Sg0) = Zero(g0, f̃1, · · · , f̃k/f̃0Sg0).

1) For i = 0, 1, · · · , k,
1.1) f̃i = fi.
1.2) If ord(f̃i, yα) ≤ r − t, goto Step 1).
1.3) Let ord(f̃i, yα) = ri and g

(ri−r+t)
0 = Sg0y

(ri)
α − Hri .

1.4) Replace y
(ri)
α in f̃i by Hri

Sg0
and multiply by (Sg0)deg(f̃i,y

(ri)
α), and let f̃i be the new

differential polynomial. Goto Step 1.2).
2) Output {{g0, f̃1, f̃2, · · · , f̃k}, {f̃0Sg0}}.

Lemma 3.5 (see [19]) Use the notations in Algorithm 4 and assume deg(fj) < d, deg(g0) <

d, ord(fi, yγ) < R for 0 ≤ i ≤ k, 1 ≤ γ ≤ n. Then, we have the following bounds: ord(f̃j , yγ) ≤
R + t, deg(f̃j) ≤ P(d, t) for any 0 ≤ j ≤ k, 1 ≤ γ ≤ n.

A TRIANGULAR DECOMPOSITION ALGORITHM 479

Next, we describe a splitting subroutine from [19]. Let g ∈ K{y1, y2, · · · , yn}. For α ∈
{1, 2, · · · , n}, let ord(g, yα) = r, g =

∑
a ga(yαy

(1)
α · · · y(r)

α)a, a = (a0, a1, · · · , ar), (yαy
(1)
α · · ·

y
(r)
α)a = ya0

α · · · (y(r)
α)ar . Denote coeff(g, yα) to be set of gi,α. For G ⊂ K{y1, y2, · · · , yn},

denote
coeff(G, yα) = ∪g∈G coeff(g, yα).

We have the following split algorithm.

Algorithm 5 — SPLIT Algorithm

Input {G, yα}, where G = {g1, g2, · · · , gl} ⊂ K{y1, y2, · · · , yn}.
Output D = {T0, T1, · · · , TN} where T0 = (coeff(G, yα), ∅), Ti = ({hi,1, hi,2, · · · , hi,li}, {

∂hi,1

∂y
(γi)
α

})
such that ord(hi,1, yα) = γi ≥ 0 and

Zero(g1, g2, · · · , gl)=∪N
i=1Zero

(

hi,1, hi,2, · · · , hi,li/
∂hi,1

∂y
(γi)
α

)

∪ Zero(coeff(G, yα)). (12)

1) Let S = {{g1, g2, · · · , gl}}, D = ∅.
2) If S = ∅, return D; else let F ∈ S and S = S \ {F}.
3) If ∀f ∈ F, ord(f, yα) = 0, then add (F, ∅) to D. Go to Step 2).
4) Let f ∈ F such that ord(f, yα) = t ≥ 0, deg(f, y

(t)
α) = d. Set F = F \ {f}.

5) Let f =
∑d

j=0 ld(y
(t)
α)d and fi = ∂if

∂(y
(t)
α)i

, i = 1, 2, · · · , d.

6) Let D = D
⋃
{({f} ∪ F, {f1}), ({f1, f} ∪ F, {f2}), · · · , ({fd−1, · · · , f} ∪ F, {fd})}, and S =

S
⋃
{F ∪ {l0, l1, · · · , ld}}. Go to Step 2).

Note that the order and degree of the difference polynomials in the output are smaller than
or equal to that of gi in the input. We now give the decomposition algorithm.

We use two examples to illustrate Algorithm 6.

Example 3.6 Note that Algorithm 6 can also be used to algebraic polynomial systems
and return a radical decomposition. Let f = xy2 with x < y. Using Algorithm 2 to f ,
we obtain two components {x} and {y2}, where the second one is not radical. In Step 6 of
Algorithm 6, when applying Algorithm 3 to {{f}, {}, y}, the system {f = 0} is first split into
{xy2 = 0, 2xy �= 0), {xy2 = 2xy = 0, x �= 0), and {x = 0} and then returns ∅, {{y}, {}, {x}},
and {{}, {x}, {}}. Finally, we obtain the decomposition Zero(f) = Zero(x) ∪ Zero(y).

Algorithm 6 — Differential Triangular Decomposition

Input {h1, h2, · · · , hk} ∈ K{y1, y2, · · · , yn}.
Output {Aq, Dq}, 1 = 1, 2, · · · , N , where Aq = {Ψq,1, · · ·Ψq,lq} satisfies the conditions in

Theorem 3.4.
1) Let T = {{}, {h1, h2, · · ·hk}, {}}, S = {T }, R = {}.
2) If S = ∅, output R, else let T = {F, P, N} ∈ S and S = S \ {T }.
3) If P = ∅, add (F,

∏
p∈N

p) to R and go to Step 2).

4) Let y
(γ)
α = maxh∈P ld(h), P̃ = {h ∈ P | ld(h) = y

(γ)
α }, P = P \ P̃.

480 ZHU WEI · GAO XIAO-SHAN

Algorithm 6— Differential Triangular Decomposition (Continued)

5) Let Ñ = {f ∈ N | ld(f) ≤ y
(γ)
α }, H =

∏
f∈Ñ

f .

6) Apply Algorithm 3 to {P̃, H, vars(P̃ ∪ {H}) \ {y(γ)
α }, y(γ)

α }, the output is D.
7) If D = ∅, go to Step 2), else for T1 = {W = {Ψ}, U, V = {v}} ∈ D, D = D \ {T1}, U = U∪ P.
8) If U = ∅, add {F ∪ W, U, N ∪ V} to R and go to Step 7).
9) Apply Algorithm 5 to {U, yα}, the output is D1.
10) If D1 = ∅, go to Step 7), else let C = (Γ ,Θ) ∈ D1 and D1 = D1 \ {C}.
11) If Θ �= ∅, assume Θ = { ∂g

∂y
(l)
α

}. Applying Algorithm 4 to {{g}, W∪ (Γ \{g}), V}, the output

is {W̃, Ṽ}. Add {F, W̃, N ∪ Ṽ} to S. Go to Step 10).
12) If Θ = ∅, let y

(r)
ε = maxh∈Γ ld(h), y

(t)
β = ld(v).

13) If y
(r)
ε ≤ y

(t)
β add {F ∪ W,Γ , V ∪ N} to S. Goto Step 10).

14) Let x = {y(e)
γ | deg(v, y

(e)
γ) > 0 and y

(e)
γ > y

(r)
ε } and write v as a multivariate polynomial in

x: v = Σ lΘxΘ . Add {F ∪ W,Γ , N ∪ V ∪ {lΘ}} to S for each Θ . Go to Step 10).

Example 3.7 Let f = y′2 − xy2, x < y. In Step 4), we have y
(γ)
α = y′, P̃ = {f}. In

Step 5), N = ∅ and H = 1. In Step 6), Algorithm 3 is applied to {P̃, H, y′}. P̃ is first split into
two components {y′2 − xy2 = 0, 2y′ �= 0} and {y′2 − xy2 = 2y′ = 0}. The output of the first
component is {{y′2 − xy2}, {}, {xy2}} and the output of the second one is {{y′}, {xy2}, {}}.

In Step 8), C0 = {{y′2 − xy2}, {}, {xy2}} will be put into S and eventually be added to R.
In Step 9), we will handle {{y′}, {xy2}, {}}. Applying Algorithm 5 to U = {xy2} and yα = y,

the output D1 consists of C1 = ({xy2}, {2xy}), C2 = ({xy2, 2xy}, {2x}), and C3 = ({2x}, {}).
C1 is handled in Step 11). Algorithm 4 is applied to {{xy2}, {y′}, {2xy}} and returns

{{xy2, x′y2}, {2xy}}. Finally, C4 = {{}, {xy2, x′y2}, {2xy}} is added to S.
C2 is handled in Step 11). Algorithm 4 is applied to {{2xy}, {y′, xy2}, {2x}} and returns

{{2xy, 2x′y, xy2}, {2x}}. Finally, C5 = {{}, {2xy, xy2, 2x′y}, {2x}} is added to S.
C3 is handled in Steps 12) and 13). C6 = {{y′}, {2x}, {}} is added to S.
For C4, in Step 6), Algorithm 3 is applied to {{xy2, x′y2}, 1, {2xy}} and returns the empty

set. We omit the computing procedures for C5 and C6. The algorithm give the decomposition
Zero(f) = Zero(dsat(f)) ∪ Zero(y′, x) ∪ Zero(y).

Now we prove Theorem 3.4 with the following lemmas.

Lemma 3.8 Algorithm 6 terminates, Zero(h1, h2, · · · , hk) = ∪qZero(Aq/Dq), and IΨq,i ,
SΨq,i �= 0 on any element of Zero(Aq/Dq).

Proof The algorithm has three loops, starting at Steps 2), 7), and 10), respectively. We
need only to show that the loop starting at Step 2) will terminate. Let {F1, P1, N1} be a
component added to S in this loop and yδ

c = maxp∈P1 ld(p). Then, we have either yδ
c < yγ

α

which means that the algorithm terminates.
Zero(h1, h2, · · · , hk) =

⋃
q Zero(Ψq,1, · · ·Ψq,lq/Dq) can be proved similar to Lemma 2.12. In

the proof, we also need the equalities in Lemmas 3.3 and 3.5, and (12).

A TRIANGULAR DECOMPOSITION ALGORITHM 481

We now show that Aq is a triangular set. It suffices to show that for any {F, P, N} ∈ S,
maxp∈P cls(p) < maxq∈F cls(q). New polynomials are added to F in Steps 8), 13), and 14). In
Step 8), since U = ∅, this is indeed the case. In Steps 13) and 14), we have Θ = ∅ which
means that yα and its derivatives do not appear in Γ . Hence, maxp∈Γ cls(p) < α and Aq is a
triangular set for any q.

Finally, if (Ψ1,Ψ2, · · · ,Ψt/M) is one component of the output, then according to the algo-
rithm it comes from a procedure like (9) and (10). In the algebraic case, from one step to the
next step in (9), Algorithm 1 is used one time. In the differential case, from one step to the
next step in (9), Algorithm 3 is used many times. For instance, the procedure to obtain Ψ1 is
as follows:

Zero(f0,1, f0,2, · · · , f0,k(0)/M0)

→ Zero(Ψ1, h1,1, · · · , h1,t(1)/M1)

→ Zero(g1,0, g1,1, · · · , g1,l(1)/S1M1)

→ Zero(Ψ2, h2,1, h2,2, · · · , h2,t(2)/M2S1M1)

→ · · ·
→ Zero(gs,0, gs,1, · · · , gs,l(s)/Ms+1 · · ·S1M1)

→ Zero(Ψs+1, hs+1,1, hs+1,2, · · · , hs+1,t(s+1)/Ss+1Ms+1 · · ·S1M1), (13)

where Ψ1 = Ψs+1 and {hs+1,1, hs+1,2, · · · , hs+1,t(s+1)} = {f1,1, f1,2, · · · , f1,k(1)} in (9). (Ψ1, h1,1,

h1,2, · · · , h1,t(1)/M1) is a component of (f0,1, f0,2, · · · , f0,k(0)/M0) after using Algorithm 3, so
IΨ1 |M1 and SΨ1 �= 0 on any element of Zero(Ψ1, h1,1, h1,2, · · · , h1,k(1)/M1) by Lemma 3.3.
(g1,0, g1,1, · · · , g1,l(1)/S1M1) is a component obtained from (Ψ1, h1,1, h1,2, · · · , h1,k(1)/M1) by
Algorithms 5 and 6 in Steps 9) and 11). So we have Zero(g1,0, g1,1, · · · , g1,l(1)/S1M1) ⊂
Zero(Ψ1, h1,1, h1,2, · · · , h1,k(1)/M1). The procedure is repeated until cls(Ψs+1) > cls(gs+1,j)
for all j and Ψ1 is obtained. Then, we have

Zero(f0,1, f0,2, · · · , f0,k(0)/M0)

⊇ Zero(Ψ1, h1,1, h1,2, · · · , h1,t(1)/M1)

⊇ Zero(g1,0, g1,1, · · · , g1,l(1)/S1M1)

⊇ · · ·
⊇ Zero(gs,0, gs,1, · · · , gs,l(s)/Ss · · ·S1M1)

⊇ Zero(Ψs+1, hs+1,1, hs+1,2, · · · , hs+1,t(s+1)/Ms+1 · · ·S1M1). (14)

By Lemma 3.3, IΨ1 |Ms+1 and SΨ1 �= 0 on any element of Zero(Ψs+1, hs+1,1, hs+1,2, · · · , hs+1,t(s+1)

/Ms+1 · · ·S1M1). The lemma is proved.

Lemma 3.9 In Algorithm 6, Aq := Ψq,1,Ψq,2, · · ·Ψq,lq are saturated triangular sets and
Zero(dsat(Aq)) = Zero(Ψq,1,Ψq,2, · · ·Ψq,lq/Dq).

Proof Using Lemmas 3.1 and 3.2 instead of Lemmas 2.1 and 2.3, the proof of this lemma
is the same with that of Lemma 2.13.

The following lemma gives the complexity part of Theorem 3.4.

482 ZHU WEI · GAO XIAO-SHAN

Lemma 3.10 In Algorithm 6, the degree of Ψq,i is less than dc2nR

, the order of Ψq,i is
less than 2nR, N < k2nRdc2nRRn. The running time of this algorithm can be bounded by a
polynomial in k2nRdc2nRRn.

Proof For given differential polynomials h1, h2, · · · , hk ∈ K{y1, y2, · · · , yn}, since ord(hi, yj)
< R for 1 ≤ i ≤ k, 1 ≤ j ≤ n, there are at most Rn variables when applying Algorithm 3. Con-
sider the most complicated case where y

(R−1)
n is the maximal leader. After applying Lemma 3.3

to h1, h2, · · · , hk, there are at most kdcRn components, each component has at most kdcRn

differential polynomials, and the degree of each polynomial is no more than dc. After applying
Algorithm 5, each component will be split into at most dcR components, and each component
has at most kdcRn+cR polynomials. After applying Lemma 3.5, the number of the components
and the number of polynomials in each component do not change, and the degrees of the poly-
nomials are less than d2c. The most complicated case occurs when the order of yn decreases by
one and the maximal leader becomes y

(R−2)
n . Continuing this procedure until the main variable

becomes yn−1. There are no more than kRdcRRn components in total, each component has no
more than kdcRRn polynomials, the degree of these polynomials are less than dcR

, and the order
of these polynomials are less than 2R. Repeating this procedure to y1, y2, · · · , yn−1, finally we
obtain no more than k2nRdc2nRRn components, the degree of the polynomials are bounded by
dc2nR

, and the order of these polynomials are less than 2nR.

4 Summary

Two triangular decomposition algorithms are given in this paper. For a set of polynomials
F = {f1, f2, · · · , fs} in K[x1, x2, · · · , xn], we can compute regular triangular sets T1, T2, · · · , Tr

such that Zero(F) = ∪iZero(sat(Ti)) which gives an unmixed decomposition for the solution set
of F = 0. We also show that the complexity of the algorithm is double exponential in n. For a
set of ordinary differential polynomials F = {f1, f2, · · · , fs} in K{y1, y2, · · · , yn}, we can give a
similar decomposition Zero(F) = ∪iZero(dsat(Ti)), where dsat(Ti) are radical differential ideals
and the complexity is triple exponential. This seems to be the first triangular decomposition
algorithm for differential polynomial systems with elementary computation complexity.

References

[1] Ritt J F, Differential Algebra, American Mathematical Society, Colloquium Publications, Vol.

33, 1950.

[2] Wu W T, Basic Principle of Mechanical Theorem Proving in Geometries, Science Press, Beijing,

1984. English translation, Springer, Wien, 1994.

[3] Aubry P, Lazard D, and Maza M M, On the theories of triangular sets, J. Symb. Comput., 1999,

28: 105–124.

[4] Szanto A, Computation with Polynomial Systems, Doctoral Dissertation, Cornell University, 1999.

[5] Wang D, An elimination method for polynomial systems, J. Symb. Comput., 1993, 16: 83–114.

A TRIANGULAR DECOMPOSITION ALGORITHM 483

[6] Boulier F, Lazard D, Ollivier F, et al., Representation for the radical of a finitely generated

differential ideal, Proc. of ISSAC’95, ACM Press, 1995, 158–166.

[7] Bouziane D, Kandri Rody A, and Maârouf H, Unmixed-dimensional decomposition of a finitely

generated perfect differential ideal, J. Symb. Comput., 2001, 31: 631–649.

[8] Chou S C and Gao X S, Automated reasoning in differential geometry and mechanics using the

characteristic set method, Part I. An improved version of Ritt-Wu’s decomposition algorithm,

Journal of Automated Reasoning, 1993, 10: 161–172.

[9] Hubert E, Factorization-free decomposition algorithms in differetntial algebra, J. Symb. Comput.,

2000, 29(4–5): 641–662.

[10] Wu W T, A constructive theorey of differential algebraic geometry, Lect. Notes in Math., Springer,

1987, 1255: 173–189.

[11] Cheng J S and Gao X S, Multiplicity-preserving triangular set decomposition of two polynomials,

Journal of Systems Science and Complexity, 2014, 27(6): 1320–1344.

[12] Gao X S, Luo Y, and Yuan C, A characteristic set method for difference polynomial systems, J.

Symb. Comput., 2009, 44(3): 242–260.

[13] Gao X S and Huang Z, Characteristic set algorithms for equation solving in finite fields, J. Symb.

Comput., 2012, 47: 655–679.

[14] Huang Z, Parametric equation solving and qiantifier elimination in finite fields with characteristic

set method, Journal of Systems Science and Complexity, 2012, 25(4): 778–791.

[15] Li X, Mou C, and Wang D, Decomposing polynomial sets into somple sets over finite fields: The

zero-dimensional case, Computer and Mathematics with Applications, 2010, 60: 2983–2997.

[16] Chen C, Davenport J H, May J P, et al., Triangular decomposition of semi-algebraic systems,

Proc. ISSAC 2010, ACM Press, New York, 2010, 187–194.

[17] Gallo G and Mishra B, Efficient algorithms and bounds for Wu-Ritt characteristic sets, Progress

in Mathematics, 1991, 94: 119–142.

[18] Golubitsky O, Kondratieva M, Ovchinnikov A, et al., A bound for orders in differential nullstel-

lensatz, Journal of Algebra, 2009, 322(11): 3852–3877.

[19] Grigor’ev D Y, Complexity of quantifier elimination in the theory of ordinary differential equa-

tions, Lecture Notes in Computer Science, 1984, 176: 17–31.

[20] Gao X S and Chou C, On the dimension of an arbitrary ascending chain, Chinese Sci. Bull.,

1993, 38: 799–804.

[21] Hartshorne R, Algebraic Geometry, Springer-Verlag, Berlin, 1977.

