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Abstract This paper considers the energy decay of the wave equation with variable coefficients in an
exterior domain. The damping is put on partly the boundary and partly on the interior of the domain.
The energy decay results are established by Riemannian geometry method.
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1 Introduction

Let {2 be an exterior domain in R"(n > 3) such that R™\{2 is compact, the boundary
082 = Iy U I'y is smooth, where I'g N I'y = (). We consider the initial-boundary value problem
of the hyperbolic equation of the form:

uge — div A(x)Vu + p(z,ug) = 0, in 2 x (0, 400),
u =0, on [y x (0,+00),
Uy, = —f(ue), on I x (0,+00),

u(z,0) = uo(x), u(x,0) =wui(x), on £,
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where uy; stands for 02u/0t?, A(x) = (a;j(x)) is a symmetric, positive, smooth n x n matrices,
div (X) denotes the divergence of the vector field X in the Euclidean metric, u,, = (A(x)Vu,v),
and v(z) is the outside unit normal vector field at = € I'. f(v) is a nonlinear term like |v|"v,

and p(x,v) is a term like

o) = a(z)|v|Pu, if |z < o
a(z)v, if |z| > R,

where R is a large positive number.

The aim of this paper is to estimate the decay for the energy of the system (1) and some
relations between the decay rate and the behavior of the nonlinearity p and f. The boundary
(linear and nonlinear) stabilization problem of the wave equation has been studied by many
authors, for example, see many results concerning the stability of such problems are available
in the literatures, see, for instance [1-9] and references therein. They dealt with the constant
coefficients case where A(z) is the unit matrix.

In the case of variable coefficients where A(z) depends on the space variable z, the classical
analysis which was originally successful in dealing with the wave equation with constant coef-
ficients is not enough. Here we use the Riemannian geometry method, which was introduced
by [10] to deal with controllability of the wave equation with variable coefficients and has bee
extended by [11-21], and many others. This method is a necessary tool for checking control-
lability /stabilization of the variable coefficient systems ([18, 22]). This is because without the
sectional curvature information controllability/stabilization just holds true locally. Moreover,
a computational technique (the Bochner technique) in Riemannian geometry provides great
simplification in order to establish Carleman estimates.

The paper [6] studied the system (1) in the case of constant coefficients. The work [16]
investigated the system (1) in the case of variable coefficients but the domain of the system was
assumed to be the whole space R™ without boundary. In this paper, we study the system (1)
in the case of variable coefficients where its the domain is assumed to an exterior region with
two boundaries Iy and I, by using the piecewise multiplier method, Riemannian geometry
method, and an integral inequality introduced in [2].

Our paper is organized as follows. In Section 2, we state the main results. In Section 3, we
give the estimates of L2-norms. The proof of Theorem 2.1 will be presented in Section 4.

2 Statement of Results

For convenience, first we introduce some notation in Riemannian geometry (see [18, 23]).
Let A(x) = (ai;(x)) be a symmetric, positive, smooth n x n matrices for z € R”. On R", we

introduce

9(z) = (9ij(2)) = A7 (z) for z€R",
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DECAY RATES OF THE HYPERBOLIC EQUATION 659

as a Riemannian metric and regard (R", g) as a Riemannian manifold. For each x € R"™, we
define the inner product and the norm on the tangent space

9(X,Y)=(X,Y), = (A" (2)X,Y), [X]2=(X,X),, X, YeR"

where g = (-,)4 is the inner product of the metric g and (-,-) = - is the Euclidean product of
R"™, respectively.
For any u € H*(R"), we have

Vgu = A(z)Vu, |Vgu|§ = Z aij (T)uz gy, x €R",
ij=1

where V, and V are the gradients of the metric g and the Euclidean metric, respectively. Let
I' = 082. Then (I',g) is a (n — 1)-dimensional Riemannian manifold where g is the induced
metric from (R", g). Denote by Vr, the gradient of (I",g). Then for any v € HY(2),

2
v v
Vv = |V;TQ va+Vr,v and |ng|§ = |V:‘|‘2 + |VF9U|3 for xel, (2)
g g

where (Vp,v,v4)g = 0.

Let H be a vector field on (R™, g). Denote by D the Levi-Civita connection of R™ in the
Riemannian metric g. The covariant differential D of H determines a bilinear form on R" x R™,
for each z € R™, by

DH(X,Y) = (DxH,Y),, VX, Y eR?,

where Dx H is the covariant derivative of vector field H with respect to X.

Now we state our main assumptions. Let L > 0 be a given constant. We set
Br ={z eR" | |z| < L}, 2, =0NNBL.

Assumption 1 There exists a vector field H on Riemannian manifold (R", g) such that
DH(X,X)>o|X|2, VXEeR], z¢cfl, (3)

for some constant o > 0.

Assumption 2 Let p(z,v) be given by (2) where a(x) is a nonnegative bounded function
on {2 satisfying: There exist a relatively open set w C {2 and a positive number L > 1 such
that

Il cw and a(z)>e for z€wUBY, (4)

where € > 0 is a positive constant and
Il={zely|(Hv) >0}
We further assume that p satisfies the following conditions:

plz,v) =a(x)v, if (r,v) e B xR forsome 0<R<L.
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If (x,v) € 2r x R, then

koa(x)|v[P** < p(a, v)v < kra(z)([ol"F2 + ol?) if o] <1, (5)
koa()|v|™™* < p(e, v)v < kra()(jo]2 + [v?) if v > 1, (6)

where ko, k1 >0, -1 <p<+4ooand —1 < g < nEQ.

Assumption 3 f(v) is strictly increasing and differentiable for v # 0, and satisfies

kolv™** < f(v)v < ki (o2 + [ol?), if ] <1, (7)
kolv™** < f(v)v < ky(Jo]" 72 + [vf?), if [o] > 1, (8)

where ko, k1 >0, -1 <r<+ooand —1<m< ',.

By Assumption 2, p(z,u;) is linear at u; for large = and possibly nonlinear in a bounded
region. It is said to be a ‘half-linear’ dissipation. The linearity for large x is essentially used to
control the L?-norm ||u(t)| > of solutions.

Without loss of generality we may assume w C Br and wN Iy = (). We define the energy of
the system

B =y [l + V0. )

We note that the basic space Hi (£2) is defined as the completion of C§°(£2UI'}) with respect
to the H'(£2) norm. When I} = (), H}(£2) coincides with the usual space HZ(£2). To state
the results we introduce the spaces (sets) Vao C C5°(£2) x C5°(£2), Vo € HY(2) x L2(2) and
Vi C H2(2) N HY(R2) x HE(£2) as follows:

Voo = {(u07u1) € C((JX)(‘Q) X C((JX)(‘Q) | U0|[‘0 = U1|[‘0 = 07UOVA|F1 = _f(u1)|F1}7
Vi=Ve in H*(2)x HY () and Vy =V, in H'(2)x L*(2).
It is not difficult to see that Vo = HE(£2) x L2(£2). We note that under Assumptions 1, 2 and 3,

the problem (1) admits a unique solution u(t,z) € C(]0,00); HE(£2)) N C1(]0, 00); L2(£2)) for
each (ug,u1) € HL(R) x L2(£2), and if (ug,u1) € V4 the solution belongs to

X = W2 ([0, 00); L2(2)) N Wy ([0, 00); Hy (2)) N Lis.([0, 00); HA(2))

loc loc
and satisfies
usel| + |V gul| + || div A(z)Vu| < C(|Vgur + || div A(z)Vuol| + [ p(z, ur)|)
=K <oo, 0<t<oo, (10)

where C, K are positive constants and || - || denotes the usual L? norm on f2.

Our main results on energy decay are as follows.

Theorem 2.1 Let u € X2 be a solution of (1) satisfying (10). Under Assumptions 1, 2
and 3, the following estimates hold:

E(t) < C@Q+ [luo) 1+ )" and Jlu®)]* < C(Q + uol*)(1 + )", (11)
@Springer
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where C' is a positive constant,
ldl(n—=2) [p| Iml(n—2) |r|
9= 12
max{4—q(n—2)’p+2’2—m(n—2)’r—|—2 ’ (12)
and Q = E(0) + Q' + Q% + Q3 + Q* is defined as follows:
E(0)r%2, if p>0,

Ql _
- 2(p+1)
E(0) v, if —1<p<0,

oo - JEOFR)EEQT ST 0<g s 2,
= n -
(E(0) + K2)1-00) B(0) 4-a(n-2 | if —1<q¢<0,
s E(0)~f2,  ifr>0,
Q = 2(r+1) )
EWQ) =, 4f —1<r<O0,
o (E(0) + K?)(m+1)02E(0)2(mtvlz)4£;_02)7 if 0<m< 1 5
(E(0) + K2)%2 B(0)2-min-2 if—-1<m<0,
with
91 _ nq 02 _ m(n — 1)
(¢+1)(4—aq(n—2)) (m+1)(2 =m(n—2))’
~ 2(¢+2) ~ —m(n —1)
9 fr— d 0 = .
! 4—q(n—2)’ a ? —-m(n—2)+2

Remark 2.2 1If A(z) = I, then assumption 1 hold automatically. The decay rates in

Theorem 2.1 are the same as in [6].
Remark 2.3 Theorem 2.1 is also valid for I'y = (.
Remark 2.4 If I'} = (), then the decay rates in Theorem 2.1 are the same as [16].

Assumption 1 was introduced by [10] for the controllability of the wave equation with vari-
able coefficients, which is also a useful condition for the controllability and the stabilization of
the quasilinear wave equation (see [20, 21]). Existence of such a vector field depends on the
sectional curvature of the Riemannian manifold (R",g). There are a number of methods and
examples in [18] to find out a vector field H that satisfies Assumption 1.

If there is a vector field H such that

DH >0 for all z €R",

then Assumption 1 holds for any bounded open set in R™.

Let h be a strictly convex function of the metric g on 2. Then H = V,h satisfies assumption
1. One of candidates for strictly convex functions is the distance function of the metric g from
xo to x € R™. If A(x) = (d;;), then g is the standard metric of R” and p(x) = |z — x¢|. For
a general metric g, like (2), the structure of p(x) is very complicated. For the properties of
this function, see any Riemannian geometry book, for example, [23]. For more information on

Assumption 1, we refer to [18].
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3 Basic Inequalities and Estimates of L?-Norms

With two metrics on R™ in mind, one is the Euclidean metric and the other is the Rimannian
metric g, we have to deal with various notations carefully. Let us recall some basic relations
between the two metric on R™.

Lemma 3.1 (see [18]) Let x = (21,22, - ,n) be the natural coordinate system on R™.
Let H and X be vector field on R™, hi, hy be C! functions. Then
(A(x)H (z), X (2))g = (H(z), X (2)) = H(z) - X (),
Vohi = A(z)Vha,
<Vgh1, Vgh2>g = vghl(hg) = <A($)Vh1, Vh2>,
for x € R, where A(x) is the coefficient matriz in (2), and V4, V are the gradients of the
metrics g and the Euclidean metric, respectively.

The following identity plays a crucial role in establishing multiplier identities in a version
of the metric g.

Lemma 3.2 (see [18]) Let hy, ha be a function on R™ and let H be a vector field on R™.
Then
<Vgh17 Vg(H(hQ)»g + <Vgh27 vg(H(hl)»g
= DH(Vghl, vghg) + DH(Vghg, Vghl)
+div(<vgh2,vgh1>gH) — (Vgh27vgh1>g div H, (13)

where div H is the divergence of the vector field H in the Euclidean metric.
In order to prove Theorem 2.1, first we present several multiplier identities.

Lemma 3.3 Let H be a vector field on 2 and h(z) be a function on 2. Then for a

solution u(t,x) to (1), we have the following identities:

dE(t)
dt

1
ch/ utH(u)dx—i—/ {2 div H (u? — |Vgu|§) —l—DH(Vgu,Vgu)} dx—!—/ plx,ur)H(u)dx
7} 0 7}

—|—/Qutp(a:,ut)dx—|—/F1 ug f (ug)dI™ = 0; (14)

1
-/, [2(“5 = [Vgulp)(H.v) + H (u><A<w>Vu7v>}dr; (15)
d / huutdﬂf—f—/ B(IV gul2 — u? + wp(a, us)) da 1/ 2 div As) Vi
dt J, , 2 |
r

Proof We sketch an outline. We use a standard multiplier method. First, differentiating
the energy (9) with respect to time ¢ yields (14).

Using the above formulas in Lemmas 3.1 and 3.2, we multiply the equation in (1) with
H(u) and h(zx)u, respectively. Then integrating by parts over {2 with respect to the variable x
yields (15) and (16).
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Lemma 3.4 Assume Assumptions 1, 2 and 3 hold. Let u be a solution of (1) in X7
Let ¢ > 0 be a sufficiently small constant and k > 0 be a constant such that

k > max { 62C (o1 +0), 303 } (17)

g

holds. Then it holds that

th(t) + 2;E(t) + (1 — (- 116)145/0 ugp(z, ur)de + k . ug f(ug)dl
<C (u? + uf + |Vgu|§)df +C [ wldx + C (a(a:)uf + |p(x,ut)|2)da: + C/ lug|2de,
I 2r N2r w
where
G(t) = /Qut (pH (u) — CH(u))dz + /Q (ho + Czka(x)qﬁ + 230 + 062)uutda:
hoa(x)  oa(x)  Cka®(z)d 5
+/Q§ ( 5 + 3 + 4 )u dx + kE(t), (18)

01,03,a0 are positive constants that will be specified later on, @, ¢, hg, B are functions and
H is a vector field that will be given later on, the vector field H and the constant o > 0 are
given in (3), € > 0 is given in (4). Here and in what follows, we use the constant C > 0 to
denote some constants independent of functions involved, although it may have different value

in different contexts.

Proof Let H be a vector field such that Condition (3) holds. We take three bounded open
sets such that N
.QLC@LC@LC@L. (19)

Let ¢, ¢ € C§°(12) be cut-off functions such that

1, ze, 1, wel,
0<p<1, 0<¢<1, p= S = (20)
0, xe€ 2\, 0, ze€ 2\
We replace H with ¢H in the identity (15) and replace h with
1 .
ho = 5 divpH — op (21)
in the identity (16), respectively, where o > 0 is given in (3). Then we add up the two identities
and obtain
d
& / (urpH (u) + houuy)dx —|—/ [op(u; — |Vgu|§) + DoH (Vgu, Vgu)|de
Q Q
1
- / u? div A(a:)Vhoda:+/ p(x,ue)(pH(u) + hou)dz
2Ja Q
1 1 1
=5 [ |50 = TR o) + o)AV + ha — i, ar
r
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Taking the Assumption 2, we have

/ houp(x, u)dx = hoa(z)uudr + houp(z, u)dz
0 05 2r

1
= d hoa(z)u’ds + houp(x, ug)dx.

Then

d

1
H
i@t /Q(utgo (u) + houug)dx + 5

hga(a:)qua:> + houp(z, ut)dx

fod Qg

_|_

\/-\

1
plx,ur)pH (u)dr — / u? div A(x)Vhodz
Q 2Ja

_|_

S~

[op(ui — [Vguly) + DoH (Vgu, Vyu)] do

1 1
— [ 3002 = 9B o) + A V00) + hot ~ i, |ar
r

Let k£ > 0 be a constant. Multiplying the identity (14) by k and adding the obtained result to
the identity (22) we have

d 1
dt (/Q(utapH(u) + houuy)dz + N /QI;

1
—|—/ [op(uf — |Vgu|3) + DpH (Vgu, Vgu)|de — 5 / u? div A(x)Vhodz
7} 7}

hoa(z)u?dz + kE(t)) + k/ urp(x, ug)dx
Q

houp(z, u)dx + k/ g f(ug)dx

.QR Fl

+/Qp(x,ut)<pH(u)dx+/

1
2u2p0m} dr. (22)

1
[ 360 = 9B o) + oH @ AT} + ot -
We dispose:

k/gutp(x,ut)dx =[(1 —()k—i—(k]/ﬂutp(x,ut)dx,

where ¢ > 0 is a suitable small constant that will be specified later on.
Let

Y(k,u) = / [op(u? — |Vgu|§) —I—DapH(Vgu,Vgu)]dx—i—(k/ ugp(x, ug)de.
Q e}

Since a > a¢ > 0, 0 > o > 0, taking Assumptions 1 and 2, from (23), we deduce

/D@H(Vgu,vgu)dm:/A DypH(Vgu, Vg u)dx + DypH(Vg4u, Vg u)dx
Q 20\2r 2L

> —0'1/A |Vgu|§da:—|—a/ |Vgu|§dx,
QL\QL QL
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/utp(x,ut)dx:/ utp(x,ut)dx—i—/ up(z, uy)de
Q 2r

c
R

:/ utp(x,ut)dx—i—/ a(x)ulde

2r 3

2/ a(x)ufda:—/ a(z)u?ds
Q 2r

> 1/ a(x)ufdm—i—l/ a(x)¢ut2dx—/ a(x)ulde,
2Ja 2Ja r

where

o = sup IDeH (X, X)|.
XeR?,|X|y=1,0€2\ 2L
Then
k
Y(k,u) > —(o1 + 0)/ |Vgu|3dx + a/ uidz + ¢ / a(z)u?de
2L\ n 2 Jo

L

C / (z)pudr — Ck a(x)u?dz. (23)

Qr
Let h = a(x)¢ in the identity (16). We have

/Qa(a:)qbu?dx: CZ/Qa(a:)qbuutdx—|—/Qa(x)gz$|vgu|§da:—;/QUQdiVA(a:)V(a(x)qﬁ)da:
= [ atwsupte,wids = [ (atw)own, — a@on, )ar @)

which, together with (23), leads to

Y(k,u) > /@ v (C: (x) — o1 —a)|V u|2dx—|— Ck / uldx + <2k dt/ﬂa(xwuutdx

_Cf/QquivA( VWV (a( dx—|—< / x)pup(x, us)de

to /Q e - ck /[ ¢uuuA—2u2(a(x)¢)uA}dF—Ck a(z)ulds.  (25)

2r

From the the inequality (17), we have

Ck

/ a(x)uZdx > ¢k a(x)uZdr > Gek

uldr > o uldz.
QC c
L L

k
O'/ uldx + ¢ / a(z)u?de > 0’/ ulda.
o 2 Ja 0

Since k > 2(01+U), we have

Then

e¢
Y(k,u) > J/Q uldr + C: jt /Qa(x)qbuutdx - <4k02/ C / x)pup(x, ut)dx
—C2k/r {a(a:)qbuum — ;UQ(a(a:)qb)l,A]dF —Ck o a(a:)ufdx, (26)
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where

o9 = sup |div A(z)V(a(x)d)|.
a:G??L

Applying h =1 in (16) yields

d
/ufda:z /uutdx—F/ |Vgu|§—|—/ up(a:,ut)da:—/uuuAdF, (27)
0 dt Jg 0 0 r

which, together with (26), leads to

Y(k,u) > J/ uldz + 20/ |V gul? + 20/ up(x, up)dx + d/ Cka(gc)¢—|— 20 uurde
3 g dt Jo | 2 3
_Cko'g/ u?dx + ok / x)pup(x ut)dx—gk/ a(x)u?de
2

4 Qnr
_ck / [ x)pun,, — ;u2(a(x)¢)l,A]dF— 230/ uuy,dl’. (28)
r

Then

jt[ / <Ut<,0H(u) + (ho + <2ka(as)¢ n 2;>uut) dz + ; o hoa(z)udz + k;E(t)]

+(1-¢ k‘/utpa: ug)dx + / 2dx + /|V u|2 /up(a:,ut)da:

< / x)pup(x ut)dx—F/ plx,u)pHu)de + k [ wef(ue)de
0

I

< ;/ u2diVA(x)Vhodx+Ck/ a(x)u?dr + Cfag/2 qux—/ houp(z, u)dx
Q 2r

QR QL

1 1
# [ |50 = VBN HY) + oH A V) + hov, g, |ar

C 1 2 20
/ [ x)puu,, + ol (a(x)@m]df—i— 3 /Fuul,AdF. (29)

u2
Since u|r, = 0, by (2) we have H(u)u,, = |Vyul2(H,v) = ol (H,v) on I'y. Noting u¢|r, =0,
g
then

[ 3002 = DB o) + oA V) + o = Y, [ar
C / [ Youu,,, + ;u (a(a:)qb)m}dlj—k 230/ uty,  dI
r

<C | (u?+uf+|Vgul))dl + C/ lu,,|?dl.
Iy r}
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Thus
d / urpH (u) + h0+<ka(x)¢+2a o dx—l—l/ hoa(z)u?dx + kE(t)
| J, 2 3 2 Jo.
—l—(l—C)k/ ugp(z, ut)dx—i—a/ ufdx+2a/ |Vgu|§dx+ 20/ up(z,up)dx
3Ja 3 Ja 3 Jo
C / x)pup(x ut)dx—i—/ p(x,ut)cpH(u)dx—i—k/ g f (ug)dx
2 Iy
< 1 2d~ A 2 Ck 2
< u’ div A(z)Vhodz + Ck a(x)uide + > o9 [ uidr — houp(z,u)dx
2 2 2r 4 @L 2r
+C | (u* +uf + |vgu|§)dr+c/ lu,,|?dT. (30)
n r;
Moreover,
[ sl wrota
e}
< ‘/ plx,ur)pH (u)dx —1—‘/ a(x)urpH (u)dx
2r R
< K / |p(x u)|2dx—|—03/ |V ul2dx + k/ a(x)u?de (31)
716&0 Qvat kQ g™lg 169;? t )
where
o3 = dag sup <p2|H|£27, ag = sup a(x).
xENL z€S?

We use (31) in (30) and (17) to obtain that

jt[/g (pr( )+ <h0+ <2k ()6 + 2;>uut)dx+;/§hoa(x)u2dx+kE(t)]

2
—|—(1—C)k‘/ utp(a:,ut)dx—FU/ ufda:—ka/ |V ul2dz + U/ up(x,ug)dx
3 /e 3 /e 7 3 Jo

C / x)pup(x, uy)dx — i / lp(z, up)|*dx — K / a(x)ufdx—l—k/ g f (ug)dx
16@0 2r 16 25 m

< (024 + C4k0'2) /2 u?dr + Ck a(x)uidr + C |ul|p(x, u)|da

27 O2r 2r

+C [ (@t (Vgudr € [ fuPar, (32)
n r;

where

o4 = sup |div A(x)Vhyl.
rG@L
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Since

/9 (2; + Cgka(xW) up(z, uy)dz

= /QR (g + C4 a(x)¢>a(x)u2dx+ 30/!23 up(w, ug)d + CQ /QR a(x)pup(z, uy)dz,

/QC a(z)uide = /Q

utp(x,ut)dxg/utp(x,ut)d;v,

i i 2
then
d hoa(z) = oa(z) = (ka®(z)p\ , 20
X(t d E(t
dt{()—i—/gﬁ(Q + 3-|— 4 ux—i—g()
1
+(1-¢— k/ ugp(z,ue)de + k ug f(ug)dx
16 1P I
<0 [ i+ V) +C [ s far
i r;
+C [ w’dz +Ck a(x)uidx + C lp(z, u) |2 de, (33)
27 O2r 2r
where

X(t) = /Q (utgaH(u) + <h0 + Czk a(z)é + 23” )uut) dz + kE(1)

and we choose ¢ > 0 sufficiently small such that (1 — ¢ — 116)]6 > 0.

In order to calculate the second term on the right-hand side of (33) we take a vector field
H satisfying H-v > 0, H = v on Iy and H = 0 on @°, where & is open in R™ such that
Il c@Nn R Cw. Note that wN It = 0. Then applying (15) with H = H we have

1

/ o, [2dT
2 I
d

. 1 . . .
it / u H (u)dx + / [2 div H (u? — |Vgu|£27) + DH(Vgu, Vgu)} dx + / plx,ue)H (u)dx
2 Q 2

IN

IN

d ~
/ u H (u)dx + C/ lp(z, ue)Pda + C/ (Jue|* + |Vgu|§)d;v. (34)
dt Jo w et

To estimate |Vgul, on @ N {2 of the right side of (34), we introduce the nonnegative function
B € CH(£2) such that 0 < 8 < 1, |Vyul, € L®(2) and

1,
B(x) =
0, ze€f2nNwe.

T E€wN {2,

Applying (16) with h = 32, we can show that

/ |Vgu|§da: < / ﬁ2|Vgu|§da:
oNQ 7]
d
< _dt/ Bruugdr + C/(|ut|2 + |u|2 + |p(x,ut)|2)dx. (35)
2 w
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Form (33)—(35) we obtain (18).
Lemma 3.5 Suppose that Assumptions 1, 2, and 3 hold. Let u be a solution of (1). Let
¢ > 0 be a sufficiently small constant and k > 0 be a constant such that

2 3 302
k>max{ (o1 +0), 73 ; Sup |H|g—|—Csup|H|g % } (36)
eC O enn o€

holds, where ¢, 0,01, 03 are positive constants and H, H are vector fields which have been given,
05 18 a positive constant which is specified later on. There exist C1, Cy > 0 such that for any

t>0,

Cr(B(t) + [u(®)]?) - Cl/A ul*dz < G(t) < Co(B(t) + [[u(®)]?), (37)

2
where G(t) is given in (18).
Proof Using the assumption of a(z) in (4), we exploit the Cauchy’s and Holder’s inequlities
in (18) to get
Ck 20 2
G(t) = | wpH(u)de—C Ut w)dz + ho + ) a(z)p + 5+ CB? |uudx
o o

. / (hoc;( 7, oaé 7 cka4<x>¢>u2 Lo+ BEG)

g
2 40) ) [ atide— (w0 olHly +C s 1)l

a:G.QL
k ) ho
~ sup |ho+ 4 a(@)o+ 2+ O |luellull — sup [0 [ e
wE@L zEQL QL
3
> % Jul? + (k—max{ sup glHly +C sup |Hly, 7 })
6 wEQL rENRNwW o€
h
_< sup 1004 06)/A Jul*da, (38)
wEfZL 2 3 L
where
k 2
o5 = sup |ho+ C2 a(x)o + ;—l—CﬁQ .
:EE?ZL

Thanks to the choice of k, we obtain that there exists a constant C' > 0 such that
G(t) = C(B(t) + [u(?) c/ fufdz. (39)
On the other hand,

g
6(0) < (k+ sup glftly +C s |Aly+03) B0 + (7 +a0 ) o).

TGQL TENN
where hoa(z) _ oa(z) | Cha®(x)¢
. oa\x ga\xr a“ (T
6= Sup o, Ty ’
TEN
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Therefore, there exists a constant C' > 0 such that G(t) < C(E(t) + ||u(t)||*) which, together

with (39), leads to the result.

Lemma 3.6 Let u(t,z) be a solution in Theorem 2.1. Then there exists To > 0, indepen-

dent of u such that if T > Ty, the solution u satisfies

t+T t+T
/ /2 |u|2dxds+/ / |u|?dI"ds
t 27 t I
t+T t+T
gcn[ [ wtewPasds + [ [ o+ urds
t 2 t I

t+T t+T
+/ / |ut|2dxds] —I—n/ E(s)ds
t 7 Uw t

for any n > 0, where Cy, is a constant independent of u.

(40)

Proof As usual, we prove the lemma by contradiction. We assume that for some ng > 0,

the number C;,; > 0 does not exist. Then for any n > 1, there are solutions {u, } and {t,} >0

such that

tn+T b+ T
/ / |, |?dxds —1—/ / lup|2dTds
tn 25 . r
fnt T tn+T
= Tl|:/ / |P($7unt)|2dxds+/ / (|unuA|2 + |unt|2)d[’d8
tn 27 tn I

tn+T tn+T
+/ / |unt|2dxds] —|—770/ E., (s)ds,
tn ¢ Uw tn

where E,, (t) are the E(t) with u replaced by u,.

Setting
tn+T tn+T
Ag:/ / |un|2dxds+/ / lun|2dTds,
tn DL tn I
and
Un (t+ tn)

n(t) = ;
oafty ="

then we have
T 1 T
127{/ / N |p(a:,um(8+tn)|2dxds+/ / ([mos 2+ [vme[2)dTds
0 2r “‘n 0 I

T T
—|—/ / |Unt|2dxds] —1—770/ E,, (s)ds.
0 7 Uw 0

Consequently,

T
1
/ / \2 |p(z, unt(s 4 t,)[Pdeds — 0, as n— oo
0 21 “‘n
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and

T
/ / (|Vnwal?® + [Une|?)dlds — 0, as n — oo,
o Jny

where E,, (t) are the F(t) with u replaced by vy,.

Note that
T T
/ /A v |2dads —|—/ / |un|2dlds = 1, (42)
0 @L 0 I

T T
/0 /Q (Junl® + |ngn|§)dxds = 2/0 B, (s)ds < 2ny' < o0. (43)

Similar to [12, 19], taking (42) and (43) into account, we may assume that there is a subsequence
of {v,} which are still denoted by {v,,} and a v such that

and

Unt — Ut, in L2([0,T] x 2) weakly,
Voun = Vgu, in L2([0,T] x £2) weakly,
Up — U, in L2(0,T) x £21,) U L2([0,T); I'y) strongly,

and the limit function v satisfies

v — divA(@x)Vu =0, in [0,T]x £2;
v =0, on [0,T]x I; (44)

vy = vy, =0, on [0,T]x It;

T T
/ /2 |U|2dxd8+/ / lv[2dIds = 1; (45)
0 27 0 I

T
/ / |vg|?dads = 0. (46)
0 T Uw

ve(t,z) =0 in [0,T] x (2f Uw).

The identity (46) means

By the unique continuation of the wave equation (see [16]), there exists Ty > 0 such that if
T > Ty, then

v(t,z) =0 in [0,7] x 02,

which, together with (44), yields v(t,z) = v(x) and div A(z)Vv =0 in [0,T] x £2.
From the identity (44) we know v, , ’FI = 0. Since Vv € L*(£2) and U}FO = 0, we can easily
prove that

v(t,z) =0 in [0,T] x £2,

which contradicts the relation (45). The proof is completed.
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When t > Ty, take T such that Ty < T < 2Ty. Let m be the natural number with
mT <t < (m+ 1)T. We can divide the interval [0,¢] as UZEl[iT, G+ DTVt —T,t).
Then Lemma 3.6 immediately implies the following result which plays an essential role in our

argument.

Lemma 3.7 Let u be a solution of (1) in Theorem 2.1. For t > Ty, we have

t t
/ /2 |u|2dxds—|—/ |u|>dIds
0 2r 0 I
t t
gCn[// |p(x,ut)|2dxds—|—/ / (w2 + [ue|2)dTds

0 2 0 I

t t

+ / / |ut|2dxds] +n / E(s)ds (47)
0 Josuw 0

for any 0 <n < 1, where Cy, is a positive constant depending on n but independent of u.
Finally, we shall consider the tangential derivatives in the right-hand sides of (18). For
this we rely on a result in [24]. To apply a result in [24] we reduce our problem to the one
in a bounded domain. We take a cut-off function p(x) € C'(£2) such that p(x) = 1 in a
neighbourhood of I'; and ¢(x) = 0 for |x| > L and set ¢(z,t) = p(x)u. Then
P — div A(@)Ve = —pp(z,u) — (Vgp(z), Vyu), — udiv A(z)Ve

= f(z,t) in $21 x [0,00)

with ¢| = 9| op, = 0- Applying a result in [24] (see also [5]) we have
Proposition 3.8 (see [24]) We fit T > 0. Lett > T > 0 and let u be a solution in
Theorem 2.1. Then for any e constant with 0 < g9 < 1/2 the following trace estimate holds

t—T/4
/ |V r,ul2dlds
t—3T/4 J Iy }

<c| L/ (luwal? + [us2)dD + | F(s))P ds + Cuy |92 (48)
t—T I

H7%+EO(QL) H%+EO(QL,TJ)7

where we set Q= 21, x [t —T,t]. The constants C, C¢, in the above are independent of t

and u.

By interpolation, it is easy to see that

t t
Y 2 < 2 2
/FT P I 10, B8 = C/t,T @, ulleqands + Coolluly sy, 0 (49)
and
2 2
||¢HH%+EO(QL,T,1,) S C|‘UHH%+EO(QL,T,t)' (50)

Hence, from (48)—(50) we obtain

t—T/4
/ |V r,ul2dIds
t—3T/4 I

t
< [ |  d?)ar + ot ) [ ds-+ Callul?,
t—T I
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Applying the above to t =iT/2,i =2,3,--- ,2n with nT <t < (n 4 1)T and summing up the
resulted inequalities we have for ¢t > T,

t—T/4
/ IV r,ul2dIds
T/4 I
t
< C/O |:/F1 (|uuA|2 + |ut|2)d[’ + p(xaut)|%2(QL):| ds + CEOHUHZ%-FEO(QLJI)’ (51)

where C is a constant independent of ¢, u and we set Qr, = 21, x [0,1].

Using an interpolation theory, Lemma 3.7 and the boundary condition on I} we have
e [t t
C/|ul? < / Vu2+u2ds+0// u|?dxds
Il sy < 4, V0t ) 4.0 [ [

¢ t
< C[/ / |p(a:,ut)|2dxds+/ / (v ? + uel?)dTds
0 21, 0 r

t t
+C/ / lut|*dxds + °1 / E(s)ds. (52)
0 Jaguw 2 Jo

Combining the estimates (51) and (52) we have the following lemma.

Lemma 3.9 We fir T > 0. Lett > T > 0 and let u be a solution in Theorem 2.1. Then
for any € constant with 0 < g9 < 1/2 the following trace estimate holds

t—T/4

¢ t
/ |VF9U|§dFdS < C{/ / |p(z, us)|>dads —|—/ / (Jtw o |* + |ue|?)dIds
T/4 I 0o Jar o Jr

t t
+C / / |ug |Pdzds + / E(s)ds, (53)
0 Jesuw 2 Jo

where the constants C, Cg, in the above are independent of t and u.

Lemma 3.10 Let u be a solution of (1) in Theorem 2.1. There exists a constant Ty > 0
such that if t > Ty > 0, then

B(E) + [Ju(t)]? + 5/0 B(s)ds

t t t
<C[/ / (uf—i—u?,A)dFds—i—// a(x)ufdxds—i—// lp(z, u;)|*dzds
0o Jn 0 Jor 0 Jor
t
+C/ /|ut|2dxds+C(E(0)+HuoHQ) (54)
0 Jw

with some positive constants €, C'.

t— T] with respect to time ¢, and combining the esti-

Proof Integrating (18) over [% 4

4
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mates (47) and (53), we have

T T 20

(- T) o) (2 nce) [ B

<C[// (uf +ul, dFds+// da:ds+// a:uﬁdxds}
I 2r 2r,

+C / / lug|dads + CE(0). (55)
0 Jw
Using the estimate (37) to the above inequality, and the fact
T |2
t —
(=21

6 < (B0 + o) < ¢(B(1=T )+ [ luto)las +

o(6(e- 1)+, )

ool <t ([ utoas +

4

we see

(-3)

IN

T
for t > 1

Noting the following estimate

t t
u@®)|%Z < |lu(0)]% —|—5// quxds—l—Cg// ul?dxds,
lu(®)lg, < Ilu(0)F, ; @L| ¢l ; @LI |

we obtain from (55)

E(t)+||u(t)||2+(2"—cn Cey — ca)/ B(s

<C[// ut—i—ul,A dFds—l—// dxds—i—// oz, uy)|*drds
I 2r 2r,
+c/ /|ut|2da:ds+C(E(O)+Hu(O)HQ),
0 Jw

where we could find suitable constants §, 7, €1 such that ¢ = 25’ —Cn—Cey —C6>0.

4 Proof of Theorem 2.1

To prove Theorem 2.1 we must estimate the following terms appearing in the right side of

(54):
L(t) :/Ot/w|ut|2d$d8,

t
- / / ol ue) [2drd,
0 21
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t) = /Ot /QR a(x)uldrds,
(1) = /0 t /F (0 + u, Jdrds.

We devices similar to those in [6]. We set

Qp(t)={z € Qg | lu(z,t)] <1} and 0Q3(t) = {z € Qg | |u(z,t)| > 1}.
Similarly, we set

Ii(t)y={z e | |ju(z,t)| <1} and I7({t)={zel||ulzt)>1}.

From the energy identity, we see for t > 0,

t t
ko/ (/ a(a:)|ut|p+2da:—|—/ a(x)|ut|q+2da:>d8 S/ / p(x, up)urdrds < CE(0),
0 o1 02 0o Jo

R
t ¢
k;o/ (/ a(x)|ug|" 2 dx —|—/ a(a:)|ut|m+2da:> ds < / / fup)ugdads < CE(0).
0 ri r2 0 Jn
First, we shall estimate I7(t), I2(t) and I5(t) separately in the different cases.

(i) The case 0 < p<ooand0<g< 2.:

t pi2 t
// a(x)|ut|p+2dxds> (// dxds) —|—C// ) |ug| 92 dxds
0 Jop 0 Jop
2

IN
Q

/Ot (/Ql a(@)|u da:+/ a(x )|ut|2(q+1)da:)ds+/ /rzmm PYuup(@, u)dwds

R R
2(q+1)(1-61)

+2
E(0)+E(O p+2 1-|—t p+2> C/ ( |ut|Q+2dx> ! ”utHQ(fI;j)@ldS
Ln—

02

< C| E(0)+ E(0) P+2 (1+1¢) P+2>

(Q+1)(1 61) 2(<1+1)(1 01)

+C(E(0) + K?)lato ( / / |ut|q+2dmds> ( / /Q ) da:ds)

<C <E<0> + B(0)2%2 (14 £)rf2 + (B(0) + K2)@D0 g0y ™ (a4 t>4(““)”> (57)

with 01 and

— ngq
T (g+D)(4=q(n=2))’

pi2 t
) < C(/ / |ut|p+2dmds> (/ / dxds) / / () |ug| T 2 dads
oL 0o Jay 02

< C(E(O) vr2 (14 t)rt2 4+ E(O)) (58)
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(ii) The case —1<p<0and -1 <¢<0:

We have
) < C/ / |ut|p+2dxds—|—0/ / x)|uy |201|u 2= ) dds
Ql
q+2 on 17;’}2
< CE(0 +c/ (/ (x)|ut|q+2dx) (/ | 2 d)
02 02
< CE(0) + C(E(0) + K217 B(0) -t (14 ) 562,
S 2(q+2
with 91 = 4—51q(n—)2)'
Further,
t
) < C/ (/ ) |ug | 2PHD da:—i—/ a(a:)|ut|2da:)ds—|—/ / uep(z, ug)dxds
oL 02 0o Jarnog

< C(E<0> + (E(0) + K*) AP B(0)-ath- (1 4 ¢) 4-16n- 23))

2(p+1) -P
p+2 t p+2
+C</ / |ut|p+2dxds) (/ / dxds)
0 0112

<C (E<0> +(E(0) + K20 B(0) 4ol (1 4 1) 502 4 B(0) %2 (14 1) )

) < C/ / |ut|p+2dxds—|—0/ / ) |ug|2dads
o5 o2

< C<E<0> + (B(0) + K31 B(0) a0 (14 1756 2”)

(iii) Other cases -1 <p <0,0<¢ < 2, and 0 < p < 0o, —1 < g < 0 are treated by
combining the above estimations.

Next, we consider the boundary integral I(t). Again we separate the cases.

The case 0 <r <ooand 0 <m < n£2:

From the boundary condition and assumption on f(u;), we have

t t
t)gc// |ut|2dFds+C// lug |2 A ds.
0 Jr} 0 Jr}
t t ri2 t 7*12
// |ut|2dFds<<// |ut|r+2dfds) (// dFds)
o Jr} o Jr} 0 JI

< CE(0) 12 (141t)r.

Here,

Also, by the Gagliardo-Nirenberg inequality and trace theorem, we see that

e ()] s 12y < Cliue (0] 7% oyl t(ﬂl\f;;(,f)

< Cllug(t )HLm+2(p2)Hut(t)H?{Ql(QR)v (59)
@Springer
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m(n—1)

where 65 = (m+1)(2—m(n—2))

Hence,

2(m+41)(1—05)

m m mt2 2(m+1)6
// g P drds<c/ (/ usf2ar 2500
C(

2(m+1)(1—62) —m+2609(m+1)

< C(B(O) + Km0 p) T () TR (60)

Note that

—m+20(m+1)  m(n—2)
m+ 2 2-m(n—-2)

Thus, we have from (59) and (60),

2(m+1)(1—69) m(n—2

Ii(t) < CE(0) 2 (1 +t)r+2 + C(E(0) + K2)(mtDo po) " mia ™ (1 + t)z—mw—)z). (61)

The case -1 <r <0, -1<m<0:
In this case we see that

t t
t)gc// |ut|2<r+1>drds+c// |ug|?dIds
o Jri 0 Jri

and, instead of (59),

t t 2(?121)
/ / Ju 2TV drds < ( / / |ut|r+2dfd " / / dFds)
o Jr} ri I

< CE(0 ) e (1+t)r+2

Also,
! 2 ‘ 2(1-62) 292
/0 / lufards < / o2 e 27 s
2(1—63) 2(1-02)

m+2 t 1= s
< C(E(0) + K%)° (/ / s |m+2dfds> (/ ds)
F2 0

2(1—65)

< C(B(0) + K32 E(0) wi? (144 nid

—m(n—1)

where 52 = _n(n—2)+

5 and hence,

201 8 _ —m(n—2)

= <1
m+ 2 2—m(n—2)

Therefore,
L4(t) < C(E(0) + K" B(0)=-nin-s (14 ) mtd + CB(0) " (146)2.  (62)

Other cases -1 <r<0,0<m< n%2 and 0 <7 < oo, —1 < m < 0 can be treated similarly.
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For the proof of Theorem 2.1 it will be sufficient to consider the cases:
2 1
1)0<p<o0,0<g< “,,08r<oo and 0<m< ~,,
2) —1 < p,q,m,m < 0, since other cases can be treated similarly.
The case 1) 0 <p< oo, 0<g< n32, 0<r<ocand 0<m< nz

We have from (56), (57), (58) and (61),

9-

t
mw+wwW+g/E@@
0
< CE(0) + Cluo|® + CE(0)»>2 (1 + t)#t2 + CE(0) 2 (1 + t) ri>
FO(E(0) + K2)m 00 p(0)” k™ (1 4 )2 Tl
2(q+1)(1—-671) q(n—2)
(E(0

+C(E(0) + KH@HOR0) arz (14 t)4-a-2)
< C(Qo + [luol*)(1 + 1),

where we set

2(q+1)(1—-67)
q+2

Qo = E(0) + E(0) pia 4 E(0) oia 4 (E(0) + K2)(q+1)01E(0)
H(E(0) + K2)m+00 B(0) 2(m 10 -03)

and

B p r m(n —2) q(n —2)
ﬁ_max{p+2’r+2’2—m(n—2)’4—q("_2)}.

Then the above inequality implies
[u(®)])? < C(Qo + |luol?) (1 +1)".

By the inequality (14), we have

d
ol

Integrating (63) over (0,t), we have

15w < B (63)

1+ 0)E@)] =E®t)+ (1+1) it

t
(1+0E(t) < E(O) + / E(s)ds < C(Qo + [luol?)(1 +8)°
0
and so we can conclude
E(t) < C(Qo + [[uo?)(1 + 1)

The case 2) — 1 < p,q,r,m < 0, since other cases can be treated similarly.
In this case we have, instead of (63),

E(t) + [u()]® + / E(s)ds < C(Qo + Juol?)(1 + 1)°
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with
Qo = E(0) + (E(0) + KQ)(l—gl)E(O)AL,q(‘,‘,H) n E(O)2(ppf21)
H(E©) + K22 B(0) -t 4+ B(0) V42
and

B —gn=2) -p -—mn-2) -—r
0_max{4—q(n—2)’p+2’2—m(n—2)’r+2}'

The inequality again gives the desired estimates for ||u(t)||? and E(t). This completes the proof
of Theorem 2.1.
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