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Abstract The weight hierarchy of a linear [n; k; q] code C over GF (q) is the sequence (d1, d2, · · · , dk)

where dr is the smallest support of any r-dimensional subcode of C. “Determining all possible weight

hierarchies of general linear codes” is a basic theoretical issue and has important scientific significance

in communication system. However, it is impossible for q-ary linear codes of dimension k when q

and k are slightly larger, then a reasonable formulation of the problem is modified as: “Determine

almost all weight hierarchies of general q-ary linear codes of dimension k”. In this paper, based on

the finite projective geometry method, the authors study q-ary linear codes of dimension 5 in class IV,

and find new necessary conditions of their weight hierarchies, and classify their weight hierarchies into

6 subclasses. The authors also develop and improve the method of the subspace set, thus determine

almost all weight hierarchies of 5-dimensional linear codes in class IV. It opens the way to determine

the weight hierarchies of the rest two of 5-dimensional codes (classes III and VI), and break through the

difficulties. Furthermore, the new necessary conditions show that original necessary conditions of the

weight hierarchies of k-dimensional codes were not enough (not most tight nor best), so, it is important

to excogitate further new necessary conditions for attacking and solving the k-dimensional problem.

Keywords Difference sequence, q-ary linear code of dimension 5, weight hierarchy.

1 Introduction

Coding theory is an important part of information theory. Hamming, who is well-known
coding scientist and one of the founders of coding theory, raised the concept of Hamming
weight. The weight hierarchy of a linear code of dimension k is a sequence (d1, d2, · · · , dk).
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These parameters were first introduced by Wei (see [1]). It is important in the analysis of
the application of a linear code to the wiretap channel of type II (see [1]), the estimation of
the trellis complexity of linear codes, and the analysis of linear codes for error detection on
the local binomial channel. In short, the weight hierarchy is a sequence of basic important
parameters and closely related to the design and security of communication systems. In [2]
Klφve etc proposed “determining all possible weight hierarchies of general linear codes”, which
is a basic theoretical issue of important scientific significance in communication system. The
possible weight hierarchies of binary linear codes of dimension up to 4 were determined in [2, 3].

In 1996, Chen and Klφve introduced the finite projective geometry method, that was first
effectively used to study the weight hierarchies of q-ary linear codes of dimension 4 (see [4]).
The weight hierarchies of linear codes of dimension 4 were split into 9 classes in [5], and there are
a wealth of classified researches using the finite projective geometry method (see [5–7], etc.).
However, the number of those unknown sequences increases sharply when q and k increase
(see [8]). And we cannot determine whether those unknown sequences are weight hierarchies or
not. So it is impossible to determine all weight hierarchies of q-ary linear codes of dimension
k. A reasonable formulation of the problem is “determine almost all weight hierarchies of q-ary
linear codes of dimension k”, that was first introduced by Chen and Klφve in 2003 (see [9]).
This is a difficult problem. So far this problem was solved only for some small classes of k-
dimensional codes (such as class I, see [9]), and 3-dimensional codes (see [8]) and 4-dimensional
ones (see [10]).

There is little study about 5-dimensional codes. In [11], the weight hierarchies of binary
linear codes of dimension 5 satisfying the chain condition were determined with the aid of
computer. Thus, it is meaningful to further determine the weight hierarchies of 5-dimensional
general linear codes. According to the method used in [5], we can classify higher dimensional
linear codes. However, the number of classes obtained by this classification method is rapidly
expanded with the increase of the dimension. There are 114 classes in 5-dimensional codes and it
is difficult to determine one by one. Based on the necessary conditions in [3], The authors of this
paper split 5-dimensional codes and their weight hierarchies into six classes (see [12]), greatly
reducing the number of ones. Then we may improve research results of the 4-dimensional codes
up to five-dimensional ones. “Determine almost all weight hierarchies of q-ary linear codes of
dimension 5” is a challenging new topic, which is much more difficult and complicated than the
corresponding problem of the 4-dimensional codes, and there is little study in this area. The
authors of this paper developed the method of the subspace set which was first introduced in [9],
and extended the fall method in [10], and determined the weight hierarchies of almost all linear
codes of dimension 5 in class II using the finite projective geometry method (see [12]). Later,
in [13] the authors of this paper determined the weight hierarchies of almost all linear codes
in class V. Class IV studied in this paper face more difficulties. The necessary conditions of
class IV in [12] were not most tight nor best, by which we can not determine almost all weight
hierarchies of 5-dimensional linear codes in class IV. In order to solve this problem, in this paper
we found four new necessary conditions by the finite projective geometry method, thus modified
the necessary conditions of the weight hierarchies of 5-dimensional linear codes in class IV to



WEIGHT HIERARCHIES OF q-ARY LINEAR CODES OF DIMENSION 5 245

be most tight and best. Further, we classified the weight hierarchies of 5-dimensional linear
codes in class IV into 6 subclasses, improved the fall method, and completed the determination
on almost all weight hierarchies of 5-dimensional linear codes in class IV. It opens the way to
determine the weight hierarchies of the rest two of 5-dimensional codes (classes III and VI), and
break through the difficulties. Furthermore, the new necessary conditions show that necessary
conditions of the weight hierarchies of k-dimensional codes in [3] were not enough (not most
tight nor best), so, it is important to excogitate further new necessary conditions for attacking
and solving the k-dimensional problem.

2 Preliminaries

Throughout this paper, unless otherwise stated, C denotes a [n, k; q] code, that is, a linear
code of length n and dimension k over GF (q). For any subcode D of C , the support of D

is the set of positions where not all the codewords of D are zero, and we denote it by χ(D).
Further, the support weight of D is the size of χ(D), and we denote it by ωs(D).

For 1 ≤ r ≤ k, the r-th minimum support weight (or Generalized Hamming weight)
of C is defined by dr = dr(C) = min{ωs(D)|D is a [n, r; q] subcode of C}. The sequence
(d1, d2, · · · , dk) is the weight hierarchy of C.

Without loss of generality, we may assume n = dk. The difference sequence (DS) (i0, i1, · · · ,

ik) of a [n, k; q] code is defined by ir = dk−r − dk−r−1 for 0 ≤ r ≤ k − 1, where d0 = 0.
The difference sequence can easily be computed from the weight hierarchy and vice versa.

Therefore, “determining the weight hierarchy” is equivalent to “determining the difference se-
quence”.

Let G be a generator matrix for C. For any x ∈ GF (q)5, m(x) denotes the number of
occurrences of x as a column in G. If y is a column in the generator matrix G, and x = αy for
some nonzero α ∈ GF (q), then we may replace y by x without changing the support weight of
any subcode. Therefore, we assume that all columns in G are non-zero. and we may describe
the columns in G by points in the projective space PG(4, q). Let V4 be the projective space
PG(4, q). A value assignment is a function m : V4 → N, N = {0, 1, · · · }.

For any point p ∈ PG(4, q), we call m(p) the value (or weight) of p. We use the following
further notation: m(S) =

∑
p∈S m(p) for S ⊂ PG(4, q).

In [4], it was proved that the existence of a code with weight hierarchy (d1, d2, d3, d4, d5) is
equivalent to the existence of a value assignment m such that:

max{m(Ur)|Ur is r-dimensional subspace of V4} =
r∑

j=0

ij , 0 ≤ r ≤ 4. (1)

Let p∗, l∗, P ∗, V ∗ be the heaviest point, line, plane and body respectively, while the function
take the maximum value of the right side of (1) as r = 0, 1, 2, 3. The core of the finite projective
geometry method for determining almost all weight hierarchies of q-ary linear codes is that:
First find the most tight and best necessary conditions of the difference sequences using the
geometric method, and then construct the function m satisfying (1) as evenly as possible for
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almost all ij satisfying this conditions.

3 Main Results

Definition 3.1 Let N(i) be the number of difference sequences satisfying the sufficient
condition of some class with i0 ≤ i, and M(i) be the number of sequences satisfying the
necessary condition of the same class with i0 ≤ i. If limi→∞

N(i)
M(i) = 1, we call the necessary

condition almost sufficient.

In [12], The necessary conditions of the difference sequence of 5-dimensional linear codes
were split into 6 classes, and there is no public sequence in arbitrary two classes. In this case,
the difference sequences (the weight hierarchies) of 5-dimensional linear codes were split into 6
classes.

Definition 3.2 We call a linear code q-ary linear code of dimension 5 in class IV, if the
necessary conditions for the difference sequence (i0, i1, i2, i3, i4) of the linear code are

i1 ≤ qi0, qi1 < i2 ≤ q2

q + 1
(i0 + i1), i3 ≤ q2

q + 1
(i1 + i2),

max
{

1,
q

q − 1
(i0 − i3)

}

≤ i4 ≤ min{qi3, (q3 + q2 + q)i1 − i2 − i3}.

In this paper, we study the difference sequences of q-ary linear codes of dimension 5 in class
IV. The necessary conditions of class IV in [12] were not most tight nor best. In Theorem3.3
below, we add several new necessary conditions to the difference sequences in class IV, and
show that the new necessary conditions are almost sufficient in class IV.

Theorem 3.3 For q-ary linear codes of dimension 5, the necessary and almost sufficient
conditions for the sequence (i0, i1, i2, i3, i4) to be a difference sequence of class IV are

(i) i0
q2 < i1 ≤ qi0;

(ii) qi1 < i2 ≤ min
{

q2

q+1 (i0 + i1), (q2 + q)i1 − i0
}
;

(iii) 1 ≤ i4 ≤ qi3 (if i0 ≤ i3 ≤ (q2 + q)i1 − i2 );
(iv) i0 ≤ i4 ≤ min{(q3 + q2 + q)i1 − i2 − i3, (q2 + q)i1 − i2 + (q − 1)i3}

(
if (q2 + q)i1 − i2 <

i3 ≤ q2

q+1 (i1 + i2)
)
.

Good sufficient conditions can determine almost all weight hierarchies of linear codes of
dimension 5 in class IV.

4 New Necessary Conditions and Classification

We first deduce new key necessary conditions.
From [13], we have p∗ /∈ P ∗ if i2 > qi1. Then p∗ and P ∗ determine a body V , and we have

i0 + i0 + i1 + i2 = m(p∗) + m(P ∗) ≤ m(V ) ≤ i0 + i1 + i2 + i3, so we get: i3 ≥ i0.
If p∗ ∈ V ∗, we have i0 + i1 + i2 + i3 = m(V ∗) = m(p∗) +

∑
p∗∈l⊂V ∗(m(l) − m(p∗)) ≤

i0 + (q2 + q + 1)i1, and so we get: i3 ≤ (q2 + q)i1 − i2.



WEIGHT HIERARCHIES OF q-ARY LINEAR CODES OF DIMENSION 5 247

If p∗ /∈ V ∗, we have i0 + i1 + i2 + i3 + i4 = m(V4) ≥ m(p∗ ∪ V ∗) = i0 + i0 + i1 + i2 + i3, and
so we get: i4 ≥ i0.

If p∗ /∈ V ∗, marking the body determined by p∗, P ∗ with V1, then m(V1) ≤ i0+(q2+q+1)i1,
and m(V1) − m(P ∗) ≤ (q2 + q)i1 − i2. Because in V4 there are q + 1 bodies through P ∗, so
m(P ∗) + i3+i4−(m(V1)−m(P∗))

q ≤ m(V ∗), and we get: i4 ≤ (q2 + q)i1 − i2 + (q − 1)i3.
Four new necessary conditions are got.
Because qi3 − ((q3 + q2 + q)i1 − i2− i3) = (q + 1)i3− ((q3 + q2 + q)i1 − i2), (q3 + q2 + q)i1 −

i2 − i3 − ((q2 + q)i1 − i2 + (q − 1)i3) = q(q2i1 − i3) and qi3 − ((q2 + q)i1 − i2 + (q − 1)i3) =
i3 − ((q2 + q)i1 − i2), and it is clear that (q2 + q)i1 − i2 < (q3+q2+q)i1−i2

q+1 < q2i1 < q2

q+1 (i1 + i2),
so, let the upper bound of i4 be qi3 if i0 ≤ i3 ≤ (q2 + q)i1 − i2, let the upper bound of i4

be (q2 + q)i1 − i2 + (q − 1)i3 if (q2 + q)i1 − i2 < i3 < q2i1, let the upper bound of i4 be
(q3 + q2 + q)i1 − i2 − i3 if q2i1 ≤ i3 ≤ q2

q+1 (i1 + i2).
It was known in [13] that we have i2 ≤ (q2 + q)i1 − i0 and i1 > i0

q2 if i2 > qi1. Then

let the upper bound of i2 be q2

q+1 (i0 + i1) if i0
q < i1 ≤ qi0, and let the upper bound of i2 be

(q2 + q)i1 − i0 if i0
q2 < i1 ≤ i0

q .
Hence, we can classify the necessary conditions of the difference sequences in class IV into

6 disjoint subclasses: IV1, IV2, IV3, IV4, IV5, IV6.
IV1: i0

q < i1 ≤ qi0, qi1 < i2 ≤ q2

q+1 (i0 + i1), i0 ≤ i3 ≤ (q2 + q)i1 − i2, 1 ≤ i4 ≤ qi3;

IV2: i0
q < i1 ≤ qi0, qi1 < i2 ≤ q2

q+1 (i0 + i1), (q2 + q)i1 − i2 < i3 < q2i1, i0 ≤ i4 ≤
(q2 + q)i1 − i2 + (q − 1)i3;

IV3: i0
q < i1 ≤ qi0, qi1 < i2 ≤ q2

q+1 (i0 + i1), q2i1 ≤ i3 ≤ q2

q+1 (i1 + i2), i0 ≤ i4 ≤
(q3 + q2 + q)i1 − i2 − i3;

IV4: i0
q2 < i1 ≤ i0

q , qi1 < i2 ≤ (q2 + q)i1 − i0, i0 ≤ i3 ≤ (q2 + q)i1 − i2, 1 ≤ i4 ≤ qi3;
IV5: i0

q2 < i1 ≤ i0
q , qi1 < i2 ≤ (q2 + q)i1 − i0, (q2 + q)i1 − i2 < i3 < q2i1, i0 ≤ i4 ≤

(q2 + q)i1 − i2 + (q − 1)i3;
IV6: i0

q2 < i1 ≤ i0
q , qi1 < i2 ≤ (q2 + q)i1 − i0, q2i1 ≤ i3 ≤ q2

q+1 (i1 + i2), i0 ≤ i4 ≤
(q3 + q2 + q)i1 − i2 − i3.

As the necessary conditions of the difference sequences in class IV satisfying
⋃6

i=1 IVi = IV,
the proof of Theorem 3.3 is transformed into proving that the necessary conditions of the
difference sequences in classes IV1–IV6 are almost sufficient, that is, we find the sufficient
conditions of the difference sequences in classes IV1–IV6, which are very close to the necessary
conditions.

5 Sufficient Conditions of Class IV1

In order to find the sufficient conditions of the difference sequences in class IV1 (Theorem
5.4), firstly we construct an assignment function m satisfying (1) when ij is the bound value.
We call the construction as the bound construction.
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Lemma 5.1 Let

i1 = qi0 − (q + 1), (2)

i2 = qi1 + q, (3)

i3 = (q2 + q)i1 − i2, (4)

i4 = qi3, (5)

where i1, i3, i4 are the upper bounds, i2 is the lower bound (when i1 is the upper bound qi0−(q+1),
the upper bound of i2 is equal to its lower bound). Then the bound sequence (i0, i1, i2, i3, i4) is
the difference sequence.

Proof From the bounds, we can get:

m(l∗) = i0 + i1 = (q + 1)i0 − (q + 1),

m(P ∗) = i0 + i1 + i2 = (q2 + q + 1)i0 − (q2 + q + 1),

m(V ∗) = i0 + i1 + i2 + i3 = (q3 + q2 + q + 1)i0 − (q3 + 2q2 + 2q + 1).

Let PG(4, q) be the 4-dimensional polyhedron of which five points e1, e2, e3, e4, e5 not in
a body are vertexes, shown in Figure 1(a). Let 〈x1, x2, · · · , xt〉 be the subspace of PG(4, q) of
dimension t − 1 which is determined by the points x1, x2, · · · , xt.

Let p1 be a given point on 〈e1, e5〉\{e1, e5}, p2 be a given point on 〈e1, e3〉\{e1, e3}, and p3

be a given point on 〈e1, e4〉\{e1, e4}.
We construct the function m(x) as follows:

m(x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

i0, x = e1,

i0 − 3, x ∈ 〈e2, e3, p1〉\〈e3, p1〉,
i0 − 2, x ∈ (〈e2, e3, e4, p1〉 ∪ 〈e3, p3〉 ∪ {p2})

\(〈e3, e4〉 ∪ (〈e2, e3, p1〉\〈e3, p1〉)),
i0 − 1, others.

Let e1 be p∗, 〈e3, e4〉 be l∗, 〈e3, e4, e5〉 be P ∗, 〈e1, e3, e4, e5〉 be V ∗ (in fact, the plane through
〈e3, e4, e5〉 is all V ∗). It is easy to prove that m(·) satisfies the condition (1).

In order to get general construction from the bound construction above, we will prove that
i1 can decrease to be near its lower bound with body sets, retaining that other ij is still bound
value (Lemma 5.2); and then we will prove that i2 can increase to near its upper bound,
retaining that i3, i4 are still bound values (Lemma 5.3); finally, we will decrease i3, i4 to near
their lower bounds (Theorem 5.4).
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(a) Graph for the bound construction (b) Graph used to decrease i1

Figure 1 Graph for the bound construction (Figure(a)) of class IV1 in PG(4, q) and

graph used to decrease i1 (Figure(b)), where 〈li, Nj , Ck〉 is body in PG(4, q)

Lemma 5.2 For all sequences (i0, i1, i2, i3, i4) satisfying (3)–(5), if

i0
q

+ f1(q) ≤ i1 ≤ qi0 − f2(q), (6)

where f1(q) = (q7+q3)(q2−1)+2q−1, f2(q) = (q8+2q7+q5)(q2−1)+q+1, then (i0, i1, i2, i3, i4)
is the difference sequence.

Proof Let li be the line in 〈e3, e4, e5〉 except 〈e3, e4〉, 0 ≤ i < q2 + q; Nj ∈ 〈e1, e3, e4, e5〉 \
(〈e3, e4, e5〉 ∪ 〈e1, li〉), 0 ≤ j < q3 − q2; Ck ∈ V4 \ 〈e1, e3, e4, e5〉, 0 ≤ k < q4. All 〈li, Nj, Ck〉
form a body set (see Figure 1(b)).

Based on m(x), and modifying it slightly, we construct the function m′(x) as follows:

m′(x) =

⎧
⎨

⎩

m(x) − 1, x ∈ 〈li, Nj , Ck〉,
m(x), others.

Each body in the body set and each line in V4 at least intersect at one point, hence the value
of each line decrease 1 (abbreviated as ↓ 1) after modifying one time. 〈e1, e2〉 ↓ 1, it is still l∗.
i0 has no change, i1 ↓ 1. Similarly, body and plane at least intersect at one line, plane at least
↓ (q + 1). 〈e1, e3, e4〉 ↓ (q + 1), it is still P ∗. Body and another body at least intersect at one
plane. Body at least ↓ (q2 + q + 1), 〈e1, e3, e4, e5〉 ↓ (q2 + q + 1), it is still V ∗. i2, i3, i4 ↓ q, q2, q3

respectively, (1) still holds. The sequence after decreasing is still the difference sequence, and
the bound formulas (3)–(5) still meet. This is the benefit of the method of subspace set like as
body set.

There are q7(q2 − 1) bodies like as 〈li, Nj , Ck〉. Using the q7(q2 − 1) bodies one by one
and function m′(x) after iteratively modified q7(q2 − 1) times (say i1 decreases by one cycle),
i1 ↓ q7(q2−1). The value of every point on 〈e3, e4〉 ↓ q(q3−q2)q4 = q7(q−1), The value of every
point on 〈e3, e4, e5〉 \ 〈e3, e4〉 ↓ (q + 1)(q3 − q2)q4 = q6(q2 − 1) (for each line through this point,
because 〈li, Nj〉 is not through point e1, so there are q3 − q2 points Nj that can be selected).
The value of every point on 〈e1, e3, e4, e5〉 \ (〈e3, e4, e5〉 ∪ 〈e1, e3, e4〉) (altogether q3 − q2 points)
↓ (q2 + q − q − 1)q4q2 = q6(q2 − 1). The value of every point on 〈e1, e3, e4〉 \ ({e1} ∪ 〈e3, e4〉)
(altogether q2−1 points) ↓ q2q4q2 = q8. The value of every point out of 〈e1, e3, e4, e5〉 (altogether
q4 points) ↓ (q2 + q)(q3 − q2)q3 = q6(q2 − 1).
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In order to make the values of all points larger than 0, computing the cycle times ω1 for i1

decreasing: (i0 − 3) − ω1q
8 ≥ 0, we get ω1 ≤ i0−3

q8 . Let ω1 =
⌊

i0−3
q8

⌋
, then i1 can decrease to

qi0−(q+1)−ω1q
7(q2−1) < qi0−(q+1)−(

i0−3
q8 −1

)
q7(q2−1) = i0

q + 3(q2−1)
q +q7(q2−1)−(q+1).

The proof is completed.

(a) Graph used to increase i2 (b) Graph used to decrease i3

Figure 2 Graph used to increase i2 (Figure(a)) and graph used to

decrease i3 (Figure(b)) in class IV1

Lemma 5.3 For all sequences (i0, i1, i2, i3, i4) satisfying (4)–(6), if

qi1 + f3(q) ≤ i2 ≤ q2

q + 1
(i0 + i1) − f4(q), (7)

where f3(q) = q,f4(q) = (q9 + 2q8 + 2q6)(q − 1), then (i0, i1, i2, i3, i4) is the difference sequence.

Proof Let Ai ∈ 〈e3, e4, e5〉 \ 〈e3, e4〉, 0 ≤ i < q2; Ej ∈ 〈e1, Ai〉 \ {e1, Ai}, 1 ≤ j ≤ q − 1;
Ck ∈ V4 \ 〈e1, e3, e4, e5〉, 0 ≤ k < q4 (see Figure 2(a)).

We construct the function m′′(x) as follows:

m′′(x) =

⎧
⎪⎪⎨

⎪⎪⎩

m′(x) + 1, x = Ai,

m′(x) − 1, x ∈ 〈Ej , Ck〉,
m′(x), others,

where m′(x) is the corresponding assignment function (after iterating repeatedly) after i1 taking
some value in (6).

There are q2(q − 1)q4 = q6(q − 1) groups of points like as Ai, Ej , Ck. After one cycle,
Ai ↑ q4(q − 1). The value of every point on 〈e1, e3, e4, e5〉 \ (〈e3, e4, e5〉 ∪ 〈e1, e3, e4〉) (altogether
q3 − q2 points) ↓ q4. The value of every point out of 〈e1, e3, e4, e5〉 (altogether q4 points)
↓ (q3 − q2)q = q3(q − 1).

Suppose i2 ↑ ω2 cycles, let ω2 =
⌊ qi0−(q+1)−i1−(q8+2q7+q5)(q2−1)

q5(q2−1)

⌋
, then i2 can increase to

qi1 + q + q6(q − 1)ω2 > q2

q+1 (i0 + i1)− (q9 + 2q8 + 2q6)(q − 1) = q2

q+1 (i0 + i1)− f4(q), that is, i2

can increase to near its upper bound. we can verify that:
1) The value of point on 〈e1, e3, e4, e5〉\(〈e3, e4, e5〉∪〈e1, e3, e4〉) ≥ i0−2−⌊qi0−(q+1)−i1

q7(q2−1)

⌋
q6(q2−

1) − q6(q2 − 1) − q4ω2 − q4 ≥ 0;
2) The value of point on 〈e3, e4, e5〉 \ 〈e3, e4〉 ≤ i0 − 1 − ⌊ qi0−(q+1)−i1

q7(q2−1)

⌋
q6(q2 − 1) + q4(q −

1)ω2 + q4(q − 1) < i0;



WEIGHT HIERARCHIES OF q-ARY LINEAR CODES OF DIMENSION 5 251

3) For line l in 〈e3, e4, e5〉 (not 〈e3, e4〉), we have m′′(l) ≤ (q+1)i0−(q+1)−⌊ qi0−(q+1)−i1
q7(q2−1)

⌋
q6

(q2 − 1)q − ⌊ qi0−(q+1)−i1
q7(q2−1)

⌋
q7(q − 1) + q4(q − 1)qω2 + q4(q − 1)q ≤ m′′(l∗) = i0 + i1.

〈e3, e4, e5〉 is still P ∗ because the value of it increases most; each body is at most not
decreased, hence 〈e1, e3, e4, e5〉 is still V ∗.

Furthermore, from ω2 ≥ 0, we get: qi0 − i1 ≥ (q8 + 2q7 + q5)(q2 − 1) + (q + 1) = f2(q), that
is, after the value of i1 is away from its upper bound more than (q8 + 2q7 + q5)(q2 − 1), i2 can
begin to increase.

Using construction m′′(x), i2 can increase to near its upper bound, retaining that i3, i4 are
still bound values and sequence is still the difference sequence.

Theorem 5.4 For q-ary linear codes of dimension 5, the sufficient conditions for the
sequence (i0, i1, i2, i3, i4) to be a difference sequence in class IV1 are that

(i) f0(q) ≤ i0;
(ii) i0

q + f1(q) ≤ i1 ≤ qi0 − f2(q);

(iii) qi1 + f3(q) ≤ i2 ≤ q2

q+1 (i0 + i1) − f4(q);
(iv) i0 + f5(q) ≤ i3 ≤ (q2 + q)i1 − i2;
(v) 1 ≤ i4 ≤ qi3

where f0(q) = q9 + 3q8 + q6 + q4 + 4, f1(q) = (q7 + q3)(q2 − 1) + 2q − 1, f2(q) = (q8 + 2q7 +
q5)(q2 − 1)+ q + 1, f3(q) = q, f4(q) = (q9 + 2q8 + 2q6)(q − 1), f5(q) = (q9 + 2q4 + 3)(q2 − 1)+
3q6(q − 1) + q3 − 3q2 − q.

Proof Let Xi ∈ 〈e1, e3, e4〉\({e1}∪〈e3, e4〉), 0 ≤ i < q2−1; Fj ∈ 〈e1, e3, e4, e5〉\(〈e3, e4, e5〉∪
〈e1, e3, e4〉), 0 ≤ j < q3 − q2; Ck ∈ V4 \ 〈e1, e3, e4, e5〉, 0 ≤ k < q4. (see Figure 2(b)).

We construct the function m′′′
1 (x), m′′′

2 (x) as follows:

m′′′
1 (x) =

⎧
⎨

⎩

m′′(x) − 1, x ∈ 〈Fj , Ck〉,
m′′(x), others,

m′′′
2 (x) =

⎧
⎨

⎩

m′′′
1 (x) − 1, x ∈ 〈Xi, Ck〉,

m′′′
1 (x), others,

where m′′(x) is the corresponding assignment function (after iterating repeatedly) after i2

taking some value in (7), and m′′′
1 (x) is the corresponding assignment function (after iterating

repeatedly by the function m′′′
1 (x)) after i3 taking some value.

There are q6(q−1) lines like as 〈Fj , Ck〉. After one cycle, Fj ↓ q4, Ck ↓ (q3−q2)q = q3(q−1).
There are q4(q2 − 1) lines like as 〈Xi, Ck〉. After one cycle, Xi ↓ q4, Ck ↓ (q2 − 1)q.
Suppose i3 decrease ω3 cycles by lines like as 〈Fj , Ck〉, in order to keep value of Fj ≥

i0 − 2 − ⌊ qi0−(q+1)−i1
q7(q2−1)

⌋
q6(q2 − 1) − q6(q2 − 1) − ⌊

i2−qi1−q
q6(q−1)

⌋
q4 − q4 − q4ω3 − q4 ≥ 0, we have

ω3 ≤ q2i1−i2−q8(q−1)(q2−1)−2q6(q−1)−q3+2q2

q6(q−1) .
Suppose i3 decrease ω4 cycles by lines like as 〈Xi, Ck〉, in order to keep value of Xi ≥

i0 − 2 − ⌊ qi0−(q+1)−i1
q7(q2−1)

⌋
q8 − q8 − q4ω4 − q4 ≥ 0, we have ω4 ≤ qi1−i0−(q8+q4+3)(q2−1)+q(q+1)

q4(q2−1) .
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Let

ω3 =
⌊q2i1 − i2 − q8(q − 1)(q2 − 1) − 2q6(q − 1) − q3 + 2q2

q6(q − 1)
⌋
,

ω4 =
⌊qi1 − i0 − (q8 + q4 + 3)(q2 − 1) + q(q + 1)

q4(q2 − 1)
⌋
.

Then i3 can decrease to (q2 + q)i1 − i2 − q6(q − 1)ω3 − q4(q2 − 1)ω4 < i0 + (q9 + 2q4 +
3)(q2 − 1) + 3q6(q − 1) + q3 − 3q2 − q = i0 + f5(q). That is, i3 can decrease to near its lower
bound, furthermore no values of point, line, plane and body exceeds the ones of p∗, l∗, P ∗ and
V ∗ respectively. In this process, e1 is p∗, 〈e3, e4〉 is l∗, 〈e3, e4, e5〉 is P ∗, 〈e1, e3, e4, e5〉 is V ∗. i4

is still the bound value, and the sequence is still the difference sequence.
i4 can directly decrease to its lower bound.
Furthermore, from ω4 ≥ 0, we get i1 ≥ i0

q + (q8+q4+3)(q2−1)−q(q+1)
q . We can let f1(q) = (q7 +

q3)(q2−1)+2q−1. And from i0
q +f1(q) ≤ i1 ≤ qi0−f2(q), we get i0 ≥ q9+3q8+q6+q4+4 = f0(q).

In summary, the theorem is proved.
Let N1(i) be the number of difference sequences satisfying the sufficient condition in Class

IV1 with i0 ≤ i, and M1(i) be the number of sequences satisfying the necessary condition in
class IV1 with i0 ≤ i. From Theorem 5.4, on computer we can get limi→∞

N1(i)
M1(i)

= 1.

6 Sufficient Conditions of Class IV2

With the similar method in Section 5, in this section we only give the result and the con-
struction used to prove the result. When i0

q < i1 ≤ qi0, qi1 < i2 ≤ q2

q+1 (i0+i1), (q2+q)i1−i2 <

i3 < q2i1, i0 ≤ i4 ≤ (q2 + q)i1 − i2 + (q − 1)i3, we first make bound construction.

Lemma 6.1 Let

i1 = qi0 − (q + 1), (8)

i2 = qi1 + q, (9)

i3 = (q2 + q)i1 − i2 + 1, (10)

i4 = (q2 + q)i1 − i2 + (q − 1)i3 − (q − 1), (11)

where i1, i4 are the upper bounds, i2, i3 are the lower bounds, then the bound sequence (i0, i1, i2,
i3, i4) is the difference sequence.

Proof Let p4 be a given point on 〈e2, e5〉\{e2, e5}, p5 be a given point on 〈e2, e3〉\{e2, e3},
and p6 be a given point on 〈e2, e4〉\{e2, e4} (see Figure 3(a)).

We construct the function m(x) as follows:

m(x) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

i0, x = e2,

i0 − 2, x ∈ (〈e1, e3, e4, p4〉 ∪ 〈e1, e4, p5〉 ∪ 〈e1, e5〉 ∪ {p6})
\(〈e3, e4〉 ∪ 〈e1, e4〉 ∪ {e5}),

i0 − 1, others,
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where e2 is p∗, 〈e3, e4〉 is l∗, 〈e3, e4, e5〉 is P ∗, and 〈e1, e3, e4, e5〉 is V ∗.

(a) Graph for the bound construction (b) Graph used to decrease i1

Figure 3 Graph for the bound construction (Figure(a)) of class IV2 in PG(4, q) and graph

used to decrease i1 (Figure(b)), where 〈li, Bj , Qk〉 is body in PG(4, q)

Lemma 6.2 For all sequences (i0, i1, i2, i3, i4) satisfying (9)–(11), if

i0
q

+ g1(q) ≤ i1 ≤ qi0 − g2(q), (12)

where g1(q) = 2q9 − 2q7 + q, g2(q) = (q9 + 2q8 + 2q7 + 3q4)(q2 − 1) + 2q3 + 2q2 + q + 1, then
(i0, i1, i2, i3, i4) is the difference sequence.

Proof Let li be line in 〈e3, e4, e5〉 except 〈e3, e4〉, 0 ≤ i < q2 + q; Bj ∈ 〈e1, e3, e4, e5〉 \
〈e3, e4, e5〉, 0 ≤ j < q3; Qk ∈ V4 \ (〈e1, e3, e4, e5〉 ∪ 〈li, Bj , e2〉), 0 ≤ k < q4 − q3. 〈li, Bj , Qk〉
form a body set (see Figure 3(b)).

Based on m(x), and modifying it slightly, we construct the function m′(x) as follows:

m′(x) =

⎧
⎨

⎩

m(x) − 1, x ∈ 〈li, Bj , Qk〉,
m(x), others.

The proof is completed.

Lemma 6.3 For all sequences (i0, i1, i2, i3, i4) satisfying (10)–(12), if

qi1 + g3(q) ≤ i2 ≤ q2

q + 1
(i0 + i1) − g4(q), (13)

where g3(q) = q11 − q9 + q6 − q5 +2q3 + q, g4(q) = (q9 +2q8 + 2q5)(q − 1), then (i0, i1, i2, i3, i4)
is the difference sequence.

Proof Let Ai ∈ 〈e3, e4, e5〉\〈e3, e4〉, 0 ≤ i < q2; Bj ∈ 〈e1, e3, e4, e5〉\〈e3, e4, e5〉, 0 ≤ j < q3;
Mk ∈ 〈e2, Ai〉 \ {e2, Ai}, 1 ≤ k ≤ q − 1 (see Figure 4(a)).

We construct the function m′′(x) as follows:

m′′(x) =

⎧
⎪⎪⎨

⎪⎪⎩

m′(x) + 1, x = Ai,

m′(x) − 1, x ∈ 〈Bj , Mk〉,
m′(x), others,

where m′(x) is the corresponding assignment function (after iterating repeatedly) after i1 taking
some value in (12).
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(a) Graph used to increase i2 (b) Graph used to increase i3

Figure 4 Graph used to increase i2 (Figure(a)) and graph used to

increase i3 (Figure(b)) in class IV2

Theorem 6.4 For q-ary linear codes of dimension 5, the sufficient conditions for the
sequence (i0, i1, i2, i3, i4) to be a difference sequence of in class IV2 are that

(i) g0(q) ≤ i0;
(ii) i0

q + g1(q) ≤ i1 ≤ qi0 − g2(q);

(iii) qi1 + g3(q) ≤ i2 ≤ q2

q+1 (i0 + i1) − g4(q);
(iv) (q2 + q)i1 − i2 + g5(q) ≤ i3 ≤ q2i1 − g6(q);
(v) i0 ≤ i4 ≤ (q2 + q)i1 − i2 + (q − 1)i3,

where g0(q) = q10 + 2q9 + 4q8 + 3q5 + 2q2 + 2q + 8, g1(q) = 2q9 − 2q7 + q, g2(q) = (q9 +
2q8 + 2q7 + 3q4)(q2 − 1) + 2q3 + 2q2 + q + 1, g3(q) = q11 − q9 + q6 − q5 + 2q3 + q, g4(q) =
(q9 + 2q8 + 2q5)(q − 1), g5(q) = 1, g6(q) = q9(q2 − 1) + q5(q − 1) + 2q3 + q − 1.

Proof Let Bj ∈ 〈e1, e3, e4, e5〉 \ 〈e3, e4, e5〉, 0 ≤ j < q3 (see Figure 4(b)).
We construct the function m′′′(x) as follows:

m′′′(x) =

⎧
⎨

⎩

m′′(x) + 1, x ∈ 〈e2, Bj〉 \ {e2},
m′′(x), others,

where m′′(x) is the corresponding assignment function (after iterating repeatedly) after i2 taking
some value in (13).

7 Sufficient Conditions of Class IV3

In this section we only give the result and the construction used to prove the result. When
i0
q < i1 ≤ qi0, qi1 < i2 ≤ q2

q+1 (i0+i1), q2i1 ≤ i3 ≤ q2

q+1 (i1+i2), i0 ≤ i4 ≤ (q3+q2+q)i1−i2−i3,
we first make bound construction.
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(a) Graph for the bound construction (b) Graph used to decrease i1

Figure 5 Graph for the bound construction (Figure(a)) of class IV3 in PG(4, q) and

graph used to decrease i1 (Figure(b)), where 〈li, Hj , Rk〉 is body in PG(4, q)

Lemma 7.1 Let

i1 = qi0 − (q + 1), (14)

i2 = qi1 + q, (15)

i3 = q2i1, (16)

i4 = (q3 + q2 + q)i1 − i2 − i3, (17)

where i1, i4 are the upper bounds, i2, i3 are the lower bounds, then the bound sequence (i0, i1, i2,
i3, i4) is the difference sequence.

Proof Let p5 be a given point on 〈e2, e3〉\{e2, e3}, p6 be a given point on 〈e2, e4〉\{e2, e4},
p7 be a given point on 〈e1, e2〉\{e1, e2} (see Figure 5(a)).

We construct the function m(x) as follows:

m(x) =

⎧
⎪⎪⎨

⎪⎪⎩

i0, x = e2,

i0 − 2, x ∈ (〈p7, e3, e4, e5〉 ∪ 〈e3, p6〉 ∪ {p5})\〈e3, e4〉,
i0 − 1, others,

where e2 is p∗, 〈e1, e3〉 is l∗, 〈e1, e3, e4〉 is P ∗, and 〈e1, e3, e4, e5〉 is V ∗.

Lemma 7.2 For all sequences (i0, i1, i2, i3, i4) satisfying (15)–(17), if

i0
q

+ h1(q) ≤ i1 ≤ qi0 − h2(q), (18)

where h1(q) = q9 − q7 + q − 1, h2(q) = (q8 + 2q7 + q)(q2 − 1) + q + 1, then (i0, i1, i2, i3, i4) is
the difference sequence.

Proof Let li be line in 〈e1, e3, e4〉 except 〈e1, e3〉, 0 ≤ i < q2 + q; Hj ∈ 〈e1, e3, e4, e5〉 \
〈e1, e3, e4〉, 0 ≤ j < q3; Rk ∈ V4 \ (〈e1, e3, e4, e5〉 ∪ 〈li, Hj , e2〉), 0 ≤ k < q4 − q3. 〈li, Hj , Rk〉
form a body set (see Figure 5(b)).

Based on m(x), and modifying it slightly, we construct the function m′(x) as follows:

m′(x) =

⎧
⎨

⎩

m(x) − 1, x ∈ 〈li, Hj , Rk〉;
m(x), others.
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(a) Graph used to increase i2 (b) Graph used to increase i3

Figure 6 Graph used to increase i2 (Figure(a)) and graph used to

increase i3 (Figure(b)) in class IV3

Lemma 7.3 For all sequences (i0, i1, i2, i3, i4) satisfying (16)–(18), if

qi1 + h3(q) ≤ i2 ≤ q2

q + 1
(i0 + i1) − h4(q), (19)

where h3(q) = q10 − q8 + 2q3 − q2 − q + 1, h4(q) = q8(q2 − 1) + q8(q − 1) + q2(q − 1), then
(i0, i1, i2, i3, i4) is the difference sequence.

Proof Let Si ∈ 〈e1, e3, e4〉 \ 〈e1, e3〉, 1 ≤ i ≤ q2; Tl ∈ 〈e2, Si〉 \ {e2, Si}, 1 ≤ l ≤ q − 1 (see
Figure 6(a)). We construct the function m′′(x) as follows:

m′′(x) =

⎧
⎪⎪⎨

⎪⎪⎩

m′(x) + 1, x = Si,

m′(x) − 1, x = Tl,

m′(x), others,

where m′(x) is the corresponding assignment function (after iterating repeatedly) after i1 taking
some value in (18).

Theorem 7.4 For q-ary linear codes of dimension 5, the sufficient conditions for the
sequence (i0, i1, i2, i3, i4) to be a difference sequence of in class IV3 are that

(i) h0(q) ≤ i0;
(ii) i0

q + h1(q) ≤ i1 ≤ qi0 − h2(q);

(iii) qi1 + h3(q) ≤ i2 ≤ q2

q+1 (i0 + i1) − h4(q);

(iv) q2i1 + h5(q) ≤ i3 ≤ q2

q+1 (i1 + i2) − h6(q);
(v) i0 ≤ i4 ≤ (q3 + q2 + q)i1 − i2 − i3,

where h0(q) = q9+3q8+q2+3, h1(q) = q9−q7+q−1, h2(q) = (q8+2q7+q)(q2−1)+q+1, h3(q) =
q10 − q8 + 2q3 − q2 − q + 1, h4(q) = q8(q2 − 1) + q8(q − 1) + q2(q − 1), h5(q) = 0, h6(q) =
q11 − q10 + 2q4 − 3q3 + 2q2 − 2q + 2.
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Proof Let Hj ∈ 〈e1, e3, e4, e5〉\〈e1, e3, e4〉, 0 ≤ j < q3;Gl ∈ 〈e2, Hj〉\{e2, Hj}, 1 ≤ l ≤ q−1
(see Fig.6(b)). We construct the function m′′′(x) as follows:

m′′′(x) =

⎧
⎪⎪⎨

⎪⎪⎩

m′′(x) + 1, x = Hj ,

m′′(x) − 1, x = Gl,

m′′(x), others,

where m′′(x) is the corresponding assignment function (after iterating repeatedly) after i2 taking
some value in (19).

8 Results in Classes IV4, IV5 and IV6

Theorem 8.1 For q-ary linear codes of dimension 5, the sufficient condition for the
sequence (i0, i1, i2, i3, i4) to be a difference sequence of in class IV4 are that

(i) f6(q) ≤ i0;
(ii) i0

q2 + f7(q) ≤ i1 ≤ i0
q − f8(q);

(iii) qi1 + f9(q) ≤ i2 ≤ (q2 + q)i1 − i0 − f10(q);
(iv) i0 + f11(q) ≤ i3 ≤ (q2 + q)i1 − i2 − f12(q);
(v) 1 ≤ i4 ≤ qi3,

where f6(q) = q8 + 3q6 + 5q2 + 3q + 6, f7(q) = q7 − q6 + 3q5 − 3q4 + 5q − 3, f8(q) = 1, f9(q) =
q, f10(q) = (q8 + 3q6 + 5q2 + 2q)(q − 1), f11(q) = (q8 + 3q6 + 4q2 + q)(q − 1), f12(q) = q3 − q.

Theorem 8.2 For q-ary linear codes of dimension 5, the sufficient conditions for the
sequence (i0, i1, i2, i3, i4) to be a difference sequence of in class IV5 are that

(i) g7(q) ≤ i0;
(ii) i0

q2 + g8(q) ≤ i1 ≤ i0
q − g9(q);

(iii) qi1 + g10(q) ≤ i2 ≤ (q2 + q)i1 − i0 − g11(q);
(iv) (q2 + q)i1 − i2 + g12(q) ≤ i3 ≤ q2i1 − g13(q);
(v) i0 ≤ i4 ≤ (q2 + q)i1 − i2 + (q − 1)i3,

where g7(q) = 2q8 + 3q5 + 7q2 + 6q + 12, g8(q) = 2q7 − 2q6 + 3q4 − 3q3 + 7q − 2, g9(q) =
1, g10(q) = (q8 + q5)(q − 1) + 3q3 + 2q2, g11(q) = (q8 + 2q5 + 4q2 + q)(q − 1) − q2, g12(q) =
1, g13(q) = (q8 + q5)(q − 1) + 3q3 + 2q2 − 1.

Theorem 8.3 For q-ary linear codes of dimension 5, the sufficient conditions for the
sequence (i0, i1, i2, i3, i4) to be a difference sequence of in class IV6 are that

(i) h7(q) ≤ i0;
(ii) i0

q2 + h8(q) ≤ i1 ≤ i0
q − h9(q);

(iii) qi1 + h10(q) ≤ i2 ≤ (q2 + q)i1 − i0 − h11(q);
(iv) q2i1 + h12(q) ≤ i3 ≤ q2

q+1 (i1 + i2) − h13(q);
(v) i0 ≤ i4 ≤ (q3 + q2 + q)i1 − i2 − i3,

where h7(q) = 2q8 + 2q2 + 2q + 4, h8(q) = 2q7 − 2q6 + 2q − 1, h9(q) = 1, h10(q) = q8 −
q7 + q3 + 3q2 + q + 1, h11(q) = (q8 + 3q4 + q3)(q − 1) − q2(q − 2), h12(q) = q3, h13(q) =
q9 − 2q8 + 2q7 − 2q6 + 2q5 − q4 + 3q3 − 3q2 + 3q − 2.
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