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Abstract This paper discusses the relationship of two independently developed models of games

with incomplete information, hierarchical hypergames and Bayesian games. It can be considered as a

generalization of the previous study on the theoretical comparison of simple hypergames and Bayesian

games (Sasaki and Kijima, 2012) by taking into account hierarchy of perceptions, i.e., an agent’s

perception about the other agents’ perceptions, and so on. The authors first introduce the general

way of transformation of any hierarchical hypergames into corresponding Bayesian games, which was

called as the Bayesian representation of hierarchical hypergames. The authors then show that some

equilibrium concepts for hierarchical hypergames can be associated with those for Bayesian games and

discuss implications of the results.

Keywords Bayesian games, game theory, hierarchy of perceptions, hypergames, incomplete informa-

tion.

1 Introduction

In game theory, a game is called complete information if all the components of the game are
commonly known by all the agents (decision makers). Otherwise, if some or all of them lack
full information about it, the game is called incomplete information.

The present study discusses two models of games with incomplete information: Hypergames
and Bayesian games. Hypergame theory deals with agents who may misperceive some compo-
nents of a game[1]. It is the basic idea of hypergames that each agent is assumed to have her
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own subjective view of the game, which is formulated as a normal form game called her sub-
jective game, and make a decision based on it. The assumption allows agents to hold different
perceptions about the game. Then a hypergame is defined as a collection of such subjective
games. Since an agent may misperceive another agent’s subjective game correctly, she may
not know the whole structure of the hypergame in which she is involved. On the other hand,
Bayesian games are usually considered as the standard model of games with incomplete infor-
mation in game theory[2]. It is argued that, in Bayesian games, any kind of incompleteness
of information can be captured by subjective probability distribution of each agent over the
set of possible states. Each possibility is modeled as a type of an agent, and a game with
incomplete information is reformulated as a game with complete (but imperfect) information
called a Bayesian game by introducing the set of types as well as each type’s belief, namely a
probability distribution on the others’ types.

These two models clearly deal with similar situations, nevertheless, as they have been es-
tablished and developed independently, their relationship had been left ambiguous†. Recently
Sasaki and Kijima[3] conducted a rigorous theoretical comparison of hypergames and Bayesian
games. They discuss the simplest model of hypergames called simple hypergames and its rela-
tion to Bayesian games. A simple hypergame is given as the set of agents and the collection
of each agent’s subjective game[4, 5]. It has been shown that any simple hypergame can be
reformulated as a Bayesian game according to Harsanyi’s way to treat incompleteness of infor-
mation, and some equilibrium concepts for simple hypergames can be associated with those for
Bayesian games such as Bayesian Nash equilibrium.

In this article, we extend the comparative study by considering hierarchy of perceptions, that
is, an agent’s perception about another agent’s perception, and so on. In a simple hypergame,
explicitly or implicitly, an agent is assumed to believe her own perception is common knowledge.
However, once an agent admits the possibility that the others may perceive the game in different
ways, she would take into account it when formulating her decision problem. Furthermore,
she might notice that the other agents may also notice such possibilities of misperceptions.
Hierarchical hypergames explicitly model such hierarchies of perceptions of agents‡[6–9].

As the theoretical contribution of the present study, we clarify the relationship between
hierarchical hypergames and Bayesian games. In a similar way to the previous study that deals
with simple hypergames[3], we first propose the general way of transformation of a hierarchical
hypergame into a Bayesian game. In order to express hierarchies of perceptions in terms of
Bayesian games, we define types so that they capture an agent’s belief about the other’s beliefs,
her belief about the other’s beliefs about the other’s beliefs, and so on[10]. Then we show some
equilibrium concepts for hierarchical hypergames can be associated with those for Bayesian
games.

Following this introduction, Section 2 introduces the models and concepts we discuss in the
study. Section 3 presents the procedure of Bayesian representation of hierarchical hypergames,

†Bayesian games are standard in information economics nowadays, while hypergames have been developed

and applied mainly in communities of operational research and systems engineering.
‡Hierarchical hypergames may be referred to as general hypergame or n-level hypergames in the literature.
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the way of transformation of hierarchical hypergames into Bayesian games. Then Section 4
proves some propositions describing the relationships of equilibrium concepts for the both mod-
els. Based on the results, we discuss some implications in Section 5.

2 Models

2.1 Normal Form Games

Let us start with normal form games, the basis of hypergames and Bayesian games. A
normal form game consists of three components: A set of agents, sets of actions available to
them, and utility functions for each that associate real values (utilities) with outcomes. In what
follows, we may simply say games as meaning normal form games. We do not deal with mixed
extension of games in this paper.

Definition 2.1 (Normal form games) G = (I, A, u) is a normal form game, where

• I is the finite set of agents.

• A = ×i∈IAi, where Ai is the finite set of agent i’s actions. a ∈ A is called an outcome.

• u = (ui)i∈I , where ui : A → � is agent i’s utility function.

2.2 Hierarchical Hypergames

2.2.1 The Framework

Hypergame theory deals with interactive situations where agents may misperceive some
components of a game. Each agent is assumed to have her own subjective view of it, which is
given as a normal form game and called the agent’s subjective game, based on which she makes
decisions.

Among several types of hypergame models, the hierarchical hypergame model the present
study focuses on explicitly takes into account a hierarchy of perceptions, that is, an agent’s per-
ception about another agent’s perception, and so on, by introducing the concept of viewpoints.
A viewpoint indicates a specific perception in the hierarchy. For example, viewpoint i means
agent i’s view, and viewpoint ji is agent j’s view perceived by agent i. In general, viewpoint
i1i2 · · · in is interpreted as agent i1’s view perceived by agent i2i3 · · · perceived by agent in. In
a hierarchical hypergame, each perception of each viewpoint is given as a normal form game
and called the viewpoint’s subjective game. Then a hypergame is defined as the collection of
all the subjective games.

Definition 2.2 (Hierarchical hypergames) H = (I, (Gσ)σ∈Σ ) is a hierarchical hypergame,
where I is the set of agents involved in the situation and Σ is the set of relevant viewpoints
defined as below. For any σ ∈ Σ , Gσ = (Iσ, Aσ, uσ) is a normal form game called viewpoint
σ’s subjective game, where

• Iσ is the set of agents perceived by viewpoint σ.

• Aσ = ×i∈IσAσ
i , where Aσ

i is the set of agent i’s actions perceived by viewpoint σ.
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• uσ = (uσ
i )i∈Iσ , where uσ

i : Aσ → � is agent i’s utility function perceived by viewpoint σ.

Then Σ is defined as I∪⋃∞
n=2{i1i2 · · · in|in ∈ I, ik−1 ∈ Iikik+1···in \{ik} for any k = 2, 3, · · · , n}.

We specify the set of viewpoints relevant in a hierarchical hypergame by Σ . A viewpoint
is said to be relevant when it is actually taken into account in some agent’s decision making.
We assume that, in a hypergame, any viewpoint σ, when formulating the decision situation,
considers views of all the agents who σ thinks are participating in the game and does not
consider views of anybody else. For example, when agent i is in I, i ∈ Σ by definition, and
if another agent j is in Ii, viewpoint ji must be in Σ , and otherwise, it is not included in
Σ . Furthermore, we suppose that a viewpoint does not contain any successive agents. For
example, since considering agent i’s view perceived by agent i is redundant, we do not consider
viewpoint ii, that is, ii /∈ Σ , and similarly, neither jii nor iij is included in Σ . In the subsequent
discussion, when we refer to viewpoints, we only indicate viewpoints relevant in this sense.

We may deal with concatenations of viewpoints. For example, by σ′σ with σ = i1i2 · · · in
and σ′ = j1j2 · · · jm (with jm �= i1) we mean viewpoint j1j2 · · · jmi1 · · · in. When σ = i1i2 · · · in
with n ≥ 2, any viewpoint imim+1 · · · in with n ≥ m ≥ 2 is said to be higher than σ. On
the other hand, any viewpoint τσ with τ = j1j2 · · · jl and jl �= i1 is said to be lower than σ.
For example, for viewpoint ji, viewpoint i is higher than ji while viewpoint kji is lower than
it. Furthermore, for σ = i1i2 · · · in, let us denote i1 by σ1. We say σ1 is the lowest agent in
viewpoint σ. For any σ ∈ Σ , let Σσ = σ ∪ {τσ|τ = j1j2 · · · jl, jl �= σ1, and τσ ∈ Σ}. Σσ is the
union of σ itself and the set of viewpoints lower than σ.

Moreover, we assume that for any σ ∈ Σ , 1) σ1 ∈ Iσ, and 2) Aiσ
i ⊆ Aσ

i for all i ∈ Iσ. The
first assumption means that, in a viewpoint, the lowest agent is always included in the agent
set perceived by it, which is required for the second one to be well-defined. Then the second
assumption means that if agent i thinks another agent j is aware that an action is available to
j herself, then i never excludes the action from j’s action set in i’s subjective game§.

2.2.2 Equilibrium Concepts

Among several equilibrium concepts for hierarchical hypergames, we select two of them be-
cause it will be shown later that these can be associated with equilibrium concepts for Bayesian
games.

The first one is the notion of subjective rationalizability¶[11].
Definition 2.3 (Subjective rationalizability) Let H = (I, (Gσ)σ∈Σ ) be a hypergame.

a∗
σ ∈ Aσ

σ1
is called subjectively rationalizable for viewpoint σ if and only if there exists (a∗

τ )τ∈Σσ

in ×τ∈ΣσAτ
τ1

which satisfies

∀τ ∈ Σσ, ∀aτ ∈ Aτ
τ1

, uτ
τ1

(a∗
τ , a∗

−τ ) ≥ uτ
τ1

(aτ , a∗
−τ ),

where a∗
−τ = (a∗

iτ )i∈Iτ\{τ1}. Then such (a∗
τ )τ∈Σσ is called a best response hierarchy of Σσ.

An action of the lowest agent in a viewpoint is called subjectively rationalizable for the
viewpoint when it is a best response in the viewpoint’s subjective game to some actions of the

§The assumption will be used in the proof of Lemma 3.1.
¶Note that, in Definition 2.3, a∗

τ is a particular action of τ1, the lowest agent of viewpoint τ .
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other agents, each of which is a best response in the subjective game of one step lower viewpoint
to some actions of the other agents, and so on. The concept of subjective rationalizability can
be understood based on the following idea: The lowest agent in a viewpoint would take a
best response to actions which she thinks the other agents would choose. When expecting
the choices of the others, she considers that each of the other agents takes a best response
to actions which she thinks the agent thinks the other agents would choose, and such her
inference goes on for further lower viewpoints. Subjective rationalizability can be regarded
as an extension of rationalizability[12], a well-known concept in the standard game theory, to
hierarchical hypergames. Under a condition called inside common knowledge[7], it has been
shown that subjective rationalizability and (standard) rationalizability are equivalent[11].

When agent i makes decision in this way, her choice can be predicted as a subjectively
rationalizable action of viewpoint i. Thus, we may also say that it is agent i’s subjectively
rationalizable action. Let us denote the set of subjectively rationalizable actions of agent i

in a hierarchical hypergame H by Ri(H). As mentioned above, if agent i has inside common
knowledge, that is, if she believes Gi is common knowledge, then Ri(H) is equal to the set of
her rationalizable actions in Gi.

Next, the other equilibrium concept we discuss is best response equilibrium, which is an
extension of it defined for simple hypergames[3] to hierarchical hypergames.

Definition 2.4 (Best response equilibrium) Let H = (I, (Gσ)σ∈Σ ) be a hierarchical
hypergame. a∗ = (a∗

i , a
∗
−i) ∈ ×i∈IA

i
i is a best response equilibrium of H iff for all i ∈ I,

∀ai ∈ Ai
i, ui

i(a
∗) ≥ ui

i(ai, a
∗
−i).

Best response equilibrium can only exist in a specific class of hypergame satisfying the
first condition in the definition above, which is required for the utility functions in the second
condition to be appropriately defined. Then, in such a hypergame, when each agent chooses a
best response to the choices of the others, such an outcome is called a best response equilibrium.
Although the definition apparently looks like Nash equilibrium for normal form games, the
implication is largely different. Best response equilibrium does not assure that, from a particular
agent’s point of view, the other’s choices are also their best responses. Let us denote the set of
best response equilibria of H by BE(H). When such an utility shown in the definition cannot
be defined, necessarily the hypergame cannot have any best response equilibrium. For example,
if Ii ⊂ I or a∗

j /∈ Ai
j for some j(�= i), then ui

i(a
∗) is not defined, hence BE(H) = φ.

2.3 Bayesian Games

2.3.1 The Framework

Bayesiang games are defined as follows.
Definition 2.5 (Bayesian games) Gb = (I, A, T, p, u) is a Bayesian game, where

• I is the set of agents.

• A = ×i∈IAi, where Ai is the set of agent i’s actions.
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• T = ×i∈ITi, where Ti is the set of agent i’s types.

• p = (pi)i∈I , where pi is agent i’s subjective prior, which is a joint probability distribution
on T−i for each ti ∈ Ti, where T−i = ×j∈I\{i}Tj .

• u = (ui)i∈I , where ui : A × T → � is agent i’s utility function.

Bayesian games capture any uncertainty about any components of the game by introducing
types which are characterized by subjective priors and utility functions. That is, each type
is assumed to have a probability distribution on the types of the other agents, and utility is
determined not only by choices of the agents but also by their types.

2.3.2 Equilibrium Concepts

To define equilibrium concepts for Bayesian games, we need to introduce “action plans” for
each type of each agent, which we call her strategy so that we avoid the confusion with the
concept of action. A strategy of agent i, si, is a mapping from her types to her actions, namely,
si : Ti → Ai. Let us denote the set of agent i’s strategies by Si and let S = ×i∈ISi. We
may write s−i(t−i) as meaning (sj(tj))j∈I\{i} with sj ∈ Sj and tj ∈ Tj. Then Bayesian Nash
equilibrium is defined as follows

Definition 2.6 (Bayesian Nash equilibrium) Let Gb = (I, A, T, p, u) be a Bayesian game.
s∗ = (s∗i , s

∗
−i) ∈ S is a Bayesian Nash equilibrium of Gb iff ∀i ∈ I, ∀ti ∈ Ti, ∀si ∈ Si,

∑

t−i∈T−i

ui((s∗i (ti), s
∗
−i(t−i)), (ti, t−i))pi(t−i|ti) ≥

∑

t−i∈T−i

ui((si(ti), s∗−i(t−i)), (ti, t−i))pi(t−i|ti).

In a Bayesian Nash equilibrium, each agent maximizes her expected utility given her belief
(subjective prior). Let us denote the set of Bayesian Nash equilibria of a Bayesian game Gb by
BN(Gb).

We also consider a joint probability distribution po on the type set T , which describes
probabilities with which a particular combination of types for each agent is chosen actually. We
call it the objective prior of the game. In particular, we say subjective priors are consistent in a
Bayesian game when each agent’s subjective probability distribution is given as the conditional
probability distribution computed from the objective prior by Bayes formula‖.

Whether or not a prior is consistent, we can also formulate a Bayesian game by using
objective priors as Gb = (I, A, T, po, u), and define Nash equilibrium of it as follows.

Definition 2.7 (Nash equilibrium of Bayesian games) Let Gb = (I, A, T, po, u) be a
Bayesian game (with objective prior). s∗ = (s∗i , s

∗
−i) ∈ S is a Nash equilibrium of Gb iff

∀i ∈ I, ∀si ∈ Si,
∑

t∈T

ui((s∗i (ti), s
∗
−i(t−i)), t)po(t) ≥

∑

t∈T

ui((si(ti), s∗−i(t−i)), t)po(t).

In a Nash equilibrium of a Bayesian game, each agent maximizes her expected utility given
an objective prior. Let us denote the set of Nash equilibria of Gb by N(Gb).

‖That is, (pi)i∈I are consistent iff there exists a probability distribution po on T such that ∀i ∈ I,∀t ∈
T, pi(t−i|ti) = po(t)/Σt−i∈T−i

po(ti, t−i).
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We introduced two formulations of Bayesian games, one with subjective priors and the
other with objective priors∗∗. Both of them are written as Gb, and when we write BN(Gb)
and N(Gb), we suppose (pi)i∈I and po, respectively. Furthermore we may say that po is the
objective prior of Gb = (I, A, T, p, u).

3 Bayesian Representation of Hierarchical Hypergames

This section presents a general way to transform hierarchical hypergames into Bayesian
games, which we call Bayesian representation of hierarchical hypergames.

3.1 Extension of Subjective Games

First, we extend each viewpoint’s subjective game in a similar way to extensions of subjective
games in simple hypergames[3]. It is originally based on Harsanyi’s[2] claim that any kinds of
uncertainties about a game as well as perceptual differences among agents can be modeled in
an unified way, which goes on as follows††

• (Agents) Whether an agent is participating in the game can be converted into what the
agent’s action set is, by allowing her only one action, “non-participation” (NP), when she
is supposed to be out of the game.

• (Actions) Whether a particular action is feasible for an agent can in turn be converted
into what the agent’s utility function is, by saying that she will get some very low utility
whenever she takes the action that is supposed to be infeasible.

• (Utility functions) This way, any uncertainty or perceptual differences about agents as
well as actions can be reduced to those about utility functions, if any. Then by regarding
each possible utility function of each agent as a type of the agent, the game can be modeled
as a Bayesian game.

Let us call the above argument Harsanyi’s claim. When we apply it to situations represented
as hierarchical hypergames, it can be interpreted as follows. For example, suppose first that
viewpoint σ thinks that an agent i, not σ1, does not participate in the game, though agent i

actually is in the game. Then the claim argues that σ’s exclusion of agent i is game-theoretically
equivalent to saying that σ includes i in the set of the agents and allows i to use only one action,

∗∗Harsanyi[2] originally named the latter (with objective prior) “Bayesian games”, while the former (Defini-

tion 2.5) “the standard form of games with incomplete information”, though nowadays the former is also referred

to as Bayesian games in textbooks of game theory. The two kinds of equilibrium concepts are also often mixed

up. However, since most studies assume consistency of priors, those distinctions make practically no difference

as it has been shown that, in any Bayesian games with consistent priors, the set of Bayesian Nash equilibria

coincides with that of Nash equilibria. On the other hand, our study deals with Bayesian games that may not

hold consistency. Consistency of priors still controversial[13, 14], while we do not go into the detail of this topic.

To understand Harsanyi’s original definition of Bayesian games as well as discussion on consistency of priors,

see also Myerson[15].
††For a brief guide of the claim, see e.g., Myerson[16].
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“non-participation.” This way allows every viewpoint to see the common set of agents, which
coincides with the set of all the agents actually involved in the hypergame.

Next, suppose viewpoint σ thinks that a particular action of agent i, not of σ1, is not feasible
for the agent, while it is actually included in agent i’s action set. Then the claim argues that
this is equivalent to saying that σ considers that the action is surely in agent i’s action set but
gives the agent very low utility whenever it is used. Consequently, every viewpoint sees the
same action set of a particular agent, which is the union of the agent’s action set originally
conceived by each viewpoint. As a result, perceptual differences in agents as well as actions
among viewpoints are resolved, and those only in utility functions remain.

Based on the discussion above, we define extension of subjective games in hierarchical hy-
pergames as follows.

Definition 3.1 (Extended subjective games) Let H = (I, (Gσ)σ∈Σ ) be a hierarchical
hypergame. For any σ ∈ Σ , a normal form game G

σ
= (I

σ
, A

σ
, uσ) is called viewpoint σ’s

extended subjective game iff it satisfies all of the following conditions:

• I
σ

= I.

• A
σ

= ×i∈IA
σ

i , where ∀i ∈ I, A
σ

i =
⋃

σ′∈Σ Aσ′
i if i ∈ Iσ for any σ ∈ Σ , A

σ

i =
⋃

σ′∈Σ Aσ′
i ∪

{NP} otherwise.

• uσ = (uσ
i )i∈I , where uσ

i : A
σ → �. For any i ∈ I and a = (ai, a−i) ∈ A

σ
, uσ

i (a) is defined
as follows, where c is a real constant bigger than −∞

uσ
i (a) =

⎧
⎪⎪⎨

⎪⎪⎩

uσ
i ((aj)j∈Iσ ), if i ∈ Iσ ∧ ak = NP for any k ∈ I \ Iσ ∧ (aj)j∈Iσ ∈ Aσ,

−∞, if (i ∈ Iσ ∧ ai /∈ Aσ
i ) ∨ (i /∈ Iσ ∧ ai �= NP ),

c, otherwise.

Then H = (I, (G
σ
)σ∈Σ ), the collection of extended subjective games of all the viewpoints, is

called the extended hierarchical hypergame (induced from H). Conversely, we may say that H

is the original hierarchical hypergame of H and Gσ is the original subjective game of G
σ
.

The way of extension of subjective games follows Harsanyi’s claim. Roughly speaking, utility
functions are determined according to the next three principles. First, any outcomes modeled
in the original subjective game assign the same utilities to each agent in its extension as well.
Second, when someone takes an action that is not modeled in the original subjective game,
the agent always gets extremely low utility, −∞. Third, in the other cases, an agent is just
supposed to get some utility c because we cannot determine any specific utility value for such
cases based on the original hypergame and this assumption is sufficient for us. Note that the
extension is unique up to c ∈ �. Then let us denote I

σ
and A

σ
by I and A, respectively,

because they are by definition identical for all σ ∈ Σ .
The next lemma assures that subjectively rationalizable actions of the agents in a hierar-

chical hypergame are “preserved” in its extension, and vice versa.
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Lemma 3.1 (Subjective rationalizability in extended hierarchical hypergames) Let H be
the extended hierarchical hypergame of a hierarchical hypergame H = (I, (Gσ)σ∈Σ ). Then we
have, for any i ∈ I, Ri(H) = Ri(H).

Proof (Proof of Ri(H) ⊇ Ri(H)) Suppose a∗
i ∈ Ri(H), which means, there exists (a∗

σ)σ∈Σi

such that a∗
σ ∈ Aσ

σ1
for all σ ∈ Σi which satisfies

∀σ ∈ Σi, ∀aσ ∈ Aσ
σ1

, uσ
σ1

(a∗
σ, a∗

−σ) ≥ uσ
σ1

(aσ, a∗
−σ),

where a∗
−σ = (a∗

jσ)j∈Iσ\{σ1}. In H , ∀σ ∈ Σi, Aσ1 ⊇ Aσ
σ1

. For any σ ∈ Σi, if aσ1 ∈ Aσ1 \ Aσ
σ1

,

uσ
σ1

(a∗
σ, a∗

−σ) > uσ
σ1

(aσ1 , a
∗
−σ) = −∞,

otherwise, i.e., if aσ1 ∈ Aσ
σ1

,

uσ
σ1

(a∗
σ, a∗

−σ) ≥ uσ
σ1

(aσ1 , a
∗
−σ).

Therefore, we have

∀σ ∈ Σi, ∀aσ ∈ Aσ1 , uσ
σ1

(a∗
σ, a∗

−σ) ≥ uσ
σ1

(aσ, a∗
−σ).

This means a∗
i ∈ Ri(H). Hence Ri(H) ⊇ Ri(H).

(Proof of Ri(H) ⊆ Ri(H)) Next, suppose a∗
i ∈ Ri(H), which means, there exists (a∗

σ)σ∈Σi

such that a∗
σ ∈ Aσ1 for all σ ∈ Σi which satisfies

∀σ ∈ Σi, ∀aσ ∈ Aσ1 , uσ
σ1

(a∗
σ, a∗

−σ) ≥ uσ
σ1

(aσ, a∗
−σ),

where a∗
−σ = (a∗

jσ)j∈I\{σ1}. Now suppose that there exists σ ∈ Σi such that a∗
σ /∈ Aσ

σ1
. But if

so, for such σ, ∀a−σ1 ∈ ×j∈I\{σ1}Aj , u
σ
σ1

(a∗
σ, a−σ1) = −∞, which is smaller than uσ

σ1
(aσ1 , a−σ1)

for any aσ1 ∈ Aσ
σ1

(⊆ A
σ

σ1
), and this contradicts the requirement of subjective rationalizability,

i.e., ∀aσ ∈ Aσ1 , u
σ
σ1

(a∗
σ, a∗−σ) ≥ uσ

σ1
(aσ, a∗−σ). Thus, we have ∀σ ∈ Σi, a

∗
σ ∈ Aσ

σ1
. Since we have

assumed that for any σ ∈ Σ , ∀j ∈ Iσ, Ajσ
j ⊆ Aσ

j , for any σ ∈ Σ , ∀k ∈ Iσ \ {i}, a∗
kσ ∈ Aσ

k .
Therefore, for any σ ∈ Σi,

∀aσ ∈ Aσ
σ1

, uσ
σ1

(a∗
σ, a∗

−σ)(= uσ
σ1

(a∗
σ, a∗

−σ)) ≥ uσ
σ1

(aσ, a∗
−σ)(= uσ

σ1
(aσ, a∗

−σ)).

This means a∗
i ∈ Ri(H). Hence Ri(H) ⊆ Ri(H).

Lemma 3.1 says that an action of an agent is subjectively rationalizable in a hierarchical
hypergame if and only if it is subjectively rationalizable in its extension as well.

On the other hand, the next lemma refers to the relationship between best response equilibria
in an extended hierarchical hypergame and those in its original hypergame.

Lemma 3.2 (Best response equilibria in extended hierarchical hypergames) Let H =
(I, (Gσ)σ∈Σ ) be a hierarchical hypergame and H be its extension. Then we have BE(H) ⊆
BE(H). Particularly equality holds if (i) ∀i ∈ I, Ii = I, and (ii) ∀i, j ∈ I, Aj

j ⊆ Ai
j .

Proof Let G
σ

= (I, A, uσ) be the extended subjective game of σ ∈ Σ induced from H .
Consider a particular outcome of the hypergame H , a∗ = (a∗

i , a
∗
−i) ∈ ×i∈IA

i
i. If the hypergame
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H and this a∗ do not satisfy the first condition in Definition 2.4, then BE(H) = φ, and thus
BE(H) ⊆ BE(H).

On the other hand, suppose they satisfy the condition. Then let us suppose a∗ ∈ BE(H),
which means, as the second condition in Definition 2.4 says,

∀i ∈ I, ∀ai ∈ Ai
i, ui

i(a
∗) ≥ ui

i(ai, a
∗
−i).

Then we have

∀i ∈ I, ∀ai ∈ Ai, ui
i(a

∗) ≥ ui
i(ai, a

∗
−i)

because ui
i(a

∗) = ui
i(a

∗), and ui
i(ai, a

∗
−i) = ui

i(ai, a
∗
−i) if ai ∈ Ai

i, while ui
i(ai, a

∗
−i) = −∞

otherwise. Since all the agents see the common set of agents and their actions in the extended
hypergame H , H and a∗ necessarily satisfy the first condition in Definition 2.4. Therefore the
equation above is equivalent to a∗ ∈ BE(H). Hence we have BE(H) ⊆ BE(H).

Next, let us assume H satisfies (i) ∀i ∈ I, Ii = I, and (ii) ∀i, j ∈ I, Aj
j ⊆ Ai

j . Suppose
a∗ = (a∗

i , a
∗
−i) ∈ BE(H), which means,

∀i ∈ I, ∀ai ∈ Ai, ui
i(a

∗) ≥ ui
i(ai, a

∗
−i).

Since ∀i ∈ I, ∀ai ∈ Ai \ Ai
i, ∀a−i ∈ ×j∈I\{i}Aj , u

i
i(ai, a−i) = −∞, we have ∀i ∈ I, a∗

i ∈ Ai
i. By

(ii), then ∀i, j ∈ I, a∗
j ∈ Ai

j . Thus we have

∀i ∈ I, ∀ai ∈ Ai
i, ui

i(a
∗)(= ui

i(a
∗)) ≥ ui

i(ai, a
∗
−i)(= ui

i(ai, a
∗
−i)).

This means a∗ ∈ BE(H). Under the conditions (i) and (ii), we have both BE(H) ⊆ BE(H)
and BE(H) ⊆ BE(H), hence BE(H) = BE(H).

Lemma 3.2 means that if an outcome is a best response equilibrium in a hierarchical hyper-
game, then it is so in its extension as well. Although the converse may not always hold, the
lemma also specifies a sufficient condition for it to be true.

3.2 Bayesian Representation

We define Bayesian representations of hierarchical hypergames, transformed Bayesian games
from hypergames, as below. Every viewpoint’s subjective game has common sets of agents
and actions in an extended hierarchical hypergame, so we capture perceptual differences in
utility functions as types as Harsanyi’s claim suggests. The types also reflect the hierarchy of
perceptions in the hypergame‡‡.

Definition 3.2 (Bayesian representation of hierarchical hypergames) Let H = (I, (Gσ)σ∈Σ )
be a hierarchical hypergame and G

σ
= (I, A, uσ) be the extended subjective game of σ ∈ Σ .

Gb(H) = (I, A, T, p, u) is called the Bayesian representation of H iff it satisfies all of the fol-
lowing conditions:

• I in H and I in Gb(H) are identical (and equal to I).

‡‡In this regard, Mertens and Zamir[10] presented the general way to deals with belief about the other’s belief,

belief about the other’s belief about the other’s belief, and so on, in Bayesian games. See also Myerson[16].
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• A = A.

• T = ×i∈ITi. For all i ∈ I and σ ∈ Σ , Ti = {tσi |σ ∈ Σ ∧ σ1 = i}, where tσi ∈ Ti is a type
of agent i to whose view is associated with G

σ
.

• p = (pi)i∈I , where pi(·|ti) is agent i’s subjective prior, which is a joint probability distribu-
tion on T−i for each ti ∈ Ti such that for any tσi ∈ Ti, pi(t−i|tσi ) = 1 if t−i = (tjσ

j )j∈I\{i},
while pi(t−i|tσi ) = 0 otherwise.

• u = (ui)i∈I , where ui : A × T → � such that for any a ∈ A, tσi ∈ Ti and t−i ∈ T−i,
ui(a, (tσi , t−i)) = uσ

i (a), where a = a.

It is the basic idea of the definition of types that tσi ∈ Ti is supposed to be a type of agent
i who believes that the game is G

σ
, viewpoint σ’s extended subjective game, and any agent

j(�= i) believes the game is not G
σ

but G
jσ

. Hence tσi assigns probability 1 to the combination
of types of the other agents each of which is tjσ

j for any j �= i while assigning probability 0 to
any other combinations, and has the same utility function as that in G

σ
, i.e., uσ

i . Types of an
agent are defined for each viewpoint σ whose lowest agent, σ1, is the agent herself. Thus, for
instance, tiji ∈ Ti but tji

i /∈ Ti. This is because, in the hierarchical hypergame, nobody thinks
that agent i sees G

ji
. We do not include such types that every agent thinks “impossible” in the

type set of the Bayesian representation. Since we deal with an infinite perception hierarchy in
a hierarchical hypergame, the type space constructed in this way is also infinite. Note that the
transformation into a Bayesian game is unique from a given hierarchical hypergame.

We call, for each i ∈ I, tii is the actual type of agent i because, from an objective point of
view, agent i makes decision based on Gi and believes any other agent j plays according to
Gji. Therefore, the objective prior of Bayesian representations of a hierarchical hypergame is
defined as follows.

Definition 3.3 (Objective priors) Let Gb(H) = (I, A, T, p, u) be the Bayesian represen-
tation of a hierarchical hypergame H . Then po is called the objective prior of Gb(H) iff for any
t ∈ T ,

po(t) =

⎧
⎨

⎩

1, if ∀i ∈ I, ti = tii,

0, otherwise.

The objective prior assigns probability 1 to the combination of actual types for each agent,
while assigns probability 0 to any other combinations of types. Hence Bayesian representation
of a hierarchical hypergame obviously does not assure that agents have consistent subjective
priors.

4 Comparisons of Equilibrium Concepts

In this section, we show some propositions that describe relations between the equilibrium
concepts for hierarchical hypergames and Bayesian games.
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4.1 Subjective Rationalizability and Bayesian Nash Equilibria

Our first result refers to the relation between equilibrium concepts of hierarchical hyper-
games and their Bayesian representations (with subjective priors).

Proposition 4.1 (Subjective rationalizability and Bayesian nash equilibria) Let H =
(I, (Gσ)σ∈Σ ) be a hierarchical hypergame and Gb(H) = (I, A, T, p, u) be its Bayesian repre-
sentation. Then ∀i ∈ I, a∗

i ∈ Ri(H) iff there exists s∗ = (s∗i , s
∗
−i) ∈ BN(Gb(H)) such that

∀i ∈ I, s∗i (t
i
i) = a∗

i .
Proof Let G

σ
= (I, A, uσ) be the extended subjective game of σ ∈ Σ . Suppose (s∗i , s

∗
−i) ∈

BN(Gb(H)), which means ∀i ∈ I, ∀ti ∈ Ti, ∀si ∈ Si,
∑

t−i∈T−i

ui((s∗i (ti), s
∗
−i(t−i)), (ti, t−i))pi(t−i|ti)) ≥

∑

t−i∈T−i

ui((si(ti), s∗−i(t−i)), (ti, t−i))pi(t−i|ti).

In Gb(H), this is equivalent to: ∀i ∈ I, ∀tσ ∈ Ti, ∀si ∈ Si,

ui((s∗i (t
σ
i ), (s∗j (t

jσ
j ))j∈I\{i}), (tσi , (tjσ

j )j∈I\{i})) ≥ ui((si(tσi ), (s∗j (t
jσ
j ))j∈I\{i}), (tσi , (tjσ

j )j∈I\{i})),

which is equivalent to: ∀i ∈ I, ∀tσ ∈ Ti, ∀si ∈ Si,

uσ
i (s∗i (t

σ
i ), (s∗j (t

jσ
j ))j∈I\{i}) ≥ uσ

i ((si(tσi ), (s∗j (t
jσ
j ))j∈I\{i})),

which is equivalent to: ∀σ ∈ Σ , ∀sσ1 ∈ Sσ1 ,

uσ
σ1

(s∗σ1
(tσσ1

), (s∗j (t
jσ
j ))j∈I\{σ1}) ≥ uσ

σ1
((sσ1 (t

σ
σ1

), (s∗j (t
jσ
j ))j∈I\{σ1})),

which is equivalent to the fact that, for any i ∈ I, s∗σ1
(tσσ1

) for each σ ∈ Σi constitutes a best
response hierarchy in H , the extension of H , and hence ∀i ∈ I, s∗i (t

i
i) ∈ Ri(H).

After all, ∀i ∈ I, a∗
i = Ri(H) iff there exists (s∗i , s

∗
−i) ∈ BN(Gb(H)) such that ∀i ∈

I, s∗i (t
i
i) = a∗

i . Since Ri(H) = Ri(H) for any i ∈ I (due to Lemma 3.1), we have ∀i ∈ I, a∗
i =

Ri(H). Hence we have the proposition.
Proposition 4.1 claims that a hierarchical hypergame has such an outcome in which every

agent chooses each subjectively rationalizable action if and only if its Bayesian representation
has such a Bayesian Nash equilibrium in which the actual type of each agent chooses the same
action as the agent’s subjectively rationalizable action. It implies that, from an analyzer’s
point of view, the both formulations, hypergames and Bayesian games, predict same outcomes
by using these equilibrium concepts.

4.2 Best Response Equilibria and Nash Equilibria of Bayesian Games

Next, if we consider Bayesian representations with objective priors, we have next proposition.
Proposition 4.2 (Best response equilibria (in extended hypergames) and nash equilibria of

Bayesian games) Let H = (I, (Gσ)σ∈Σ ) be a hierarchical hypergame, H be its extension, and
Gb(H) = (I, A, T, po, u) be the Bayesian representation of H. Then a∗ = (a∗

i , a
∗
−i) ∈ BE(H)

iff there exists s∗ = (s∗i , s
∗
−i) ∈ N(Gb(H)) such that ∀i ∈ I, s∗i (t

i
i) = a∗

i .
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Proof Let G
σ

= (I, A, uσ) be the extended subjective game of σ ∈ Σ induced from H .
Suppose (s∗i , s

∗
−i) ∈ N(Gb(H)), which means ∀i ∈ I, ∀si ∈ Si,

∑

t∈T

ui((s∗i (ti), s
∗
−i(t−i)), t)po(t) ≥

∑

t∈T

ui((si(ti), s∗−i(t−i)), t)po(t).

In Gb(H), this is equivalent to: ∀i ∈ I, ∀si ∈ Si,

ui((s∗i (t
i
i), (s

∗
j (t

j
j))j∈I\{i}), (tii, (t

j
j)j∈I\{i})) ≥ ui((si(tii), (s

∗
j (t

j
j))j∈I\{i}), (tii, (t

j
j)j∈I\{i})),

which is equivalent to: ∀i ∈ I, ∀si ∈ Si,

ui
i(s

∗
i (t

i
i), (s

∗
j (t

j
j))j∈I\{i}) ≥ ui

i(si(tii), (s
∗
j (t

j
j))j∈I\{i}).

Thus, ∀i ∈ I, ∀ai ∈ Ai, u
i
i(a∗

i , a
∗
−i) ≥ ui

i(ai, a
∗
−i) iff there exists s∗ = (s∗i , s

∗
−i) ∈ N(Gb(H))

such that ∀i ∈ I, s∗i (t
i
i) = a∗

i . The former of the statement is by definition equivalent to
(a∗

i , a
∗
−i) ∈ BE(H). Hence we have the proposition.

Proposition 4.2 says that an extended hierarchical hypergame has a best response equilib-
rium if and only if its Bayesian representation (with objective prior) has such a Nash equilibrium
in which the actual type of each agent chooses the same action as the one in the best response
equilibrium. Combined with Lemma 3.2, it implies the next proposition.

Proposition 4.3 (Best response equilibria (in original hypergames) and nash equilibria
of Bayesian games)) Let H be a hierarchical hypergame and Gb(H) = (I, A, T, po, u) be its
Bayesian representation. If a∗ = (a∗

i , a
∗
−i) ∈ BE(H), then there exists s∗ = (s∗i , s

∗
−i) ∈

N(Gb(H)) such that ∀i ∈ I, s∗i (t
i
i) = a∗

i . Particularly, if H satisfies the sufficient condition
of Lemma 3.2, the converse also holds.

Proof The proposition is straightforward from Lemma 3.2 and Proposition 4.2.
Proposition 4.3 states that if an outcome is a best response equilibrium in a hierarchical

hypergame, then its Bayesian representation has such a Nash equilibrium in which the actual
type of each agent chooses the same action as the one in the best response equilibrium. Particu-
larly, if the hierarchical hypergame satisfies the sufficient condition of Lemma 3.2, the converse
is also true.

5 Conclusions and Discussions

We have studied the relationship of two independently developed models of games with
incomplete information, hierarchical hypergames and Bayesian games. We first proposed the
general way of transformation of hierarchical hypergames into Bayesian games, which we call
Bayesian representation of hierarchical hypergames, and showed that any hierarchical hyper-
games can be reformulated in terms of Bayesian games which may have inconsistent subjective
priors. We then proved some propositions that associate equilibrium concepts for hierarchical
hypergames with those for Bayesian games.

We interpret the results presented in the previous section as follows. Any hierarchical
hypergames can be analyzed in terms of Bayesian games as long as our interest is in the
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two equilibrium concepts of hypergames we discussed, namely subjective rationalizability and
best response equilibrium. (The converse obviously does not hold: Bayesian games may not be
transformed into and analyzed in terms of hypergames in general.) As Proposition 4.1 suggests,
predicted outcomes are the same whether we analyze the situation in question as a hypergame
with subjective rationalizability or as a Bayesian game with Bayesian Nash equilibrium. On
the other hand, Proposition 4.3 implies that best response equilibria in a hypergame is always
included in Nash equilibria of its Bayesian representation. It also shows a sufficient condition
under which the equality holds.

Hypergame theorists may say it would not be realistic to accept Harsanyi’s claim in some
situations. This might be convincing from an agent’s point of view. However, from an an-
alyzer’s point of view, the propositions above imply that it is harmless to analyze Bayesian
representations of hirerarchical hypergames as if we accept Harsanyi’s claim. Hence Bayesian
games are general enough in theory, as the standard arguments suggest, in that any hypergame
situations can be formulated as Bayesian games.

We, however, point out that there are at least three advantages of choosing the hypergame
formulation. First, the hypergame structure is more intuitive and simpler and thus requires us
less tasks in modeling. Furthermore, with regard to Proposition 4.1, the computational com-
plexity in calculating equilibria is also much less in analyzing hypergames than Bayesian games
when studying hypergames with inside common knowledge. The difference in the computational
complexity comes from the fact that, when analyzing subjective rationalizability in hypergames
with inside common knowledge, we need only investigate each agent’s behavior in not all but
just some subjective games (see Subsection 2.3.2), while we have to consider infinitely many
types’ best responses in order to calculate Bayesian Nash equilibrium. To understand this, for
instance, consider a hierarchical hypergame in which agent i has inside common knowledge,
that is, she believes Gi is common knowledge. Then Ri(H) is equal to the set of her (stan-
dard) rationalizable actions in Gi, which can be easily calculated by using the standard game
theory’s technique. On the other hand, if we analyze this situation as a Bayesian game, we
have to identify best responses of all the types associated to viewpoints lower than i in order
to Bayesian Nash equilibrium.

Second, as Proposition 4.1 suggests the connection of subjective rationalizability and Bayesian
Nash equilibrium, some stronger solution concept than subjective rationalizability can provide
us unique insights that cannot be captured by Bayesian games with their existing equilibrium
concepts. For simple hypergames, since it has been shown that hyper Nash equilibrium and
Bayesian Nash equilibrium are connected in a similar manner, stable hyper Nash equilibrium[17],
a more strict concept than hyper Nash equilibrium, can lead to unique insights as discussed in
the previous study[3]. Although any concept that can deal with the kind of stability that stable
hyper Nash equilibrium can capture has not yet been proposed for hierarchical hypergames,
such a concept would enhance uniqueness of hypergame analysis.

Third, since the Bayesian game modeling requires all the agents to be aware of all the pos-
sibilities relevant to the situation, i.e., types, if we want to describe an agent’s unawareness[18],
the hypergame modeling would be more convincing from the epistemic point of view. In this
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case, the hypergame can technically be transformed into and analyzed in terms of a Bayesian
game as mentioned above, but Harsanyi’s claim that requires full awareness would become
incompatible with the epistemic supposition.
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