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Abstract This paper presents a new efficient algorithm for exactly computing the halfspace depth

contours based on the idea of a circular sequence. Unlike the existing methods, the proposed algorithm

segments the unit sphere directly relying on the permutations that correspond to the projections of

observations onto some unit directions, without having to use the technique of parametric programming.

Some data examples are also provided to illustrate the performance of the proposed algorithm.

Keywords Circular sequence, exact algorithm, halfspace depth contour

1 Introduction

In order to generalize the concept of median to higher dimensions, Tukey heuristically
proposed the halfspace depth in 1975. Given a set of data Xn = {X1, X2, · · · , Xn} in the
p-dimensional space Rp, he determined the depth value of an arbitrary point x with respect
to Xn as the smallest portion of data carried by any closed halfspacse, as halfspace depth is
called, containing x, that is[1],

d(x, Fn) = inf
u∈Sp−1

1
n

#
{
i : uTx ≥ uTXi, i ∈ N

}
, (1)

where Fn denotes the empirical distribution corresponding to Xn, Sp−1 = {v ∈ Rp : ‖v‖ = 1},
N = {1, 2, · · · , n}, and #{·} is the number of the data points in set {·}. For the sake of
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convenience, in the sequel we will use dn(x) as the abbreviation of d(x, Fn) if no confusion
arises.

Since then, this depth notion has been intensively studied in the literature. The related
researches include [1–3] among others. It is found that halfspace depth has many favorable
properties. For example, it satisfies all the desirable properties of a general statistical depth
function defined in [4], namely, affine invariance, maximality at center, monotonicity relative to
deepest point, and vanishing at infinity. Furthermore, the concept of halfspace depth exhibits
a very strong connection with multivariate quantiles[5]. Therefore, multiple-output quantile
regression can possibly be generalized from the celebrated theory of quantile regression; see for
example [6, 7] and references therein. Inspirited by [8], many other depth notions have also
sprung up like mushrooms in the last decades. Simplicial depth[9], zonoid depth [10], regression
depth[11] and projection depth[12] to name but a few. See [13] for a recent review on data depth.

In practice, halfspace depth is often used as a powerful multivariate ordering tool. Points
near the boundary of the data cloud have lower depth values, and those deeper inside obtain
higher depth values. This can be visualized by means of depth contours:

Ck = {x ∈ Rp : dn(x) = k/n},

where k = 1, 2, · · · , κ∗ with κ∗ = n · supx∈Rp dn(x). Clearly, Ck is the boundary of the depth
region Dk given by

Dk = {x ∈ Rp : dn(x) ≥ k/n} . (2)

Many practical applications of halfspace depth have been developed. For example, [14] pro-
posed a depth-based classification technique for unequal prior problems. [15] investigated a non-
parametric method for constructing bootstrap confidence regions based on the depth-induced
ordering. [16] developed several nonparametric statistics for testing the equality of two or more
multivariate populations relying on the statistical depth functions such as the halfspace depth.

An important feature of halfspace depth is its close connection with the projection pursuit
methodology[1], which plays a crucial role in the process of generalizing various univariate
statistics to higher dimensions. However, a price having to pay is that the exact computation of
halfspace depth, as well as its induced estimators, becomes very difficult due to the involvement
of the infimum over an infinite number of direction vectors. A similar problem also exists in
computing some other projection-based statistics. To facilitate the practical applications, much
attention has been paid to this problem by many authors. For example, [17] and [18] considered
the exact computation of halfspace depth when p = 2, 3, respectively. [19] constructed an exact
algorithm to compute the halfspace depth contours for bivariate data.

Nevertheless, computing higher dimensional contours has not been solved until recently
when [20, 21] developed two procedures for computing the multiple-output regression quantile
regions by using linear programming techniques; see also [6, 7] and references therein. Both of
their procedures include the computation of halfspace depth regions as a special case. In this
paper, we find that it is still possible to simplify their procedures for this special case. That is,
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we can segment the search space Sp−1 directly based on the permutations that correspond to
the projections of observations onto some unit directions, without having to use the technique
of parametric programming. A Matlab implementation of the proposed algorithm has also
been written. The corresponding codes can now be obtained from the authors through email
(csuliuxh912@gmail.com). Simulation studies indicate that, for the special case of computing
halfspace depth contours, the proposed algorithm is faster than those of [20, 21] in all cases.

The rest of the paper is organized as follows. Section 2 presents the main idea of how
to compute the halfspace depth contours relying on the idea of a circular sequence. Section 3
provides the corresponding algorithm. Several data examples are given in Section 4 to illustrate
the performance of the proposed algorithm. Both real and simulated data are considered in
this section. Finally, the proof of a main proposition is stated in the Appendix.

2 The Main Idea

In this section, we focus mainly on the discussion of how to obtain a halfspace depth contour
based on the idea of a circular sequence[22−24] when p ≥ 2 (the case of p = 1 is trivial).
Throughout this paper, we assume that the data Xn are in general position, namely, every
subset of k + 1 data points generates an affine space of dimension k, k = 1, 2, · · · , p − 1. If
the data are not in general position, the subsequent discussion and the algorithm need to be
modified, e.g., by perturbing the data points by some random noise of a very small magnitude.
This assumption is commonly supposed in many existing literature; see for example [25].

Let Z(1) ≤ Z(2) ≤ · · · ≤ Z(n) be the order statistics based on the univariate random
variables Zn = {Z1, Z2, · · · , Zn}. For a given 1 ≤ k ≤ n, denote ηk(Zn) = Z(k). By the
affine equivalence and the fact that 1

n#
{
i : 0T

p Xi ≤ 0T
p x, i ∈ N

}
= 1 ≥ dn(x), we replace

the constraint u ∈ Sp−1 by u ∈ Rp in the definition of dn(x) hereafter, where 0m denotes the
m-dimensional zero vector. In what follows, we will show that gk(t) = ηk(tTXn) is a piecewise
linear function over Rp with respect to t, where tTXn = {tTX1, tTX2, · · · , tTXn}.

By the idea of a circular sequence, we have that, for any given u0 (�= 0p), there must exist
a permutation, write (il,1, il,2, · · · , il,n), of (1, 2, · · · , n) such that

uT
0 Xil,1 ≤ uT

0 Xil,2 ≤ · · · ≤ uT
0 Xil,n

,

and the set Cl = {t ∈ Rp : A
T
l t ≤ 0n−1} is non-coplanar, where

Al = (Xil,1 − Xil,k
, Xil,2 − Xil,k

, · · · , Xil,k−1 − Xil,k
,

Xil,k
− Xil,k+1 , · · · , Xil,k

− Xil,n
). (3)

Then, for any t ∈ Cl, some simple derivations can lead to

XT
il,1

t, XT
il,2

t, · · · , XT
il,k−1

t ≤ XT
il,k

t ≤ XT
il,k+1

t, · · · , XT
il,n

t.

That is, for any t ∈ Cl, we have gk(t) = tTXik
with Xik

being fixed and independent of t.
Typically, Cl forms a polyhedral cone, the number of such cones is finite, and all of these cones
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together span the whole space Rp, namely, Rp = ∪N1
l=1Cl, where N1 denotes the number of the

cones. This proves the piecewise-linear property of gk(t).
It is worth mentioning that, based on a permutation (il,1, il,2, · · · , il,n), the practice of

using Cl = {t ∈ Rp : A
T
l t ≤ 0n−1} above enjoys many favorable properties. For exam-

ple, (i) gk(t) has a simple form over Cl, (ii) there is no need to take care of the order-
ing existing in both tTXil,1 , tTXil,2 , · · · , tTXil,k−1 and tTXil,k+1 , tTXil,k+2 , · · · , tTXil,n

, since
Zil,1 , Zil,2 , · · · , Zil,k−1 ≤ Zil,k

≤ Zil,k+1 , · · · , Zil,n
can also ensure that Z(k) equals Zil,k

, which,
similar to [26], can be utilized to improve the efficiency of the proposed algorithm.

For a given k, denote

Ek =
{
x ∈ Rp : uTx ≥ gk(u), ∀u ∈ Rp

}
.

The following proposition states a strong connection between Ek and Dk (see (2)). The proof
of this proposition depends heavily on the permutations corresponding to the direction vectors;
see The proof of Proposition 1 in the Appendix. A similar result, but from a different view,
can also be found in [7] (Theorem 4.2).

Proposition 1 For Ek defined above, we have that, for any 1 ≤ k ≤ κ∗, there exist a finite
number of direction vectors such that

Dk = Ek = {x ∈ Rp : M
Tx ≥ b},

where M = (u1, u2, · · · , uM1), and b = (gk(u1), gk(u2), · · · , gk(uM1))T, where ui ∈ V (j =
1, 2, · · · , M1), M1 is the number of ui’s, and V = {u ∈ Rp : ‖u‖ = 1, u lies in a vertex of
Cl, 1 ≤ l ≤ N1}. That is, V is the finite vertex set of Cl’s.

Proposition 1 implies that, to compute a halfspace depth contour Ck, it is sufficient to: (S1)
Find all the possible cones Cl’s and obtain the finite vertex set V = {ui}M1

i=1, (S2) then compute
the contour based on these unit direction vectors.

Note that: 1) Each polyhedral cone Cl can be identified uniquely by its facets, 2) each facet
F of Cl can be identified uniquely by the mean of the vertices of F ∩ [−1, 1]p, namely, instead
of Cl, we consider the polytopes formed by Ã

T
l t ≤ b, where

Ãl = (Al, Ip, −Ip), and b =
(
0T

n , IT
2p

)T

with Ip being the p× p identity matrix, and Im the m-dimensional vector of ones; 3) each facet
F of Cl corresponds to a non-redundant constraint condition in A

T
l t ≤ 0n. Then, similar to [2],

one can find all facets of such a polytope by program qhull[27], and all vertices by means of
the dual relationship between vertex and facet enumeration[28]. In Matlab, a similar program,
con2vert.m, has been developed by Michael Kleder, and can be downloaded from the Matlab
Central File Exchange.

After obtaining all the non-redundant constraints of Cl, it remains to clarify the process
leading to the adjacent cone from one given facet F of Cl. Note that there must be one and
only one facet shared between two adjacent cones. That is why one may simply pass through
all the cones counter-clockwise when p = 2. For p ≥ 2, the situation is far more complicated.
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However, it is still possible to utilize the breadth-first search algorithm to fulfill such tasks. See
the Appendix of [20] for a more detailed discussion.

This actually completes the first step (S1). With a finite number of direction vectors V
at hand, the computation of {x : M

Tx ≥ b} is trivial, and can be fulfilled by using qhull or
con2vert.m very easily. Then step (S2) is completed.

3 Algorithm

Based on the discussion above, an algorithm for computing all the possible unit direction
vectors V = {ui}M1

i=1 and the corresponding {gk(ui)}M1
i=1 can be given as follows, where 1 ≤ k ≤ n.

3.1) Set A = ∅, T = ∅, and V = ∅. Here A and T serve as the archives of facets having
been and needing to be considered, respectively, and V the archive of direction vectors.

3.2) Generate a random unit vector u0 repeatedly until it satisfies uT
0 Xi1 < uT

0 Xi2 < · · · <

uT
0 Xin . Store the corresponding permutation (i1, i2, · · · , in).

3.3) Based on (i1, i2, · · · , in), compute the matrix

A = (Xi1 − Xik
, Xi2 − Xik

, · · · , Xik−1 − Xik
, Xik

− Xik+1 , · · · , Xik
− Xin).

Find all vertices and facets of C∩[−1, 1]p, i.e., {t : Ã
Tt ≤ b}, where C = {t ∈ Rp : A

Tt ≤ 0n−1},
and Ã = (A, Ip, Ip). Drop the facets not being the constraints of C. For each remaining facet F ,
compute its μF and θF . Assign all the μF , (μF , θF ) and the unit direction vectors corresponding
to the vertices of C to Anew, Tnew and Vnew, respectively. Here μF is defined to be the mean of
all the vertices of F∩[−1, 1]p, and θF denotes the outward unit normal vector of the hyperplane
containing F , for example, if F corresponds to the first constraint of A

Tt ≤ 0n−1, then we have
θF = (Xi1 − Xik

)/‖Xi1 − Xik
‖.

3.4) Based on Anew and Tnew, update A and T by using the following procedure. Set
Atemp = ∅, T 1

temp = ∅, and T 2
temp = ∅. For every element μF of Anew, check whether it exists

in A. If it does, add (μF , θF) into the set T 1
temp, otherwise, add μF and (μF , θF) into the sets

Atemp and T 2
temp, respectively (in fact, here T 1

temp contains the facets that have been considered,
while T 2

temp contains those unconsidered). Update A by adding all the elements μF of Atemp

into A. Update T by first eliminating the facets that exist in both T and T 1
temp from T , and

then adding the facets of T 2
temp into T .

3.5) For each direction vector ũ of Vnew, check whether it exists in V . If it does, do nothing,
otherwise, add it into V . Obtain the value of gk(ũ) = ũTXik

.
3.6) Check whether T is empty. If it is, terminate the algorithm successfully. If not, obtain

a new inner point u0 based on the first element (μF1 , θF1) of T . Compute u0’s permutation.
Go back to Step 3.3. Here a good candidate of u0 may be μF + λ0θF , where λ0 denotes a very
small positive magnitude such as 10−8.

After obtaining V and {gk(ui)}M1
i=1, compute the corresponding matrix M and vector b.

Check whether the set Hk = {x : M
Tx ≥ b} is empty. If it is, this indicates that k is too large,

namely, k > κ∗. If it’s not, then we have Dk = Hk, and Ck is the boundary of Hk.
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From the discussion above, we can see that the main difference between the proposed al-
gorithm and those from [1, 2] is the way of segmenting the search space Rp (or Sp−1). In the
current algorithm, we segment Rp into a finite number of cones directly based on the permuta-
tions. This would be helpful in the computation of some other projection based statistics.

4 Data Examples

4.1 Illustrations

In this section, we present some examples to illustrate the performance of the proposed
algorithm. Both real and simulated data are considered here. The depth contours are computed
from a Matlab implementation of the algorithm developed above.
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Figure 1 Shown are the logarithms of these data and the halfspace

depth contours of depths 1/28, 2/28, · · · , 10/28

Bivariate data case. We start with a real data example. The data set is taken from Ta-
ble 7 of [29] (p.57) (see also [21]). It consists of 28 animals’ brain weight (in grams) and
body weight (in kilograms). We plot the logarithms of these data, and the contours of depths
1/28, 2/28, · · · , 10/28, from the periphery inwards in Figure 1, by using the new method de-
scribed in the earlier paragraph. Figure 1 shows that the proposed algorithm gives the same
result (viz. the same vertices or facets) as the function ‘isodepth.r’ contained in the R package
‘depth’ developed by Maxime Genest, Jean-Claude Masse and Jean-Francois Plante.

Furthermore, in order to gain more insight into the performance of the proposed algorithm,
we provide a simulated example in the following.

Trivariate data case. In this case, we consider a trivariate data set, which is generated from
the trivariate normal distribution N(03, I3). The sample size is 500. Three depth contours,
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with depth values 2/500, 51/500, 101/500, are plotted in Figure 2. The time consumed are
about 0.6, 176 and 480 seconds, respectively.
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(a) 2/500-contour
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(b) 51/500-contour
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(c) 101/500-contour

Figure 2 Shown are the 3D halfspace depth contours of 2/500, 51/500 and 101/500. The

data points are generated from the trivariate standard normal distribution

4.2 Speed Comparisons

In this subsection, some empirical results are provided to examine the speed of a Matlab
implementation of the algorithm developed in this paper. All the results are obtained on a
Dell inspiron 1525 laptop with Intel(R) Pentium(R) Dual 2.00GHz, RAM 2.00GB, Windows
VistaTM Home Basic and Matlab 7.8.

We consider three bivariate and a trivariate data sets. For the bivariate case, the data sets are
generated from the bivariate standard normal distribution N(02, I2), the uniform distribution
U([−0.5, 0.5]2) over the region [−0.5, 0.5] × [−0.5, 0.5] and the distribution of X = (Z2

1 , Z2
2 ),

respectively, where (Z1, Z2) is bivariate normal distribution with mean 02 and σ(Z1) = 1,
σ(Z2) = 2 and corr(Z1, Z2)=0.4. The sample sizes are 50, 100, 150, 200, 300, 500, 1000,
2000, 5000, 10000, 20000. For the trivariate case, the data set is generated from the trivariate
standard normal distribution N(03, I3) with sample sizes being 100, 200, 300, 400, 500. For
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each given n, we investigate the average execution time (in seconds) of computing the depth
contours of (�τn
 + 1)/n, where τ = 0.010, 0.025, 0.050, 0.100, 0.200, 0.400 for the bivariate
case, and τ = 0.010, 0.025, 0.050, 0.100, 0.150, 0.200 for the trivariate case.

The results based on ten repeated computations are reported in Tables 1–4, respectively.
Furthermore, for the sake of comparison, we also obtain the average execution time of an
benchmark presented in [2]. The benchmark is also implemented in Matlab. Some redundant
testing are suppressed by following strictly the recommendations of [2] (see the footnote 3 given
in page 42). The times of the code developed in the current paper faster than the benchmark
procedure are provided in the parentheses given in Tables 1–4. It is worth mentioning that,
in the implementation of the algorithm in [2], there are a few checking statements, which have
the potential to place an impact on the run speed. In spite of this limitation, we can see from
these tables that the proposed algorithm seems desirable since the code corresponding to this
paper is always observed faster than the benchmark in all of these cases (sometimes even more
than 20 times), nevertheless.

Table 1 Average execution times (in seconds) of our Matlab code

for the bivariate standard normal distribution N(02, I2)

n\τ 0.010 0.025 0.050 0.100 0.200 0.400

50 0.0024 (13.55) 0.0027 (13.69) 0.0032 (12.40) 0.0040 (17.68) 0.0050 (15.74) 0.0056 (16.83)

100 0.0033 (20.47) 0.0040 (13.06) 0.0053 (16.98) 0.0071 (16.36) 0.0091 (15.87) 0.0105 (16.08)

150 0.0036 (14.98) 0.0057 (12.85) 0.0064 (13.58) 0.0105 (13.46) 0.0135 (13.78) 0.0161 (12.51)

200 0.0051 (20.22) 0.0067 (17.06) 0.0099 (14.47) 0.0130 (13.75) 0.0183 (12.45) 0.0234 (11.79)

300 0.0057 (16.15) 0.0086 (9.98) 0.0134 (10.71) 0.0208 (9.47) 0.0323 (8.79) 0.0415 (8.61)

500 0.0093 (12.74) 0.0163 (8.56) 0.0279 (8.04) 0.0443 (7.18) 0.0689 (6.89) 0.0940 (6.39)

1000 0.0251 (7.63) 0.0480 (6.35) 0.0835 (5.49) 0.1364 (4.89) 0.2247 (4.56) 0.3140 (4.43)

2000 0.0784 (5.89) 0.1670 (4.10) 0.2950 (3.83) 0.5003 (3.48) 0.7996 (3.33) 1.1768 (3.27)

5000 0.4337 (3.40) 0.9597 (2.87) 1.6477 (2.77) 2.7666 (2.73) 4.4812 (2.68) 6.3674 (2.62)

10000 1.5706 (2.57) 3.5009 (2.44) 6.1531 (2.37) 10.6133 (2.34) 17.3482 (2.31) 25.6702 (2.18)

20000 4.8887 (2.82) 10.8677 (2.68) 19.6046 (2.65) 34.0596 (2.56) 55.9406 (2.53) 81.3496 (2.49)
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Table 2 Average execution times (in seconds) of our Matlab code for the uniform

distribution U([−0.5, 0.5]2) over the region [−0.5, 0.5] × [−0.5, 0.5]

n\τ 0.010 0.025 0.050 0.100 0.200 0.400

50 0.0034 (9.87) 0.0027 (13.26) 0.0032 (12.80) 0.0043 (17.52) 0.0051 (16.33) 0.0060 (14.74)

100 0.0035 (21.37) 0.0043 (11.38) 0.0047 (17.21) 0.0075 (16.47) 0.0097 (13.83) 0.0114 (14.71)

150 0.0034 (15.71) 0.0044 (14.04) 0.0069 (12.28) 0.0101 (13.08) 0.0138 (12.61) 0.0166 (13.04)

200 0.0051 (18.14) 0.0068 (17.79) 0.0094 (13.71) 0.0128 (13.22) 0.0190 (11.44) 0.0242 (11.63)

300 0.0059 (15.89) 0.0093 (10.55) 0.0136 (11.22) 0.0214 (9.64) 0.0326 (8.83) 0.0441 (8.79)

500 0.0095 (13.60) 0.0168 (8.41) 0.0278 (8.37) 0.0454 (7.24) 0.0710 (6.71) 0.0985 (6.72)

1000 0.0250 (7.84) 0.0514 (6.29) 0.0880 (5.47) 0.1471 (4.99) 0.2345 (4.67) 0.3201 (4.52)

2000 0.0832 (5.10) 0.1719 (4.33) 0.3160 (3.76) 0.5281 (3.50) 0.8474 (3.38) 1.1865 (3.30)

5000 0.4405 (3.58) 0.9934 (2.83) 1.7031 (2.71) 2.9691 (2.60) 4.8365 (2.56) 6.6519 (2.61)

10000 1.5670 (2.65) 3.4668 (2.45) 6.1407 (2.41) 10.6057 (2.36) 17.1853 (2.35) 24.6966 (2.26)

20000 4.8812 (2.77) 10.7299 (2.64) 19.4267 (2.59) 33.5474 (2.55) 55.9516 (2.55) 79.8616 (2.47)

Table 3 Average execution times (in seconds) of our Matlab code for the distri-

bution of X = (Z2
1 , Z2

2 ), where (Z1, Z2) is bivariate normal distribution

with mean 02 and σ(Z1) = 1, σ(Z2) = 2 and corr(Z1, Z2)=0.4

n\τ 0.010 0.025 0.050 0.100 0.200 0.400

50 0.0040 (7.83) 0.0029 (13.53) 0.0033 (12.78) 0.0040 (18.07) 0.0047 (18.60) 0.0095 (10.26)

100 0.0030 (29.67) 0.0040 (14.59) 0.0056 (18.39) 0.0066 (16.96) 0.0084 (15.17) 0.0140 (11.71)

150 0.0037 (14.65) 0.0050 (13.89) 0.0072 (12.66) 0.0111 (14.09) 0.0131 (13.27) 0.0195 (10.65)

200 0.0054 (17.39) 0.0072 (15.28) 0.0098 (13.43) 0.0130 (13.58) 0.0188 (11.98) 0.0271 (10.04)

300 0.0069 (14.26) 0.0106 (9.34) 0.0163 (9.92) 0.0231 (10.05) 0.0333 (9.44) 0.0449 (7.94)

500 0.0118 (11.18) 0.0208 (7.46) 0.0317 (8.09) 0.0485 (7.44) 0.0720 (6.69) 0.0926 (6.51)

1000 0.0309 (6.71) 0.0584 (5.89) 0.0932 (5.48) 0.1507 (4.94) 0.2301 (4.68) 0.2893 (4.58)

2000 0.0998 (4.66) 0.1905 (3.99) 0.3172 (3.69) 0.5055 (3.67) 0.7844 (3.48) 1.0280 (3.45)

5000 0.5277 (3.22) 1.0778 (3.06) 1.7756 (3.03) 2.8538 (2.96) 4.4633 (2.87) 5.8639 (2.85)

10000 1.9865 (2.61) 4.0287 (2.50) 6.9797 (2.45) 11.1079 (2.45) 16.8268 (2.45) 22.5844 (2.41)

20000 6.3978 (2.69) 13.0222 (2.65) 22.2440 (2.63) 36.0918 (2.59) 55.6329 (2.56) 76.3986 (2.47)
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Table 4 Average execution times (in seconds) of our Matlab code for the trivari-

ate standard normal distribution N(03, I3)

n\τ 0.010 0.025 0.050 0.100 0.150 0.200

100 0.3605 (2.23) 0.8726 (1.84) 2.5493 (1.50) 6.7343 (1.47) 10.2521 (1.68) 16.3636 (1.50)

200 1.0748 (1.98) 3.2783 (1.70) 9.1170 (1.15) 27.7463 (1.48) 49.8585 (1.36) 64.1989 (1.21)

300 1.8209 (1.80) 6.0221 (1.39) 20.9417 (1.32) 59.1933 (1.47) 103.3586 (1.28) 145.7080 (1.40)

400 3.1733 (2.10) 11.9082 (1.31) 37.9346 (1.14) 104.8924 (1.21) 184.5419 (1.22) 273.5947 (1.38)

500 4.9012 (1.46) 18.4903 (1.27) 62.3985 (1.07) 172.7891 (1.49) 300.7928 (1.11) 479.1082 (1.36)

Table 5 Average number of (not necessarily different) direction vectors considered by

the Matlab implementations of [2] (PS2012b) and ours (New) for the trivariate

standard normal distribution N(03, I3), where the quantities in the parentheses

denote the times of the number of direction vectors obtained by the benchmark

procedure more than that of ours

Method n \τ 0.010 0.025 0.050 0.100 0.150 0.200

PS2012b 100 216 808 2528 7272 12776 18280

200 1072 3608 7528 30912 50768 62176

300 2088 6456 22056 68824 101392 154208

400 4792 12088 34088 98944 172152 282008

500 5352 18328 52696 196680 248712 440672

New 100 514 (0.42) 1015 (0.80) 2668 (0.95) 6414 (1.13) 9345 (1.37) 14498 (1.26)

200 1203 (0.89) 3231 (1.12) 8328 (0.90) 23460 (1.32) 42833 (1.19) 54450 (1.14)

300 1945 (1.07) 5601 (1.15) 18690 (1.18) 48781 (1.41) 84349 (1.20) 117328 (1.31)

400 3058 (1.57) 10203 (1.18) 31902 (1.07) 82515 (1.20) 144101 (1.19) 210551 (1.34)

500 4420 (1.21) 15365 (1.19) 48982 (1.08) 128639 (1.53) 221149 (1.12) 322599 (1.37)

Note that when calculating direction cones and their pertaining hyperplanes, some of them
are redundant (containing no facet of the region), and some are not. Ideally, a good implemen-
tation is expected to be capable to eliminate as many as possible redundant direction cones from
considerations. For a given data cloud Xn and a fixed τ , the more the redundant direction cones
considered, the larger the number of direction vectors (or optimal bases) included in the final
results. Therefore, we also investigate the number of direction vectors obtained by these two
implementations. Since both of them obtain the same number of direction vectors for bivariate
data, we only report the average number of (not necessarily different) direction vectors of ten
repeated computations for the trivariate data. Table 5 shows that our new implementation
yields a smaller number of direction vectors than that of [2] does in most combinations of n

and τ , especially when n and/or τ are large.
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5 Concluding Remarks

As a major depth notion, halfspace depth has emerged as a powerful tool in multivariate
robust data analysis. The last decades have seen the extensive applications of such a depth
notion in inducing many powerful nonparametric methods. Among others, halfspace depth
contours are of great interest since they can serve as multivariate quantiles in spaces of high
dimension. In fact, it is already seen that halfspace depth contours have a strong connection
with the concept of multiple-output quantile regression[7,8]. Such a connection enables one to
construct efficient algorithms for exactly computing halfspace depth contours even in dimensions
with p ≥ 3 by using parametric linear programming techniques; see [1, 2].

In this paper, we enriched the toolkits for computing halfspace depth contours by providing
an another efficient algorithm. Unlike [1, 2], the new algorithm segments the unit sphere directly
relying on the idea of a circular sequence. It does not have to employ the parametric linear
programming techniques; see also [25] and [30] for similar discussions in the setting of other
depth notions. We found in our simulations that its implementation can run faster than the
existing methods in many cases. We wish that the developed algorithm has the potential to
help practitioners in the data analysis.
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Appendix

Proof of Proposition 1 Let’s first focus on the proof of Dk = Ek. Note that, for any x ∈ Ek

and u ∈ Rp, it always holds uTx ≥ gk(u) ≥ uTXik−1 ≥ · · · ≥ uTXi1 , where (i1, i2, · · · , in)
denotes the permutation corresponding to u. Then we can easily obtain that #{i : uTx ≥
uTXi, i ∈ N} ≥ k for any given u, and therefore dn(x) ≥ k/n. This proves Ek ⊂ Dk. On
the other hand, suppose that there is a x0 ∈ Dk such that x0 /∈ Ek, namely, there must exist
at least one u ∈ Rp such that uTx0 < gk(u). Note that gk(u) ≤ uTXik+1 ≤ · · · ≤ uTXin ,
then we have #{i : uTx0 ≥ uTXi, i ∈ N} < k and therefore dn(x0) < k/n. This leads to a
contradiction since dn(x) ≥ k/n for all x ∈ Dk. This completes the proof of the first part.

For the second part, it is sufficient to prove that, for any given cone Cl = {t ∈ Rp : A
T
l t ≤

0n−1}, we have G1 = G2, where Al is given in display (3), G1 = {x ∈ Rp : uTx ≥ gk(u),
∀u ∈ Cl}, G2 = {x ∈ Rp : ũT

j x ≥ gk(ũj), j = 1, 2, · · · , m0}, where ũ1, ũ2, · · · , ũm0 denote the
unit direction vectors corresponding to all the vertices of Cl. Clearly, G1 ⊂ G2 since ũj ∈ Cl

for j = 1, 2, · · · , m0. On the other hand, it is ready to see that: (I) Cl is convex, and (II)
for any u ∈ Cl, we have gk(u) = uTXik

. Then (I), (II) and the fact that ũT
1 x ≥ ũT

1 Xik
,

· · · , ũT
m0

x ≥ ũT
m0

Xik
together lead to (

∑m0
j=1 λj ũj)Tx ≥ (

∑m0
j=1 λj ũj)TXik

, we can easily show
G2 ⊂ G1, where λj ≥ 0, j = 1, 2, · · · , m0.

This completes the proof of the proposition.


